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Abstract

This paper deals with the “telephone problem”, also known as the
“gossip problem”. It presents a self-contained elementary treatment of the
problem, based on simple combinatorics.
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I Introduction

The telephone gossip problem. Each of n people has his own secret. They
communicate via consecutive telephone calls. At each call, the two participants
pass to each other all the secrets they have learned up till that time. What is the
minimum number of calls needed for everybody to learn all the secrets?

Denote by f(n) the minimum number of calls required. It is easily seen that
f(3) =3, f(4) =4, and after some experimenting a strong conviction arises that
f(n) = 2n — 4. Surprisingly, the expected elementary proof does not come easily,
as the analyses in, e.g., [2] - [5] show.

I learned about the gossip problem from a student of mine, who put it to me
as “homework”. He knew the answer from Internet and thought the proof must
be elementary, and that his teacher might help him with this. This paper is in
a way my response to his request. By means of what we shall call the “type
description” method, based on simple combinatorics, the following will thus be
proved:
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partially supported by the Alice Wallenberg Foundation.



Theorem. The minimum number of talks required in the telephone gossip prob-
lem is

f(n) =2n—4, for n>4. (1)

Some history. The telephone gossip problem was originally posed by A. Boyd
[1] in 1971 in terms of ladies, knowing scandal items and passing them to each
other by telephone calls. It seems to have enjoyed a certain popularity with
mathematicians since in a relatively short time period it was independently solved
in a number of papers, e.g. [2]-[5], by different methods. In some of these papers
the authors convey to the reader their specific experiences in encountering the
problem. For instance, Hajnal et al. [3] refer to the problem as the “telephone
decease”. Harary and Schwenk [5] write in their introduction that “the problem
has so many features of an ailment” and also point out that it is equivalent,
although in disguise, to a problem described in the psychological literature as the
“common symbol problem”.

Most of the earlier solutions to the telephone gossip problem use graph-
theoretical techniques. The proof in [5] is based on an assumption called the
“four cycle conjecture” introduced there with the following words: “We are so
convinced of the next statement that even though it is by definition a conjecture,
we shall call it a True conjecture” (italics theirs). Despite a prize of US $10
offered in [5] for the first proof or disproof of the True conjecture, it remained
unproven for 7 years until Bumby [10] published a paper “devoted to the proof of
the “four-cycle” conjecture”. At the end of the present paper we will show that
our proof yields the existence of the four-cycle in an optimal series of talks.

In the original gossip problem people communicate via telephone talks. One
can also consider the analogues problem in other communication models, such as
when people communicate via telegraph or via k-party telephone talks. Gossiping
in different communication networks is studied in many papers, e.g., [6] - [19],
of which [11] is a survey of known results. The main mathematical tools used in
these are graph-theoretical. It turns out that the type-description method, that
we use here, works as well for gossiping in other communication models, treated
earlier by techniques from graph theory. We will give some examples of this at
the end of the paper.

IT Some notations and definitions. Idea of proof.

Let A = {a4,...a,} be the set of all participants in the exercise. By [a;, a;] we
will denote a telephone talk of the pair (a;,a;). A series of talks will be denoted
by

w = tltg P tm(w)



with ¢; = [a;,, a5,] for 1 < i < m(w), where m(w) is the length of the series. Let
2 be the set of all series of talks such that at the end of the series for the first
time all secrets are known to all participants. The problem is then to find

f(n) = minm(w).

A series w € Q with m(w) = f(n) will be called optimal.

Types of talks. Let w be a series of talks. The number of secrets which a
participant knows varies from 1 at the beginning of the series to at most n at
the end of it. Let us call a participant who has learned all n secrets an informed
person. If ay knows all n secrets before the talk ¢; € w we will say he is informed
at t;. The couple (ay, a;) will be said to be self-complementary (SC) at ¢; if neither
a, nor q; are informed at ¢; but together a; and a; know all n secrets.

Let t; = [ai,, a;,]. Depending on how much a;, and a;, know before the talk, t;
can be of four different types.

Type To: a4y, a;, are not informed at ¢; and (a;,, a;,) is not SC at ;. In this
case t; does not produce informed people.

Type Ti: exactly one of a;, or a;, is informed at ¢; . Then ¢; produces one
new informed person.

Type Tp:  the pair (a;,,a;,) is SC at ¢;. Now t; produces two new informed
people.

Type T~:  both a;, and a;, are informed at ¢;. The talk ¢; then cannot produce
new informed people.

Clearly, in any series of talks the first two talks are of type 7. (Recall that
n > 4). If w € Q, then the very first talk that produces informed people, is a
T,-talk. Also, the last talk in the series is either a 7T} or a T,-talk.

Generating talks. Let w be a series of talks. If (ax, ;) is SC at t,11 € w but
not at ¢, € w we will say that ¢, generates the SC pair (ag,a;) and call ¢, its
generating talk (GT). Note that then either a; or q; necessarily participate in .
If the SC pair (ax, a;) “closes” in a Tr-talk t; = [ax, a;] of w, where j > g, then
we will say that t, is the generating talk of t;, too. Note that one Tj-talk in w
can generate at most two Tp-talks in w.

Type description of series of talks. Let w =11t;...%,,). The type descrip-
tion of w is a series w” listing the types of the talks in w in the same order.
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Example. The series of talks

wo = [a1, Gn] - . - [an—4, On][n_3, an][an_2, Gn_1][Gn 1, an][an_3, an_2]

[a1, ap)] - - - [Gn_4, Gy

(2)

has type description

wg:To...ToTQTQTl...Tl. (3)

n—2 n—4

In words, a1, as,...a,—3 talk to a,, then a,_o talks to a,_;. This latter talk
generates the self-complementary pairs (a,_1,a,) and (a,_3,a,_2) and also the
two following T5,-talks, in which a, ; talks to a, and a, 3 talks to a, 5. The
now informed a, then talks to ai,...a,_4. In this way all participants become
informed at the end of the series. Hence m(wg) € 2, and since m(wy) = 2n — 4,
wp should then be optimal, by the Theorem.

The series of talks

Wi =[a1, an] - . . [an_3, an][an—2, an][an—1, an]

(a1, ay) ... |Gy _3,a4]

(4)

is also in €2 and has type description

wz1::75...757}7]...1}. (5)
—— N—

n—2 n—2

This time a4, as,...a,_3 talk to a,, as they did in wy but now a,_o talks to
an, not to a,_1, as was the case in wg. The talk [a,_2,a,| generates the self-
complementary pair (a,—1,ay), in which a,_; knows only his own secret (since
he has not talked before) and a, knows the rest. This SC pair then performs
the first Ty-talk of the series. Note that after this talk the secret of a, 1 is only
known to him and to a,, and both of them are informed. Hence the rest of the
people may become informed only in 7}-talks with a, or a,_; or with someone
who has already talked to one of them, as is done in w,, where a4, ...a,_o talk
to a,. Comparing (3) and (5) we see that w, is not optimal.

Restriction of (). It is easily seen that the sum of indices of all 75 and T;
elements in the type description w” of a series of talks w represents the number
of informed persons at the end of the series. Thus if this sum equals n, the series
belongs to 2, as is the case in (3) and (5). We will use this to restrict the set
of series under consideration. A series in €2 which contains talks of type 7T is
not optimal, since by removing these talks we get a shorter series in (2. We may
therefore assume below that the series in €2 do not contain 7~ -talks.

Let now w € 2 and let two consecutive talks in w have type description 777; or
T1T;. One can readily see the two talks cannot have any participant in common.
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Thus if we reverse the talks, they will preserve their types and the types of the
remaining talks in w are unchanged. This means that the new series also belongs
to (2. Continuing in this way, in a finite number of steps we will come to a series
in {2 with the same length as w and where all T}-talks are at the end. Therefore
we may assume below that the Ti-talks of any series in {2 take place at the end
of the series.

We will thus assume from now on that each w € 2 has type description of the
form

(UT:T()...TO T2 ...Tl...Tl, (6)

s Ty-talks n-2s
and some Ti-
To-talks talks

where s > 1 and 2s < n. Denoting by mgy(w) the number of Ty-talks in w, we
have

m(w) = mo(w) + s+ (n —2s) = me(w) +n — s. (7)

Idea of proof. We will show that in any w € €2 the minimum number of Tj-
talks needed to generate one or two Ty-talks is n — 2. This together with (7) will
imply that the length of a series with s = 1isat least n—2+4+n—-1=2n—-3, and
as we know from the Example such a series cannot be optimal. Thus s > 2 in the
type description of an optimal series. A series in {2 with more than two T5-talks
in it will have to contain additional Tj-talks to the n — 2 needed to generate the
first two T5-talks. We will show that such a series cannot be shorter than a series
without additional 7Tj-talks, where after the first two T5-talks the rest of people
get informed in T}-talks. Such a series has type description (3), and hence the
series wy of (2) will turn out to be an example of an optimal series.

IIT Proof of the Theorem

We now introduce self-complementary k-tuples, generalising the notion of self-
complementary pairs.
Let w = t1ty ...t (w) be a series of talks. The k-tuple (as, ... ,ae,),

2 < k < n, will be called self-complementary (SC) at t; € w, if neither of
ag,, - - - ag, is informed at ¢;, no two of them know exactly the same secrets and
together ay,, ... a, know all n secrets. For instance, the n-tuple (aq,...a,) is SC
at t; and if t; = [aq, as|, then the (n — 1)-tuples (aq, as, ...a,) and (as,...a,) are
SC at t5. A k-tuple (ay,, ... ,aq ) will be called SC at the end of w if neither of
gy, - - - ag, is informed after #,,(,), no two of them know exactly the same secrets
and together ay, , ... a, know all n secrets.



If (ag,,...aq) is SC at ty41 but not at t, we will say that ¢, is the generat-
ing talk (GT) of the SC k-tuple (ag,,...as ). If so, exactly one of ag, ..., a
participates in Z,.

We first prove the following:

k

Lemma 1. Let o, (k) be the minimum number of talks needed to get a SC k-tuple
from n participants. Then o, (k) =n — k.

Proof. Let w = t1t5.. .14, k) be optimal in the sense that the k-tuple (a1, as, . . . ax)
is SC at the end of w and no other k-tuple is SC at some talk in w.

Assume first that one person, a; say, has not talked in w. Since (a1, as, . .. ax)
is SC at the end of w but not at Z,, ), this talk generates the SC k-tuple. This
means that one member of the k-tuple, aq, say, talks in ¢, with someone
outside the SC k-tuple, ay11, say. At ¢, () the people in the k-tuple (az, . .. ax41)
thus know all secrets but the secret of a;. Then (ag, . ..axy1) is SC at tan With
respect to the n — 1 secrets of a»,...a,, and is also the first such k-tuple, since
w is optimal. Therefore a,,_1(k) = a, (k) — 1. Continuing in this way we arrive
at oy, (k) = ag(k) +n — k. Since ai(k) = 0, the statement follows.

If everybody in (a1, ag, ... ax) has talked in w, replace a; by ay everywhere in
w. At the end of the new series, a; will only know his own secret and ay will
know the secrets which he and a; knew together at the end of the old series,
exept the secret of a;. The rest of the people will know the secrets which they
knew before, except that of a;, which is now replaced by the secret of as. In
this way, (a1, as,...ax) is SC at the end of the new series which has the same
length as w. Since a SC k-tuple cannot be reached in fewer talks, the new series
is also optimal in the above sense, and because a; has not talked in it, by above
a, (k) = n — k. We remark that a; and ay cannot have talked in w because then,
after the replacement a, would have talked to himself, and such a talk could
be cancelled without affecting the knowledge of secrets. After this cancellation
the new series would be shorter, in contradiction to the optimality of the old
series. ]

Corollary 1. Let w be as in the proof of Lemma 1 and 2k < n. There can be
at most two k-tuples which are disjoint and SC at the end of w.

Proof. 1f everyone in (ay, as, ... ax) has talked at least once in w (this is possible,
since k < n — k), then the people to whom they have last talked form a k-tuple,
which is disjoint from (a1, as, . ..ax) and is SC at the end of w. Assume now that
there exists a third k-tuple which is disjoint from the first two and is SC at the
end of w. Since the people talking in Z,,) are not from the third k-tuple, the
latter would then have been SC already at ¢, ). By Lemma 1 this would imply
that o, (k) — 1 > n — k, which is a contradiction to Lemma 1. O



Corollary 2. If w € Q is optimal, then it contains at least two T5-talks.

Proof. Let w € Q and s =1 in (6). Lemma 1 implies that my(w) > n — 2 in (6)
and then (7) gives that m(w) > (n —2) +n —1 = 2n — 3 = m(w,), where w, is
the series from from (4). Since w, is not optimal, neither is w. O

Corollary 3. If w € €2 is optimal, then both persons talking in the first T5-talk
of the series must have talked at least once before this talk.

Proof. 1f only one person from the first 75-talk in w has talked before, then
necessarily s = 1 in the type description (6) of w, as explained in the case of w,
of the Example. This is a contradiction to Corollary 2. 0

Let w € Q and t; be the first T,-talk in it. We may assume that ¢; = [a, 1, ay],
otherwise we change notations on the participants from the very beginning. Let
tg, be the GT of the SC pair (a,_1,a,). In t,, one of a,_; and a, talks with some
other person. Again, by a proper change of notations, we may assume that this
person is a, o and that t;, = [an_2,an_1]. The triple (a,_2,a, 1,a,) is SC at
tg,- Let tg, be the GT of this SC triple. In ¢y, one of a, 2, a, 1, and a, talks
with someone else, say a,_3. The quadruple (a,—3, Gn—2, an_1,a,) is SC at ty,. If
n = 4, tg, is the first talk in the series. If n > 5 we look for the GT ¢,, of the SC
quadruple (a,—3, Gp—2, Gp_1,ay), where a,,_4 talks to some of a,_3, a,,—2, a,—1 and
an, and continue in this way until we come to a talk ¢,,_, = [a1, one of as,...a,]
generating the SC (n — 1)-tuple (as, ...a,). Since (ai,...a,) is SC at t t
is then the first talk in w.

In this way we see that w contains a subsequence of n — 2 generating talks
leading to the first T5-talk of the series:

In—27 “Gn—2

s o gyt oty
other talks of w other talks of w other talks of w

w=t

We will study the subsequence wy,;, defined by these generating talks.

= gn—Ztgn—3 st tgztgl' (9)

Lemma 2. Let w € Q and consider the corresponding wgyy from (9). Then the
following s true:

a) In addition to (a,_1,a,), there can be at most one pair which is disjoint
from (an_1,a,) and is SC at the end of w. Such a pair exists when a, has
participated in some talk of wsw and consists of a,_o and the person to
whom a,, has talked last.

b) In addition to (a, 2,a, 1,a,), there can be at most one triple which is
disjoint from (an_2,an_1,0,) and is SC at t,. Such a triple exists if each
of an_2,an_1 and a, has participated in some talk of weyy preceding ty,, and
consists of the persons to whom a,_o,a,_1 and a, have talked last.
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¢) In addition to (an_3,an_2,0n_1,0,), there can be at most one quadruple
which is disjoint from (Gn—3, Gn—2, Gn-1,an) and is SC at t,,.

d) There are no SC triples nor quadruples at ty, ,,...  tg,.

Proof. The statements a), b) and ¢) follow from Corollary 1. By Lemma 1, at
least n — 3 talks are needed to obtain a SC triple, and at least n — 4 talks are
needed to obtain a SC quadruple. Since ¢4, is preceded by n — 5 talks, no triples
nor quadruples are SC at 4, or earlier. This proofs d). O

The number of Tj-talks in any w € €2 is thus at least n — 2, the number of the
talks in the corresponding wgy,. Let my(w) = my(w) — (n — 2) be the number of
possible additional Ty-talks in w. Then from (7)

m(w)=n—-2+m(w)+n—s=2n—2)— (s —my(w)). (10)

Lemma 3. Letw € Q be optimal, with type description w” as in (6). Then s = 2
if4 <n <7 and either s=2 ors=4ifn > 8.

Proof. Again, without loss of generality we may assume that ¢; = [a,, 1, a,] is the
first Ty-talk in w, and that the corresponding wyg,, is the one in (9). Since w is
optimal, the value of s —m;(w) in (10) is the largest possible. By Corollary 2 we
know that s > 2.

Assume first that s = 2 in w. By a) of Lemma 2, in addition to the SC
pair (a, 1,a,), a second pair which is SC at the end of wyy, can exist without
additional Tj-talks if a, talks in wgy,. If a; is the last person to whom a, has
talked in wgy,, then the pair (a,_2,a;) is SC at the end of wy,, and may result in
another T)-talk after ¢;. In this case, we have m;(w) = 0 and then s —m; (w) = 2.

Assume now that s = 3. One Ty-talk in addition to t; = [a,_1, a,| may exist
without further Tj-talks as explained above. In it a,,_, talks to a;, the last person
to whom a,, has talked to in wg,,. Where may the SC pair talking in the third
T,-talk come from? It does not contain any of a;,a, 2,a, 1, and a, and then
by a) of Lemma 2, this pair is not SC at the end of wgy,. Neither is the SC pair
obtained from a triple which is SC at some talk of wy,;, because such triples do
not exist according to b) and d) of Lemma 2. Then by Lemma 1, the additional
Ty-talks needed to get the third SC pair are at least two. This implies that
s —my(w) < 3—2=1 and then m(w) > 2n — 3. Such an w cannot be optimal
and hence the assumption s = 3 is false. Since s < 3 when n < 7 (because
2s < n) we must then have s = 2 in an optimal series with n < 7 participants.

Assume now that n > 8 and that s > 4 in w?. Again, another pair than
(@p_1,0,), which is SC at the end of ws,; can be obtained without using additional
To-talks, and by c¢) of Lemma 2, two further SC pairs can result from a quadruple
which is SC at t,, in two additional Ty-talks. In this case, by ¢) and d) of Lemma
2, there will be no quadruple left which is SC at some talk in wgy,. Then further



SC pairs may only be obtained by using k-tuples with £ > 5 which are SC at
some talk in wg,,. By Lemma 1 at most two pairs which are SC at the end of
wgyp O later can be obtained from one such k-tuple, and this will require at least
k — 2 > 3 more Ty-talks. Thus having formed four SC pairs, no further SC pair
can be obtained in only one additional 7j-talk. Summarising we see that two SC
pairs are obtained without additional Tj-talks to those in w,,;, another couple of
SC pairs may be obtained in two additional Tj-talks and that no further SC pair
can be obtained in only one further 7Tp-talk. This gives that
s—miw)=(2-0)4+(2-2)— ((m(w)—2)—(s—4)) <2,

- 7
-~

>0

where, as explained above, the expression m;(w)—2—(s—4) equals 0 when s = 2
(and mq(w) = 0) or s =4 (and m;(w) = 2) and is positive for s > 5. Therefore
equality can hold in the above inequality only if s = 2 or s = 4. O

It follows from Lemma 3 that a series in {2 with type description

(UT: T()...T() T2T2 Tl...Tl
—— ——

(n—2) talks (n—4) talks

is optimal. An example of such a series is provided by wy of (2). The proof of
the Theorem is now complete. O

As an illustration in the case n > 8, in addition to the optimal wy of (2),
another optimal series for n = 8 is

w=la,as][as, agllas, ar][as, ag]

[al, a3] [612, a4] [a1, 02] [as, a4] [as, 07] [06, as] [05, as] [67, as]
with type description
C(.)T = T()T()T()TO TOTOT2T2 T()T()TQTQ.

In words, in 8 — 4 = 4 Ty-talks we get the SC quadruples (a1, az, as,as) and
(as, ag, az, ag), in each of which people then exchange their secrets in the optimal
way, that is, in two T and two T,-talks. This optimal way of exchange between
4 people is what is referred to as the four-cycle in graph-theoretical treatments
of the Gossip problem. As was mentioned in the introduction, the existence of a
four-cycle in an optimal series of talks was introduced in [4] as a True conjecture.
Here the existence of a four-cycle in an optimal series is a consequence of the proof
of Lemma 3. Note that according to Lemma 3, an optimal series can contain one
or two four-cycles when n > 8.



Assume now that the communication between any two people is one-way
only, such as when they use, e.g., the telegraph. Each talk now produces zero
or one new informed people. Let us say that such talks are of types Ty and 77,
respectively. The first two talks in any series w are Ty-talks and the first 7;-talk
in the series is between two people who constitute a SC pair. The number of the
preceding Ty-talks is then at least n — 2, in accordance with Lemma 1. By letting
the person who has become informed in the first 7}-talk of w talk to everyone
else, we find an optimal gossip series which thus has length (n —2) +n = 2n — 2,
the result obtained in [5].

Assume now that people communicate via k-party telephone calls. Introduc-
ing types Tj for talks that produce j new informed people, j = 0,1...k we can
use the same procedure as the one described above for £ = 2, to arrive at a type
description of an optimal series w. If, for example, n > k2, one can show that a
series w with type description

wl= Ty... To T... T Ty ... T 1T}
N e N e

(%211 tatks k talks —pnk2y g
is optimal. Here 7 equals the rest in the division of n — k? by k — 1, when this rest
. . 2
is positive, and k—1 otherwise. The length of such a series is Z—:'ﬂ +hk+[2E] =

k=1
2[7=£1, the result obtained in [9].

Acknowledgement. The author is indebted to Vidar Thomée for several sug-
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