NON-HOLOMORPHIC FUNCTIONAL CALCULUS FOR
COMMUTING OPERATORS WITH REAL SPECTRUM

MATS ANDERSSON & BO BERNDTSSON

ABSTRACT. We consider n-tuples of commuting operators a =
ai,...,a, on a Banach space with real spectra. The holomor-
phic functional calculus for a is extended to algebras of ultra-
differentiable functions on R, depending on the growth of || exp(ia-
t)||, t € R*, when |¢| = oo. In the non-quasi-analytic case we use
the usual Fourier transform, whereas for the quasi-analytic case we
introduce a variant of the FBI transform, adapted to ultradiffer-
entiable classes.

1. INTRODUCTION

Let X be a Banach space and let £(X) denote the space of bounded
linear operators on X. If ay,...,a, € L(X) are commuting, then
f(a) = f(ai,... ,a,) has a definite meaning for any polynomial f(z) =
f(z1,-..,2n); in fact for any entire function f(z). Since the polynomi-
als are dense in O(C") there is a continuous algebra homomorphism

(1.1) O(C") = (a) C L(X),

where (a) denotes the closed subalgebra of £(X) that is generated by
ay,--.,0,. To go beyond entire functions one has to consider the joint
spectrum of the operators. The appropriate notion of joint spectrum
o(a) = o(ay,...,a,) was introduced by J. Taylor in [17]. Let A?4
denote the space of X-valued (p, ¢)-forms at z € C”, and let 6,_,(2)
denote contraction with the operator-valued (1,0)-vector 273 (z; —
a;)(0/0z;|,). Since 6,_,: ABTH0 — A0 and §,_, 0d,_, = 0 (this is
equivalent to the commutativity of the a;), we have a complex

(1.2) 0+ A2« .+ A0 0.

Taylor defines the spectrum o(a) as the set of z for which the complex
(1.2) is not exact. It turns out that o(a) is a compact subset of C*
which is nonempty unless X = {0}.
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Theorem 1.1. Suppose that a4, ... ,a, are commuting operators on a
Banach space. There is a continuous algebra homomorphism
O(o(a)) = LX), [+ f(a),
that extends (1.1). Moreover, if f = (f1,..., fm) is a mapping, f; €
O(o(a)), and f(a) = (fi(a),..., fm(a)), then
(1.3) o(f(a)) = f(o(a)).
If furthermore h € O(o(f(a)), then ho f(a) = h(f(a)).

The basic results about the functional calculus are due to Taylor,
|18]|. The last statement, the composition rule, was proved by Putinar
in [14].

If a is one single operator and f € O(o(a)), then f(a) is given by
the formula

(1.4) fla)x = f(Rw,—qx, x€X,
oD
where w,_, is the resolvent form
1 1
i—a = —(2—a)"d
w 27”(2 a) tdz

which is holomorphic in C\ o(a). In the several dimensional case, the
resolvent w, .z, for a fixed element x € X, is a cohomology class in
H"™(C" \ o(a), OX) where O denotes the sheaf of holomorphic X-
valued (n,0)-forms. In the original work of Taylor this cohomology
class was defined by a Cech co-chain with respect to a certain cover-
ing of the complement of the spectrum. In principle, by the Dolbeault
isomorphism, one can also represent the resolvent class by a 0-closed
differential form of bidegree (n,n — 1) in the complement of the spec-
trum in such a way that the integral representation formula (1.4) still
holds. It is then of interest to find a Dolbeault representative as ex-
plicitly as possible. This was first done by Vasilescu in [19] for the
case when X is a Hilbert space, by an appropriate generalization of the
Martinelli-Bochner formula. Vasilescu’s construction was later general-
ized by D Albrecht [3] and [4] and Kordula and Muller [12] to operators
on a Banach space satisfying some additional conditions. Finally, the
first author gave the construction of the Dolbeault representative in
the general case, see [3], and showed how this could be used to develop
Taylor’s theory in a simpler and more elementary way.

In this paper we will mainly consider the case when the spectrum
o(a) is real; then there is always a (a)-valued form w, , of Cauchy-
Fantappie-Leray type such that w,_,x represents the class w,_,z for
each z € X. In fact, since o(a) is polynomially convex, for a fixed
point z ¢ o(a), by Cartans’s theorem there are ¢; € O(c(a)) such
that ) ¢;(w)(z; — w;) = 1. Hence, by Taylor’s theorem, §, s =
>.sj(zj—a;) =e,if s = s;dzj, s; = ¢j(a), and since the polynomials
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are dense in O(o(a)) it follows that s isin (a). It is now easy to obtain
a smooth form in C" \ o(a) such that §, ,s(z) = e, and one can then
take @, o = s A (0s)"71, see [3].

If F' is a function with compact support that coincides with f €
O(o(a)) is some neighborhood of o(a), then

/aF AWy _g.

This formula suggests that, in certain situations, one may have a richer
functional calculus. One should look for functions F' defined in C”,
with say compact support, such that |0F| vanishes fast enough on
o(a) compared to the growth of some representing form w, , as above
so that the integral

(1.5) F(a) = /5F(z) AWyyg

has a meaning. One easily verifies that the definition only depends on
the values of F' near o(a). For one single operator this idea was ex-
ploited by Dynkin, see [9]. In the higher dimensional case similar ideas
have been used by several authors including Waelbrock [20], Nguyen
|13], Droste [8], and more recently Sandberg [16]. One difficulty is
to prove the multiplicative property FG(a) = F(a)G(a). In [13] this
is done in a manner parallel to Taylors method, by considering ten-
sor products. Droste considers the situation when the spectrum lies
on a totally real manifold, and in that case he obtains the multiplica-
tive property by approximation with holomorphic functions. Finally
Sandberg proves a multidimensional generalization of the so-called re-
solvent identity, and obtains the multiplicative property from there,
following Dynkin’s approach. Another difficulty in the several variable
case is that there is a variety of possible representatives w,_, of the
class w, ,. Therefore, the growth of a representative of the resolvent
class, and much less the growth of the form s, is not an intrinsic prop-
erty of the n-tuple of operators when n > 1, and it would be desirable
to have a more easily verified hypothesis on the operators which as
closely as possible determines which class of functions that operate on
them.

Another natural approach to extend the functional calculus if the
spectrum is real (or contained in the torus in C") is by the suggestive
formula

(1.6) f(a) = / ¢ f (t)dt

where a -t =) a;t;, for t € R", and where f is a function on R* and
f is the usual Fourier transform

(L.7) ft) = o / it (2)da
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Clearly this formula gives a meaning to f(a) if f has enough decay,
which roughly speaking just means that f has enough regularity, com-
pared to the growth of ||e’*?||. In this case the multiplicativity follows
directly and the problem with non-uniqueness of the resolvent repre-
sentative disappears. It is not clear to us where this idea appeared first,
but it is used quite explicitly (in the case of one single operator with
spectrum on the circle) already in [21], where the idea is attributed to
Beurling. It turns out that a radial growth condition on ||e??|| precisely
corresponds to a radial growth condition on some form w, ,. In the
same way, the regularity of a function on R” measured by a radial decay
condition on |f(t)| more or less corresponds to a radial decay condition
on OF for some extension F(z) of f to C". In this case therefore both
methods give rise to essentionally the same functional calculus. The
purpose of this paper is to consider more general growth conditions,
and then no such simple connection between the two methods is pos-
sible, because of the so-called edge-of-the-wedge phenomena. It turns
out that the Dynkin approach then cannot give as precise statements
as the Fourier method; so in this paper we concentrate on the latter.
However, for a discussion of the two methods, see Section 6 and [5].

One can consider the mapping f — u(f) = f(a) € (a) given by
Theorem 1.1 as an (a)-valued analytic functional which is carried by
o(a) C R", i.e., an (a)-valued hyperfunction on R" with compact sup-
port. The regularity of such a hyperfunction is reflected by the growth
of its (inverse) Fourier transform fi(t) = u(e®®**?) and is related to how
large class of functions that y operates on. Therefore we should look
for optimal such classes of functions. Our starting point is certain Ba-
nach algebras A; of functions in R", first introduced by Beurling [6].
Here h is a nonnegative subadditive function and f € A, if

/ ()] exp h(t)de

is finite. Clearly a compactly supported hyperfunction yu is defined on
Ay if 4| < Cexph; in case u is the holomorphic functional calculus,
this action of course is realized by (1.6). However, to find the optimal
class of functions on which such a p will be acting, one has to consider
functions only defined in some neighborhood of the support of y. The
core of this paper is to show that the algebras A, can be extended to
spaces Ay, i of functions defined in some neighborhood of a compact set
K, that these spaces essentially are the duals of compactly supported
hyperfunctions with the stated regularity, that these spaces actually
are algebras, and that the holomorphic functional calculus extends to
these spaces, and that the desired spectral mapping property holds,
given the appropriate growth condition on ||e®|.

In the case when A, contains cutoff functions, the non-quasianalytic
case, it turns out that the space A, i of functions can be described
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simply as the restrictions to K of functions in the space of global func-
tions Aj on R™. This is done in Section 2, and the extension of the
functional calculus to these algebras is made in Section 3. The work
in these two sections to a large extent relies on Gelfand theory. To
define the general algebras, and the corresponding functional calculus,
we introduce a variant of the so-called FBI transformation that we have
adapted to ultradifferentiable classes. This is done in Sections 4 and 5.

We end up this section with some additional remarks on tuples of
operators with real spectra. From the spectral mapping property in
Theorem 1.1 it follows that o(a) is real if and only of o(ay) is real
for each k. Furthermore, if o(a) is real then ||e'?|| = expo(|t|) when
|t| — oo, and in fact this growth condition characterizes commuting
n-tuples with real spectra. More precisely,

Lemma 1.2. Suppose that a4, ... ,a, are commuting operators. Then
o(a) is contained in R™ if and only if there is a (increasing and concave)
function H(s) on [0,00) such that

(1.8) || < Ce(*) and  lim H(s)/s = 0.

§—00

Proof. Suppose that o(a) C R”. Let D be a neighborhood of o(a) in
R* and let D, = {x +iy; x € D, |y| < n}. If @,_, is a fixed form as
above, then, by the formula (1.4), we have that

(1.9) ei“'t=/ €0, 4.
aD,

Let g(n) be a convex decreasing function on (0, c0) such that

sup ||w,—q|| < expg(n)
2€0Dy

for small n. If ¢’(s) = inf,~0(g9(n) + sn), then g¢°(s) is concave and
increasing on (0,00) and a simple estimation of (1.9) gives that

le*]| < Cexp g ([t])-

For each € > 0 there is a constant C, such that ¢g(n) < C, for n > e.
Therefore ¢’(s) < C, +es, i.e., ¢°(s) = o(s).
Conversely, assume that (1.8) holds. If w € o(a) it follows by the

spectral mapping property (Theorem 1.1) that e™* € o(e'?), and
therefore

|eiw-t| < ”eia-t” < Ceh(t).
Taking ¢ = —sImw in this inequality and letting s — oo we deduce
that Imw = 0 so that w € R*. Thus the lemma is proved. O

Remark 1. One can prove the lemma with no explicit reference to the
spectral mapping property. In fact, assume that (1.8) holds and let
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w = a—1if3 with § # 0. Then Heis(“_w)'ﬂH < ehlsB)=181s < =05 for some
positive ¢, and hence

cj:/ ﬁjeis(a_“’)'ﬂds
s=0

makes sense. Furthermore,

oo d is(a—w)-
Sy —ay) = [ e =

which shows that w ¢ o(a). O
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2. ALGEBRAS OF ULTRA-DIFFERENTIBLE FUNCTIONS

In view of formula (1.6) and Lemma 1.2 it is natural to consider
classes (algebras) of functions whose Fourier transforms have less than
exponential decay. Let h(t) be a positive, continuous, and subadditive
function in R™ with A(0) = 0. Moreover, assume that h(t) is increasing
on rays from the origin and that
(2.1) lim h(t) =0.

=00 [t]

A function satisfying these requirements will be referred to as an ad-
missible weight function. For instance, if H(s) is concave and nonde-
creasing on each half axis of R and H(0) = 0, then it is automatically
subadditive, and if in addition H(s) = o(|s|) when s — +oo, then
functions like h(t) = H(|t|) and h(t) = H(t-a), a € R", are admissible
weight functions. If A is admissible, then A® is admissible for 0 < a < 1.
It is easily verified that the class of admissible weight functions is closed
under finite sums and suprema. More generally, if A, ... , h,, are ad-
missible, then (R} + - --+h2 )!/? is admissible if 1 < p < oc. Sometimes
we impose the additional assumption that exp(—h(t)) = O(|t|~™) for
all positive m, or equivalently, that

(2.2) lim sup log(1 + |¢])

=0.
It/ =00 h(t)
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Let A;, be the space of tempered distributions f on R™ such that f
is a measure and

(2.3) 14y = / F@)ledt < oo,

where the Fourier transform f is defined as in (1.7). Then any f €
Ay is at least continuous, and if (2.2) holds, then A; is contained in
C>®(R"). Clearly A is a Banach space of functions that is closed under
translations. Moreover, if g is bounded, in particular if g € L*(R"),
then f — f % g is a bounded operator on A;. Since h is subadditive,
h(u) = h(t +u —t) < h(t) + h(u — t), and therefore

"] f 5 g(u)| < / 17" g(u — t) "D,
t

and integrating this inequality with respect to u and applying Fubini’s
theorem we get that

1914y < [1f 14, llgll.a,-

Thus Aj, actually is a Banach algebra under pointwise multiplication.
We say that the class Ay, is non-quasianalytic if for each compact set E
and open neighborhood U D F there is a function x € A; with support
in U which is identically 1 in some neighborhood of E. We recall the
following version of the Denjoy-Carleman theorem.

Theorem 2.1. Let h be an admissible weight function. The class Ay,
1s non-quasianalytic if and only if

(2.4 | <o

o1 It

and this holds if and only if there is a concave increasing function H(s)
such that h(t) < H(|t|) and

(2.5) /100 H(;)ds < 00.

Remark 2. In [6] this theorem is only stated explicitly for the class
NesoAen, but it holds for each fixed Aj, as well. What is not obvious
from Beurling’s formulation is that all desired cutoff functions x can
be found in the same space A;. Notice that the simplest way to obtain
functions with small support, by dilation like f5(x) = 6" f(x/d), does
not work. However, the statement is anyway true and for the reader’s
convenience we supply a direct proof here.

We thus are to prove that A, contains all desired kinds of cutoff
functions if h(t) = H(|t|), where H is concave and increasing and (2.5)
holds. Let us first assume that n =1 and let

(2.6) h(t) = H(|t|) + 21og(1 + |t]).
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In view of (2.5) it follows that the Poisson integral Ph of h is a pos-
itive harmonic function in the upper halfplane. If ® is a holomorphic
function such that Re® = Ph, then g = exp(—®) is a bounded holo-
morphic function in the upper halfplane and |g| = exp(—h(t)) on the
boundary. Therefore g is the Fourier transform of a function f(x) sup-
ported on the positive halfaxis and since | f(¢)| = exp(—h(t)) it follows
that f € A,. Now ¢(z) = f(a+2)f(8—) is an nonvanishing function
in A, with support in (—¢,¢) if the real numbers a and 3 are appro-
priately chosen. It follows that f(z) = ¢(x1)d(z2) - - - ¢(x,,) is in A in
R™ and has support in {z; max|z;| < €}. Since h is a radial function,
A}, is closed under conjugation and if f € A, has compact support,
then |f|? is a non-negative compactly supported function in A,. One
obtains the required function x by convolution of a function with small
support and the characteristic function for a domain which is slighly
larger than E. 0

Let Ao be the subalgebra of A, that is generated by the constants
and the functions f € A, such that f is absolutely continuous, i.e.,
in L'(e"). Each function f(z) in Apg is thus continuous and has a
limit when |z| — oo. For this slightly smaller Banach algebra there
is a simple description of its maximal ideal space as the one point
compactification of R”.

Lemma 2.2. The complex homomorphisms m: Ay o — C are precisely
the point evaluations x — f(x) for x € R* U {oc}.

Proof. If x € R* U {00}, then clearly f — f(x) is a complex homomor-
phism A, o — C. To see that any homomorphism is of this kind, first
notice that any f € Appo can be written uniquely as f = f. + £,
where f, is in L'(e") and § is a constant. Following [15] Exam-
ple 11.13 (e) one finds that if m: Ao — C is a homomorphism, then
either m(f. 4+ ) = g for all f € A, or

m(f) = / foctdt

for some bounded function ¢. The multiplicativity property then forces
that ¢(t)e"® = e for some complex number o. In view of the as-
sumption (2.1), a must be real, and thus m(f) = f(«). O

From the lemma and basic Gelfand theory it follows that the ideal
generated by fi,..., fm € Apo is the whole algebra if and only if the
mapping f = (f1,... , fm) is nonvanishing on R"” U {occo}. In particular,
1/feAppif f € Appand f # 0 on R* U {oo}.

Now suppose that A, is non-quasianalytic, let E' be a compact subset
of R", and let

Ing ={f € Ano; f=0o0n E}.
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Since I, g is a closed ideal in A}, o, the quotient space Ay, o/I) g is again
a Banach algebra which intuitively consists of all restrictions to E of
functions in A, with the norm

1Dl ano/m,6 = I0f{[[ fll.an05 f € Ano and f= ¢ on E}.

Since we assume that A; is non-quasianalytic the definition is unaf-
fected if we replace Ay o by Ap.

Clearly each point evaluation f — f(«), @ € E, is a homomorphism
Apo/In s — C. Conversely, any such homomorphism is pulled back to
a homomorphism on Ay,  that vanishes on Ij, g. In view of the previous
proposition it is therefore given by a point evaluation f — f(«) for
some a € E. We therefore have

Proposition 2.3. The mazimal ideal space of Apo/In i is precisely E.
Hence if fi,..., fm € Ano/InE, then there are u; € Apo/In g such that
douifi=11if and only if f = (f1,..., fm) is nonvanishing on E.

Our next objective is to show that one can compose with functions
that are holomorphic in some neighborhood of the image.

Proposition 2.4. Suppose that f = (f1,..., fm), where f; € Apo/InE,
and suppose that g € O(f(E)). Then go f € Apo/In k.

Proof. The spectrum of fi,..., f,, with respect to the Banach alge-
bra Apo/Ink is equal to the image of the Gelfand transform, and in
view of Proposition 2.3 is is precisely the compact set f(E). Therefore,
by the holomorphic functional calculus for Banach algebras, ¢g(f) =
g(f1,..., fm) is an element in Ap, /I, 5. (One can consider f; as com-
muting operators on the Banach space X = A /I, g, and hence this
claim is an instance of Theorem 1.1.) We must check that this object
coincides with the pointwise defined function g o f.

There is a smooth Ay, /I, g-valued form s(w) = > 1" s;(w)dw; in
C™ \ f(E) such that d,_rs(w) = D7 sj(w)(w; — f;) = 1. If

S A (Ops)™

1
Wu—1 = (2mg)™
then, cf., [3],

(2.7) o(f) = / g

For fixed a € C™, let w,, o denote the cohomology class in C™ \ {«}
that represents the point evaluation g — g(«) for holomorphic g. For

fixed z € E, >, sj(w)(x)(w; — fi(z)) =1, for w € C™ \ f(E), hence
Wy—f(x) represents the class wy,_f(y), and therefore

g(f)(@) = /@ gl (o) = /6 9w s = 9/ @).
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Later on we will need that if A, is non-quasianalytic then Ay o/In g
contains all functions which are realanalytic in some neighborhood of
E. More precisely we have

Lemma 2.5. Let D be an open set in R* and let D, = D x {|y| < n}
for some n > 0. If x € A has compact support in D, then x¢ € A
for all ¢ € O(D,)) and we have that

(23 |6x]l4, < Crnnsup 6], & € OD).

The proof is postponed to the end of this section. We are now ready
to define our main algebras.

Definition 1. Let h be an admissible weight function which in addi-
tion satisfies (2.4). For each compact subset K C R" we let Aj x be
the inductive limit of the algebras Ay /1), 77, for neighborhoods U O K.

This means that each function F' € Aj defines an element in A g,
and F, F' € A, define the same element if and only if F' = F” in some
neighborhood of K. The topology is defined by the requirement that
any mapping ® from A, x to a topological space Y is continuous if and
only if its pullback to Apo/1, 7 is continuous for each U O K.

Theorem 2.6. Let h be an admissible weight function which satisfies
(2.4) and let K C R*. Then A,k is a topological algebra that contains
O(K). Suppose that fi,..., fm € Ak and f = (fi,..., fm).- Then
fi,---, fm generate the whole algebra if and only if the mapping [ s
non-vanishing on K. Moreover, if g € O(f(K)), then go f € Apk as
well.

Proof. If ¢ € O(K), then ¢ € O(D,) for some open D D K and 1 > 0.
If we choose a cutoff function x € D(D) which is 1 in a neighborhood
of K, it follows from Lemma 2.5 that ¢x € Ap, k. It is clear that A, g
is an algebra and fi, ..., fi, € Aj k generates the whole algebra if and
onlyif f = (f1,..., fm) #0on K. Infact, if f # 0 on K, then f # 0 on
U for some U O K, and from Proposition 2.3 it then follows that there
are u; € Apo/I, 7 such that ) fju; = 1. Moreover, Proposition 2.4
implies that go f € A g if f € Ak and g € O(f(K)). O

We shall now briefly discuss the relation between the Aj-classes and
the so-called Cy;-classes or C-classes, cf., [11] Section 8.4. For simplic-
ity we restrict ourselves to the case of global functions. Let My, My, ...
be a sequence of positive numbers such that

(2.9) My=1 and M} < My_ My, for all k.

The latter condition just means that log M}, is convex. The class Cjy
consists of all functions on R" for which there are constants C,Cy > 0
such that

Df ()] < C1CY Mg
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for all multiindices a.. (Some authors instead consider Ly, = M ,i/ ¥ and
call the corresponding class C*.) It turns out that Cjs is an algebra

that is non-quasianalytic if and only if ) M, Yk <

Let H(s) be an increasing concave function on [0, co) with H(0) = 0,
and assume in addition that s — H(exp s) is a convex function on R.
Then its Legendre transform

m(z) = sgp(fvs — H(exp s)

is convex and

H(e") = sup(zs — m(z),

see, e.g., [11]. Since m(z) = —oo for x < 0, m(0) = 0 and m(zx) is
increasing, it follows that the sequence M) = exp m(k) satisfies (2.9),
and moreover,

(2.10) sup(ks — log M) < H(e®) < sup(ks — log My) + s.
keN keN

There is a close relation between Cy, and Ay if h(t) = H(|t|). In fact
we have

Proposition 2.7. Suppose that h(t) = H(|t|) is an admissible weight
function such that s — H(e®) is convex and assume that My, and h(t) =
H(|t]) are related as above. If f € Ay then f € Cyr; more precisely

|D*f| < CM,y. Conversely, if f € Cu, |D*f] < CC*' My, and f
has compact support, then

(2.11) [f(t)] < Colt|e /),
for some constant Cs.

Proof. If f € Ay, then an obvious estimate of the formula
Def(x) =i /tae_h(t)em'tf(t)eh(t)dt

gives that
‘Daf‘ S Csup |t‘|a‘6_h’(t) — CeSupS>0(|Dé‘S—H(€s)) — CM|a“
t

Conversely, if f has compact support and the condition on D*f holds,
a similar estimate yields that

[t f (1)) < CCIY M.
In view of (2.10) we conclude that

log|f(#)| < C"+log|t| — H([t|/Ch)-
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Thus, if the hypotheses above on H are fulfilled then, roughly speak-
ing, Ay is the same class as C¥. There are natural examples of such
an H,i.e., H(0) =0, H(s) sub-additive and increasing, and s — H(e®)
convex. For instance, H(s) = s'/% a > 1, corresponding to M, =
(k + 1)k gives rise to the so-called Gevrey class of order a.

If H(s) is concave, increasing and H(0) = 0 but s — H/(e®) is not
convex, then there is a slightly larger function H with this extra prop-
erty.

Proposition 2.8. Suppose that H(s) is concave and increasing on
(0,00) and that H(0) = 0. Furthermore, assume that (2.5) holds.
Then there is a concave and increasing function H(s) on (0,00) such
that H(0) = 0, H(s) > H(s), s — H(e®) is convez, and such that (2.5)
holds for H as well.

Proof. First we observe that H(e®) is (strictly) convex if and only if
tH'(t) is (strictly) increasing. Define H by

tH'() = /0 (sH'(s)),ds, H(0) =0,

where the + denote the positive part. Then tH'(t) is increasing and
H(0) = 0. Since

() > / (sH'(s))'ds = H'(1)

it follows that H(t) > H(t). It remains to check that H is concave and
that (2.4) holds for H. Since H"” < 0 we have that

1 H(t
< —/ H'(s)ds = L
tJ, ¢
H ! H(t
/ / dt < o0
However, this is equlvalent to (2.4) for H since

H(t)
Tt

Therefore

H .
lim HE) _ lim H'(t) < limsup

t—oo ¢ t—o0 {00

=0.

Finally H is concave, because
(tH'()) = (tH'(1))', < H'(t) < H'(2),
which implies that tH"(t) < 0. O

Proof of Lemma 2.5. First notice that if we can find some cutoff func-
tion x in A, which is identically 1 on the support of x for which
(2.8) holds, then it holds for x as well since ||x¢|l.4, = |IxX¢|l.4, <

Ixl4s 1X0]]4, < ClIX0|45
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Given E CC D it is therefore enough to find some cutoff function
x € Ajp with support in D which is identically 1 on E and such that
(2.8) holds. In view of Theorem 2.1 and Proposition 2.8 we may assume
that h(t) = H(|t|) where H is concave increasing, H(0) = 0, and
satisfying (2.5). Let us tentatively choose a cutoff function x € A
which is identically 1 in a neighborhood of E and has compact support
in D. To simplify notation we assume that n = 1. Then |x*)| < CM,
in view of Proposition 2.7. If ¢ € O(Dy,) then

98| < Ckl/nt

where C is a constant times supp, [¢|. We may also assume that
H(s) < s. It is then easily checked that m(z) > xlogx — x and hence
My > (k/e)k ~ k!. (To be precise, at least > k!(1 —€)*.) From (2.9) it
also follows that M,,_, M, < M,,. Therefore,

n! 1
‘(¢X n)|<CZ 'k" kkM" k<27n—k)'k'

< C(1+n"")"M,.

Holding in mind that x¢ has compact support, it follows from Propo-
sition 2.7 that

(xd)| < Ce htt/Cn),

where €7 = 1+1 /n. Therefore if we instead choose x in .A; where
h(t) = h(Cit) + (n+1)log(1 + |Cit|) (and with respect to 77 = n/2) we
get (2.8). O

3. NON-QUASIANALYTIC FUNCTIONAL CALCULUS

For given commuting operators ay,...,a, with real spectrum we
shall now consider possible extensions of the holomorphic functional
calculus to the non-quasianalytic algebras A, x which where introduced
in the previous section. Since the Taylor spectrum o(a) is polynomially
convex, we know, cf., the introduction, that it is equal to the spectrum
with respect to (a). For (a tuple) b € (a) we let b denote the Gelfand
transform with respect to the algebra (a), and we recall that Tmb =
0(a) (D), the spectrum with respect to (a). We begin with a preliminary
result where we consider a (not necessarily non-quasianalytic) algebra
A, of global functions.

Proposition 3.1. Let h be a non-negative subadditive function, h(0) =
0, and suppose that

(3.1) ||ei“'t|| < Ceh®

Then there is a continuous algebra homomorphism ®: A, — (a), such
that |®(f)| < C||f|la, and ©(f) = f(a) for real analytic functions f in
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Ay, satisfying

(3.2) fB)] S el
If f=(f1,---, fm) € Ap, then

(3.3) fo(a)) = o(®(f))-
Moreover,

(3.4) QT(f\) =foa
and

(3.5) o(a)(f(a)) = o(f(a)).

If there exists a mapping ® with the stated properties, then
le*|| < Clle¥* ||, = Ce"®,

and hence the assumption on the growth of |€'®?|| is necessary. It
follows that a admits a non-quasianalytic Ap-functional calculus if and
only if (3.1) holds for some radial A satisfying (2.5). In particular, a
satisfies such a condition if and only if each a; does. Usually we will
write f(a) rather than ®(f), but in the proof it is convenient to keep
the notational distinction.

Proof. By the assumptions it follows that the definition

o(f) = [ e feyas
makes sense and that

(3.6) IR < Cllfllays

thus we have a continuous linear mapping ®: A, — L(X). The func-
tion

(3.7) .ﬁ&)=[;ﬁé”ﬂﬂﬁ

is an entire function for each R, so fr(a) is defined by the holomorphic
functional calculus. Moreover,

(3-8) | fellan <N flla, and |If = frlla, =0 R — oo.
We claim that
(3.9) ®(fr) = fr(a)-

In fact, if D is a neighborhood of o(a) in R* and let D,, = D x{y; |y| <
n} and w,_, is the resolvent, then by (1.4),

‘/ wﬁﬂ/' ¢ f0dt = [ fr(wsa = fala).
oDy, [t|<R 8Dy,
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From (3.6), (3.8), and (3.9) it follows that fr(a) = ®(fr) — @(f)
and since fr(a) € (a) hence ®(f) € (a). Moreover, if f, g € A, then
|fg — frorlla, — 0 and since (frgr)(a) = fr(a)gr(a) by the holo-
morphic functional calculus, we can conclude that ®(fg) = ®(f)®(g).
Moreover, the spectrum depends continuously on commutative pertur-
bations, cf., [16] Proposition 2.6, and since o(fr(a)) = fr(c(a)) and
fr — [ pointwise, (3.3) follows. If f is entire and satisfies (3.2), then
fr — f uniformly in a neighborhood of R" and therefore fr(a) — f(a)
by the holomorphic functional calculus. Hence ®(f) = f(a) in this case.

Since fg is entire we have that fr(a) = fr o a and then (3.4) follows
by continuity. Finally, (3.5) follows from (3.4) and (3.3). O

We will now restrict to the non-quasianalytic case and localize to the
spectrum. The first objective is to ensure that f(a) only depends on
the values of f in some neighborhood of o(a).

Corollary 3.2. Let a and h be as in the previous proposition, and
assume in addition that Ay, is non-quasianalytic. If f € A, and f =0
in a neighborhood of o(a), then f(a) = 0.

Proof. Since A, is non-quasianalytic we can find a function ¢ € A,
which is nonvanishing on o(a) such that ¢f = 0. From the spectral
mapping property (3.3) it follows that ¢(a) is invertible, and since
moreover 0 = ¢(a) f(a), we can conclude that f(a) = 0. O

We are now ready for the main result of this section.

Theorem 3.3 (Main theorem in the non-quasianalytic case). Let h be

an admissible weight function that satisfies (2.4) and assume that ay, . .. ,ay
are commuting operators in £(X) such that ||| < Ce"®. Then there

18 a continuous algebra homomorphism

(3.10) OF -Ah,a(a) — (a)

such that ®(f) = f(a) for all f € O(o(a)). If f1,..., fm € Ahoa) and
f=(f1,--., fm), then

(3.11) flo(a)) = o(®(f)),

and if g € O(f(o(a)), then

(3.12) P(go f) = g(2(f))
Moreover, for each mapping f € Ap 5(q) we have that
(3.13) o(f)=foa and ow(f(a) =o(f(a)).

Proof. In view of Corollary 3.2 the algebra homomorphism & from
Proposition 3.1 is well-defined on Ay ;(4), and (3.11) as well as (3.13)
immediately follows from Proposition 3.1.
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If s(w) is as in the proof of Proposition 2.4, then d,,_o(5)®(s(w)) = e.
Moreover, by the continuity of ®,

0y ®(s(w)) = (Jws(w))
and therefore
(W f) = Gu-a()-
If g € O(f(o(a))) we get from (2.7) that ®(g(f)) = g(®(f)). But we
already know that g(f) = g o f and hence (3.12) is proved.

It remains to verify that ®(f) coincides with f(a) in case that f is
realanalytic in a neighborhood of o(a). First notice that ®(e®®?) =
e'®®@)* by the previous part of the proof. However, ®(e**) = ¢ for
all ¢t € R”, and therefore ®(z;) = a;. It follows that ®(p) = p(a) for all
polynomials p(x). Now, let D, be a set as in Lemma 2.5 such that f
is holomorphic in some neighborhood of its closure. Let x € Ay such
that x = 1 in a neighborhood of ¢(a) and has compact support in D.
If pi, are polynomials such that p, — f uniformly on D,, then by the
lemma ®(px) — ®(f). On the other hand ®(px) = pr(a) — f(a) by
the holomorphic functional calculus, and the proof is complete. O

FEzample 1. Let a be a commuting tuple with o(a) = {0}. By the spec-
tral mapping theorem this is equivalent to that o(az) = {0} C C for
all k. If f(z) = 32, 50°0° f(0)2°2° /a!! is the germ of a realanalytic
function at the origin, with the usual multiindex notation, then

0°0° f(0
(3.14) fl@=>" %'()aaw.
ol

If all a, are nilpotent, then the sum is finite and hence y is a distribution
and (3.14) provides the extension to smooth functions. For instance
if X is finite dimensional, say dim X = N, and o(a) = {0}, then the
spectrum of the operator w - a is {0} for any w € C* by the spectral
mapping theorem, and hence w-a is nilpotent. Therefore (w-a)¥ ! =0
for all w € C* which implies that a® = 0 if || > N + 1. It follows
that (3.14) only involves derivatives of f up to order at most N, so
f +— f(a) is a distribution of order N. O

Example 2. Let h be an admissible weight function such that (2.4)
holds, let K be any compact subset of R”, and consider the Banach
algebra X = Apo/Ipk. In view of Lemma 2.5 ¢ — z,;¢ defines a
tuple of bounded commuting operators a;, and from Proposition 2.4
we conclude that o(a) = K. If g € O(K) then g(a) = g, see the proof
of Proposition 2.4, and therefore the holomorphic functional calculus
for a has a natural extension to the algebra X. It is clear that it
cannot be extended further in any reasonable way. Recall that ||¢||x =
inf{[|®[|4, ,; ® = ¢ on K}. Since X is a Banach algebra, the operator
norm ||e’**|| is less than or equal to [[e”?||x, and ||e” || x < [|€”?||4,, =
e, Hence ||e’*t|| < M, and thus Theorem 3.3 gives us an extension
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of the holomorphic functional calculus to the algebra A, x — L(X),
which is just slightly smaller than the optimal one. This means that in
general Theorem 3.3 is close to the best possible. O

Ezample 3. Assume that a admits a Aj, functional calculus, where Ay,
is non-quasianalytic. Then A; admits partitions of unity, and therefore,
cf., [10], Theorem 6.1.13, a has a spectral capacity. This in particular
means that X has a rich structure of a-invariant subspaces (if o(a) is
not too small). O

Example 4. If p is the ultradifferentable operator-valued function f +—
wu(f) = f(a) it is natural to write

(3.15) f(a) = / ), 1 € 0@)

and think of y as a generalized spectral measure. In case u is a measure
(3.15) provides an extension of the functional calculus to any bounded
Borel function ¢. This, for instance, is the case if X is a Hilbert space
and a is an n-tuple of commuting self-adjoint operators. O

Example 5. Without introducing the technical machinery in Section 4
in order to define the Aj-norms locally for arbitrary admissible weight
functions h, one can make an elementary extension of the results in this
section that allow us to include all polynomials in the functional calcu-
lus. Let Ep(z) = exp(—mz?), 2° = 3] 22, and let Apm = {f; Enf €
Ap} with the norm || f|| = ||Emfl|l4,- For m’ < m we have continu-
ous inclusions Ay, ;v — Apm, and we let Ap o, be the inductive limit.
Clearly A}, o, is an algebra that contains all polynomials. Assume that
le’t|| < e for some admissible h(t). We can extend the mapping
®: A, — (a) from Proposition 3.1 to a mapping

(3.16) ®: Apoo — (a)

by letting ®(f) = ®(Enf))E_n(a) if f € Appm. It is readily checked
that this definition is non-ambiguous, and that Ay, .o — (@) so defined is
a continuous algebra homomorphism. One just use the multiplicativity
of A, — (a) and the fact that the functions z;E,,(x) satisfy (3.2).
Moreover, the spectral mapping property holds for f € A « as well,
since E_,,,(a)®((Eyf)r) — ®(f) in operator norm when R — oco. [

4. ALGEBRAS OF LOCALLY DEFINED ULTRADIFFERENTIABLE
FUNCTIONS

We shall now consider algebras of locally defined ultra-differentiable
functions which are not necessarily non-quasianalytic. Again our start-
ing point is the algebras A, but since we no longer have access to cutoff
functions the localization to neighborhoods U of a compact subset K of
R™ is a more delicate matter. If h(t) is radial, one can use the relation
to spaces Cys (or CT), which are naturally defined in each open set U.
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The condition f € CL in U can be reformulated as the existence of a
sequence of compactly supported distributions fx tending to f in U
such that |fy(t)] < C(CLy/|t|)N. One can also obtain a microlocal
varaint by restriction the condition on ¢ to a cone, see |11] Section 8.4.
To define the realanalytic singular support of a hyperfunction on R”
one can use the so-called FBI transform, see, e.g., [11] Section 9.6. We
will use a variant of the FBI transform to define the A;, condition lo-
cally in R". Moreover, we obtain a generalization of Fourier’s inversion
formula which makes it possible to define u.f if u is a hyperfunction
with compact support in U whose inverse Fourier transform is bounded
by eM®). More precisely we will determine the dual space of space of
compactly supported hyperfunctions whose Fourier transforms satisfy
a growth condition like e®. Of course, primarily we have compactly
supported operator-valued hyperfunctions like exp(ia - ) in mind.

As before we assume that A is an admissible weight function. Note
that the condition (2.1) means that for any € > 0 there is a constant
C, such that

(4.1) h(t) < elt| + C..

We will furthermore require that (2.2) holds, that A is C* outside the
origin, and that

(4.2) IVh(t)] < Ceh)

for each € > (. For each admissible weight function A of this kind and
compact set £ in R* we shall define an algebra A, g which intuitively
consists of all functions f which locally (in some neighborhood of E)
belong to A, for some ¢ > 1.

To present our version of the FBI transform, we start with a smooth
function f on R" with compact support; then

(43) () = — / ire / e~ f(3)dadr

(2m)"
1 .
= lim —/ /e”'(g_m)f x)dxdr.
R—00 (27r)n |T|<R Jzx ( )

In the last expression all the integrals are absolutely convergent. Let
us now formally change the path of integration with respect to 7 in the
last integral to the cycle y: t — ¢ +iA(t) (€ — x). Since then

dr = (1+ VA®t) - (€ — ))dt

we get the formula

(4.4) 1) = / €€ (),
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(45) f)\(t),é(t) = (2711_)7,

We claim that (4.4) actually is true if 0 < A(¢) < CJt|. To see this we
estimate the difference I of the integrals in (4.3) and (4.4), where the
integration in ¢ is restricted to {|t| < R}. With no loss of generality
we may assume that & = 0. Since e "%dm A ... A dr, is a closed
form, Stokes’ theorem implies that Ip is equal to the corresponding
integral over the cycle 7 = t —jux, [t| = R, 0 < u < A(¢). Since
drn A ... Ndr, = iz:(—l)kack(jgc A du on this cycle we have that

IR _ // /)\(t) —it-z—ux? f )Z(_l)kﬂ-lxk@c AduNdr =
[t|=R Ju
-/ / etV (5) S (VAR A da,
z J|t|=R

where gp(z) = (=1)¥"z,(1 — e *")/22. Since gj, as well as all their
derivatives are bounded and f has compact support we get that

A7 (VA @)g (V) )| < Cox 2,

/eit"”)‘(t)(gg”)2 (1+ VA®E) - (€ —2)) f(z)dz.

and hence

R?™|Ip] < C / A2 (£).
t=R

Since A < CR if |t| = R, we get that |Ig| < C, R™2m2r=14+m+1/2 and
choosing m large enough we see that I — 0.

The integral in (4.5) defines in fact an entire function of €. Let
1fllene = sup "D fan(r.¢ (0)]

for £ € C".

Definition 2. Let V' be a compact subset of R". A function f €
C3°(R™) is in A, g if there are ¢ > 1 and o > 0 such that

(46) ||¢||a,ch,§ S C
uniformly for ¢ in some neighborhood open neighborhood of K in C".

Proposition 4.1. If f € C°(R") vanishes identically in a neighbor-
hood of K then f € Ap .

Thus it is meaningful to say that a function defined only in some
neighborhood of K is in A, k.
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Proof. Suppose that f = 0 in a 26-neighborhood of K in R”, let £ =
a+ib, and suppose that a is in a §-neighborhood of K and |b| < §/v/2.
By (4.2) we then have that

[ fanne ()] < / ehO(e=el=1)| £(1)| (1 + eh®)dz <

|lz—al|>d

¢~(a02/2=E)(t).

so it is enough to choose a such that ad?/2 — e > 1. O

Remark 3. As discussed before, we are only interested here in weight
functions h that satisfy (2.1). However, the definition of the spaces

Avh,K of locally defined functions works for any h that is subadditive
(and then automatically satisfies the estimate h(t) < C|t|) provided

that one weaken the definition of A, x by replacing ¢ > 1 by ¢ > 0
in the definition. Thus one can have classes of functions which are
microlocally realanalytic. O

Let e4(z) = €' for s € R".

Proposition 4.2. Suppose that ¢ € O(V), V open andV D K. Then
es¢ is in Apx. More precisely, there is an o (only depending on V')
such that if 1 < < " and o > «p, then

(a7 lesdllacne < Core”™ sup ),

where Cy is uniform in s € R* and & in some neighborhood (depending
on ') of K in C".

Proof. Let
1 —it-z—A(T—
(4.8) Tfre(t) = @n)r e e N £ (1) dg.
We first prove that if f(z) = ¢(x)es(x), then
(49) e(l—e)h(t) ‘Tfah(t),f(t” S Ca,eeh(s) Sl‘l/p |¢|

We then replace h by (¢//(1—¢))h and choose € so that ¢//(1—¢€)+ed <
¢”. We obtain the desired estimate for fah(t),g(t) by applying (4.9) to
f(z) = z¢(x)es(x) as well, and using (4.2).

To prove (4.9) we assume that f = es¢ and that [¢| < 1 in V.
To begin with, we furthermore assume that & = 0, and that the ball
{|z| < 6} is contained in V NR™. The number aq will depend on this
d. The integral in (4.8) over the set |z| > 0 is estimated as in the proof
of Proposition 4.1. The integrand in (4.8) is a holomorphic (n, 0)-form,
hence a closed form, and therefore we can change the integration to the
cycle z — z = x +in, where - (t — s) = |n||t — s| over the ball |z| < §.
Let us call this integral A. We then also obtain an integral over {z =
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x+irn; x| =9, 0 <r <1} as well. In this case dz = angx\k Adr.
Let us call this integral B. Since h(t) — h(s) < h(t — s) we have that

ehO-h(s)| 4] < / h(t=s)~Inlt—s|+ah(Dln]?
|z|<d

Now fix an € > 0. Take 7 so that |7|> < ¢/a. Then by (4.1) we get that
eh(t)—h(s)|A| < Caeeh(t).

If £ = 1b for small real b we see that instead of A|n| we get A(|n| + [b])?
which can be absorbed as well, with a slightly smaller choice of |n|.
Now we consider the term B. In this case the integrand admits the

estimate
e T (t—58) o —ah(t)(8%—|b]?)

Thus, if aq is slightly larger than 1/62, then we get the estimate <
e~ %) Thus the proof is complete. O

Lemma 4.3. Assume that f € Xh,K, that (4.6) holds uniformly in a
neighborhood V' of K in C*, and that ¢ € O(V). There is ag > 0 such
that if ¢ < " < c and a > ay, then

(410) ||¢fes||a’,c’h,§ ,S sup ‘¢‘ec”h(s) sup ||f
14 zeV

|a,ch,z

uniformly for & in a neighborhood of K in C".

Proof. By the inversion formula (4.4) we have that

(4.11) F@) = [ funralt)

and thus

@12) @ @) = [ ) a0
By Proposition 4.2, for large o/ and ¢ < ¢”, we have that

16(2)e 0 fangty.a(t)llar.ene < sup [ple (o0 sup [ fan,- (O] S
zZE

—ch(t)+c'"h(s+t) )

a,ch,z€

sup [@| sup || f|
14 zeV

Now (4.10) follows by applying Minkowski’s inequality to (4.12), keep-
ing in mind that A is subadditive and that ¢’ < c. O

Letting pe; = 1 we get

Corollary 4.4. If f € ./Zh,K then there is ay > 0 and ¢ > 1 such that
for any o > o (4.6) holds for £ in in some neighborhood of K in C".

By compactness it follows that f € ./Zlvh,K if and only if f € levh,go

for each & € K. Moreover, give two functions in A, x we may always
assume that (4.6) holds for both of them with the same ¢ and a.
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Clearly .Zh,K is a vector space, and f; — 0 in .Zh,K if and only if
there are ¢ > 1 and o > 0 such that || f;||o,che — 0 uniformly for £ in
some neighborhood in C" of K.

Proposition 4.5. O(K) is a dense subspace of .,Zlvh,K.

Proof. Assume f is as in Lemma 4.3 and let
) = [ fanalt)dr
[t|<R

Then fr(z) is entire and fgr — f pointwise in R*. On the other hand,
cf., the proof of Lemma 4.3,

||f - fR”OL’,C’h,,;E S/ / e(c”_c)h(t)dt’

>R

which tends to 0 when R — oo. O

Theorem 4.6. The space jh,K s an algebra. More precisely, for some
¢ > 1 and large enough o we have that

(4-13) ||f¢65||a’,ch,£ < Ceh®) sup ”f”a,ch,z sup ||¢5
z€V z€V

|a,ch,z

uniformly for & in some neighborhood of K.

Proof. Assume that f,¢ € ./Zlvh,K. If we apply Minkowski’s inequality
to the representation (4.12) and use Lemma 4.3, we get the estimate

@) [foelwens S [supllo
t 2€V

|a,ch,zecuh(s+t) sup |.]Eah(t),z (t) |dt
zeV

and the right hand side is readily estimated by the right hand side of
(4.13) as before. O

Corollary 4.7. If f is in Ay for some c > 1, then f € .Zh,K.
Proof. First assume that f € Aj,. Then

f(z) = / e f (1),

and in the same way as above we get that ||f||s,cne is bounded in a
neighborhood of R* if ¢’ < ¢. The general case, i.e. when E,.f € Ay,
now follows since A, x is an algebra. O

We also have some partial converses.

Proposition 4.8. If f € jh’Rn in the sense that || f||a,che s uniformly
bounded in some neighborhood {z; |y| < 28}, then Ef € Ay; in partic-
ular f € Ap .
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Proof. If ¢(2) is bounded and holomorhic i a 2§-neighborhood V' of R™,

then [E¢(t)| < C'supy |¢] exp(—6[t]). Thus [[E¢[l.4, < Csupy [¢]. We
will now use the representation

(4.15) e f(z /fah @), ( — giwt gy
Since

f - 2 ] - A~ -~ 2 ) '
||fah(t):w(t)€ Z e'LCEtHAh S ||fah(t),x(t)e x ||Ah||€’t$t||Ah SJ
SUD | fan(r) (1) eM® < e (e D),
zeV

an estimate of (4.15) gives that E¢ € Aj,. O
In the non-quasianalytic case we have

Proposition 4.9. Suppose that f is a smooth function with compact
support in R*, and suppose that (2.4) holds. Then f € Ak if and
only if f € Aen,x for some c > 1.

Proof. If f € Acnx then by definition it is realized by a compactly

supported function f in A.,, and therefore it is in Aj x according to
Corollary 4.7.

If f € Apx, then actually f € Ah,ﬁ for some neighborhood U D
K in R*. Take a cutoff function x € A.,, for some fixed ¢ > 1,
which is supported in U and identically 1 on a neighborhood of K.
Then, by Theorem 4.6, xEf is in flhﬁ and has compact support in
U. It now follows that, for some ¢ > 1 and o > 0, ||[XE ™ fllar,cne
is uniformly bounded in a d-neighborhood neighborhood of R”. In
fact, since YH 'f € flhﬁ such an estimate holds in some complex
neighborhood of K, and since the function vanishes in a neighborhood
of R* \ U, the same estimate holds in a complex neighborhood of this
set, cf., the proof of Proposition 4.1. From Proposition 4.8 we deduce
that f =xf = EXEilf is in Aup,. 0

Remark 4. If h and h' are admissible functions such that h'(t)/h(t) =
o(1) when || — oo, then A x Cu Ajx since clearly A, \ Ay is
nonempty.
It follows that the inequality [|es|l4, , < exph(s) essentially is an

equality, because an estimate like < exp A’ combined with the inversion
formula roughly speaking implies that A x is contained in Ap . O

It is natural to say that f € flh,v, for an open V C R*, if f € .Zh,K
for all compacts K C V. Suppose that u is a hyperfunction with
support in V' which has a continuous extension to .,Zlh,v (recall that the
entire functions are dense in flh,v). For each ¢ > 1 we then must have
that

u-es| S [lesllacne Se ¢'h(s)

£ € )
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for ¢’ > ¢, according to Proposition 4.2. Thus we have proved one half
of

Proposition 4.10. The dual space of jlh,v consists of all hyperfunc-
tions u with support in 'V such that

li(t)| < Ce™®
for each ¢ > 1.
Of course (t) = u.e; here. We begin with a lemma.

Lemma 4.11. Suppose that the hyperfunction u has support in K and
that

a(t)| < Aeh®.
For each U D K, U open in C*, we have

lu.e | < A" Cysup |g|, ¢ € OU).
U

Proof. Since h(t) < H(Jt|) for some H(s) that is o(s), we can find a
representing form w for w in C* \ K such that the size of |w| only
depends on A. We then get that

lu.¢| < ACy sup 9, ¢€O),

where Cp is independent of A. Now, u.e;¢p = esu.¢ and since egu is
supported on K as well, the general statement follows from the estimate

[(esu)(t)] = |a(t + s)| < AetEHD) < Aeh($)eh®),
U

Proof of Proposition 4.10. Suppose that f € Ay and that (4.6) holds
uniformly for § € U, where U is a complex neighborhood of the support
K of u. Since fr — f in Ay k, cf., the proof of Proposition 4.5, we
have that

u.f = /u-(fah(t),w(t)eim.t)dta
t

and hence by the lemma above and the assumption on u

|’LLf| 5 /ec’h(t)ech(t)dt

t
which is finite if ¢’ < c. I

5. ULTRADIFFERENTIABLE FUNCTIONAL CALCULUS

We are now in position to extend Theorem 3.3 to the algebras flh,a(a).

Theorem 5.1 (Main Theorem). Let h be an admissible weight func-
tion that is C* outside the origin that satisfies (4.2) and (2.2). Assume
that ay are commuting operators such that ||e'|| < e*®). Then there
erists a continuous homomorphism

(5.1) .;(h,g(a) — (a)



25

which coincides with the holomorphic functional calculus in case that f
is realanalytic. Moreover, o(f(a)) = f(o(a)) if f = (f1,---, fm)-

Proof. Suppose that f € .Zh, x and that
(5.2) | fantwel < Ce O,

holds uniformly in the complex neighborhood V of K = o(a). Since
£ — fre(t) is holomorphic in V' we can define fon(),q(t) by the holo-
morphic functional calculus and (5.2) implies that

|| faniey,a ()] < Cem M),
Thus

(5.3) () = / 6 foniral?)

has meaning and defines an element in (a). We may assume that this
definition is independent of a > g if oy and ¢ are as in Corollary 4.7.
Let

fr(&) = /|t|<R % fanq.¢ (t)dt.

Then f(€) are entire functions, and we want to prove that fp'(a) —

22(a) = 0if oy < oy < ap. To this end, consider the entire function

gr(&) = fr1 (&) — fr?(£). By Stokes’ theorem
gr(§) = [ (&) — fr*(§) =
// / ’ e eI f()R(1) S diy(sy — &)dsdu =
s Jt|=R Ju=aq

/|| / Giig't Z Sk (t)fuh(t),fh(t)@du
t|=R Ju=a1 k

where

Skfre(t) = /eit's_)‘(s_g)2f(s)(sk — &)ds.

S

As before we know that
Sk fun(e) ¢ ()| < Cem )

uniformly in some neighborhood of K in C" if o5 < u < ay. (A
dissection of the proof of Proposition 4.2, on which Corollary 4.7 is
based, reveals that the neighborhood can be chosen uniformly for o
running over a compact set.) Hence we get the estimate

l9r(@)] < /| Ol o )
tl=

and the right hand side tends to 0 since h(t) — oo when |t| — oo, cf.,
(2.2), and exp(eh) > h? when h is large.
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Thus we can define f(a) as f*(a) for approriate o and clearly

[f(a)] <

so the mapping (5.1) is indeed continuous. Since |fg|w cn,e is bounded

uniformly in R, it follows from Theorem 4.6 that fig% — fg in A k.
Hence (fg%)(a) = (fg)(a). On the other hand, by the multiplicativity
for the holomorphic functional calculus and the continuity we have that

(fr9%)(a) = fR(a)gr(a) = f(a)g(a)
and thus the mapping (5.1) is a continuous algebra homomorphism.
The spectral mapping property follows as before. 0

Remark 5. We do not know if some composition rule holds in this case.

Actually we do not even know if 1/f belongs to .Ah x when f € .Ah K
and f # 0. O

6. RELATION TO ESTIMATES OF THE RESOLVENT

For a nonnegative function k& on R\ {0} we let
K(y)= sup (k(t)—ty).
{t; yt>0}

and
()= inf (k(y)+ ty).

{y; yt>0}

If h is admissible, then h*(n) tends to co when n — +0. Notice also
that A is always convex on each semi-axis, and ¢’ is always concave
on each semi-axis. If k is any function in R* \ {0} and a € S™7!, i.e,,
a € R" and |a| = 1, then we let

k%(n) = k(na), n>0

be the restriction of k to the ray from 0 determined by a. We let
k* and k% denote the functions (k?)* and (k%)’, respectively, and we
extend the definition to all n € R by letting A% () = oo for n < 0 and
g% (s) = —oo for s < 0.

Definition 3. If A is a nonnegative function in R", then
h(y) = sup ¢”(a-t).
aesn—1

If g is a nonnegative function defined in R™ \ {0}, then
gt)= inf h%a-y).
acsSn—1

We say that a function & in R" \ {0} is convex (concave) on rays if k®
is convex (concave) for all a € S"~1. If h is radial, say h(t) = H(Jt]),
then h*(y) is radial, more precisely h*(y) = g(y) = G(|y|), where G(—¢)
is just minus the Legendre transform of H(s). Similarily for ¢°. The
following propostion was proved in [5]
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Proposition 6.1. If h (g) is concave (convex) on rays then h* (g°)
has convex level sets, and if h (g) has convez level sets, then h* (g°) is
convez (concave) on rays.

If g is convex on rays, then ¢’ > g and we have equality if and only
if all the level sets {g > A} are convex. Similarily, if h is concave on
rays then h® < h with equality if and only if all the level sets {h < A}
are conver.

For ¢ > 0 let g.(y) = cg(y/c), and notice that g2 = cg’. For an open
set U in R™ consider smooth functions such that there exists a smooth
extension F'(x + iy) to some neighborhood Us = U x {|y| < 6} such
that
(6.1) sup |F| + sup |0F (2)]e?"¥) < oo.

Us z€Us
Let M, consist of all smooth functions in U such that (6.1) holds
for g, for some ¢ > 1. For a compact set E, let M g consist of all
functions on E that belong to some M, ;, where U D E and ¢ > 1.

Theorem 6.2. For an open or compact set E we have the inclusions

(6.2) Myp C Ay g
and if h is concave on rays, also
(6.3) Apz C My .

In case, h is admissible, concave on rays and has convex level sets
(and is C! and satisfies the extra condition (4.2)), e.g., in the radial
case, we thus have equality. However, the function h(t) = \/f; ++/t5 is
admissible, but no admissible A’ with convex level sets is equivalent to
h, in the sense that it give rise to the same algebra.

Proof. We may assume that £ = V is open. To prove (6.2) we first
assume that (6.1) holds, and let a = (1,0,...) € S®!; we may also
assume that B(0,26) C V, and that F" has its support in |y| < n << 6;
it is enough to prove that | f|u (1—e)n,e is bounded for £ in some complex
neighborhood of 0. In the expression (4.8) for T fos(s), we first consider
the integral for |x| < §. By Stokes’ theorem this integral is (z; =
xr1 + zyl)
1= / 6—{?('217 xl)e_tlm_)\(z_g)2dxdyla
|z|<1,—n<y1<0 821

and by the standard estimates, for A = ah(t), h = g%, and |€| < 7, we
get

|[‘ 5/ 6*9(*‘7;1,0)+t1y163anh(t)dl.dy1 5 efg“"(t)e?;anh(t)
|z|<d,—n<y1<0

if |b| is small enough. Taking infimum over all a we get the estimate
1] < e—(1=2amh(t)
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The integral over |z| > § is estimated as before, and finally, as in
previous proofs, we get the estimate

| fangey.e(t)] < Ce=(3amh(®),

If we start with g. rather than g and 7 is small enough we get (6.2).
For the converse, first assume that

eV fan.e(h(1))] S C

uniformly locally in complex neighborhoods of E for some ¢ > 1, and
write

f(z) = faz(a-z)do(a),

lal=1
where

faz(5) :/ fah(m),z(m)emr"’ldr
0

is a one variable function of s that depends holomorphically on z. It is
now enough to extend each f,.(s) to (¢ = s +in) F,.({) with control
of 0F, ,/0(, and let

F(z) = /|  Faslo2)io(a).

Take ¢ > 1 and a cutoff function x(s) on R that is 0 for s > 1 and 0
for s <1/, let ¢*(r) = (h*)'(r) =a-Vh(a-r), and let

RE O /0 fan(ra) 2 (ra)e™ x(n/Ga(r))r™ "dr.

We now have that (n > 0)
|0F (s — i)/ 0C] < / e~ (1) Ba(r)) e 1" dr [ Ba(r).

However, h®(r) — ¢®(r)r > h%(¢%(r)) and the integration only takes
place where n < ¢%(r) < ¢n, so we get the estimate

< Ze hHen) < gmhtHem),

I~

where the last inequality uses that fact that h%(n)/log(1/n) — oo
when 7 — 0; this is a consequence of (2.2). (A similar estimate com-
bined with the dominated convergence theorem shows that F, () re-
ally is an extension of f, .(s)). Summing up we have that

|5F(2)‘ 5/ 6—h“u(c’7l)da(a) < e—hu(c’y)_
la|=1

If we instead start with ch, ¢/ > 1, instead of h we get exp(—ch*(c'y/c)) <

exp(—c’g(y/c")) = exp(—ge(y)) if 1 < ¢ < ¢ and ¢" = ¢/, and thus

JfeEMyE. O
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It is clear that M, g is an algebra and that i o f belongs to M, g
if f € Myp and ¢ € O(f(E)). Assume now that h is such that

An,0(a) = Mpo(a) Then
‘w © f|jh7a(a) SJ S%p |w|‘f|;{h,a(a)

where the norm signs stand for appropriate seminorms, and W is some
complex neigborhood of o(a). Therefore, if fr — f as before, and we
write ¢(z) — ¥ (w) = > (z; — w;);(z,w), which is possible since o(a)
is real and hence a Stein compact, we get that

gofr—gof=((fj)r— f)¥i(f, fr) =0
in Ay, o(a). Hence,
(Yo f) < Yo frla) =¥ (fr(a)) = V((f)),
or more simply stated, ¥ o f(a) = ¥(f(a)).
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