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Abstract

In this paper we have collected several combinatorial results about the full finite
inverse symmetric semigroup ZS,, including those obtained in the last decade. This
includes the description of automorphisms and endomorphisms, Green’s relations,
presentation and also the description of some classes of subsemigroups, e.g. isolated,
completely isolated and nilpotent.
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1 Introduction

The full symmetric group S,, of all one-to-one maps on an n-element set is one of the most
classical objects in the Group Theory. Going from groups to semigroups there are several
ways to extend S, to a bigger semigroup. The most straightforward one is to consider the
set of all (non necessarily one-to-one) maps. This gives us the full transformation semigroup
T.. However, it was first noted by Wagner in [Wa] that, using the notion of a partially
defined map, one gets a more symmetric object. Following Wagner, the full symmetric
inverse semigroup ZS,, is defined as the set of all partial one-to-one maps on an n-element
set. Combining these two approaches together, i.e. considering all (not necessarily one-to-
one) partial maps, we get the semigroup PT, of all partial transformations.

Although ZS§,, was defined in 1952, the first systematic monograph about it appeared
only in 1996 ([LI]) and so far it still remains the only available source one can read about
the definition and basic properties of ZS, in a detailed systematic way. In its turn this
monograph contains only some basic facts about ZS,, (and also 7, and PT,) unified by a
suitable notation for representing the elements of ZS,,. This does not go much farther than
presentation of ZS,,, canonical form of the elements, description of the conjugacy classes
and centralizers and the definition of the alternating semigroups.

The primary purpose of this paper was to write a more extended monograph to include
variety of combinatorial results about the structure of ZS,,, obtained in the last decade. In
particular, we will describe automorphisms and endomorphisms of ZS,, and several classes
of subsemigroups, namely isolated, completely isolated and nilpotent subsemigroups. The



study of the last ones will lead us to several interesting combinatorial results, when we try
to calculate the cardinals of maximal nilpotent subsemigroups of ZS,,.

2 Notation

We will denote by N the set of positive integers. For n € N we denote by N, the set
{1,2,...,n}.

Let S be a set. A partial transformation of S is a map, f: A — S, where A C S. The
subset A is called the domain of f and is denoted by dom(f). The set f(A) = {f(x)|z € A}
is called the range of f and is denoted by ran(f). A partial transformation, f, is called a
partial bijection if f(x) # f(y) for all z # y € dom(f). Any partial bijection f is in fact a
usual bijection between dom(f) and ran(f). For a partial bijection, f, on S by f~! we will
mean the partial bijection defined as follows: dom(f~!) = ran(f) and for y € ran(f) the
value f~!(y) equals the (unique) element x € dom(f) such that f(z) = y. For a partial
bijection we obviously have |ran(f)| = |dom(f)| and this common value is called the rank
of f and is denoted by rank(f).

Among all partial transformations we distinguish two very special ones. The first one
is the element, whose domain is &. We will denote this transformation by 0. By definition,
0 is a partial bijection. Another important element is the identity map 1:.S — S, defined
by 1(z) = x for any = € S. This is a bijection (and hence a partial bijection) on S.

Let f be a partial transformation of S and A C S. We set f(A) = {f(z)|r € AN
dom(f)}, in particular, f(A) = @ if ANdom(f) = @. We also set f~1(A) = {z €
dom(f)|f(z) € A}.

If S is a set, S(S) will denote the symmetric group on S, i.e. the group of all bijections
on S under the operation of composition of maps. We set S,, = S(NV,,) and will denote by
A, the subgroup of even permutations.

If n is a non-negative integer, we denote by n! the product 1-2--.-. n (0! :=1). For
0<k<n,keZ,by (Z) we denote the binomial coefficient k'(nnivk)' By B,, we denote
the n-th Bell number, which is the number of (unordered) decompositions of an n-element
set, into subsets.

3 Basic notions from the abstract theory of semi-
groups

Recall that a semigroup is a set, S, together with an associative binary operation, say
x : S x S — S. The associativity means a * (b x ¢) = (a * b) x ¢ for all a,b,c € S. Such
semigroup is denoted by (S, ) or simply by S if the operation is clear from the context.
Ifz,ye Sand z =y *z or x = z xy for some z € S we will write z < y and call < the
divisability order on S. Clearly < is a partial pre-order.



Let (S, ) be a semigroup. An element, z € S, is called the identity element provided
rxs=s*xx =s for every s € S. Not every semigroup has an identity element, but if so,
such element is unique. If one wants to emphasize that S has an identity one says that S
is a monoid. An element, x € S, is called the zero element provided x x s = s x x = x for
every s € S. Not every semigroup has a zero element, but if so, such element is unique.
An element, z € S, is called a left zero (resp. right zero), if x * s = x (resp. s*x = z) for
any s € S.

The difference between semigroups and monoids is seen in the definition of homomor-
phisms. If (Si,*1) and (S, x2) are two semigroups, a homomorphism of semigroups is a
map, f : S; — S, such that f(z %, y) = f(z) *o f(y) for all z,y € S;. While if (51, *;)
and (Sa,*9) are two monoids with identities 1; and 15 respectively, a homomorphism of
monoids is a map, f : Sy — Sy, such that f(x *x; y) = f(x) *2 f(y) for all z,y € S
and f(1;) = 1,. Hence not any homomorphism f : S; — Sy as semigroups will be a
homomorphism of monoids.

An element, x € S, is called idempotent if x x x = x. The set of all idempotents of S is
denoted by E(S).

Let z € S. The element y € S is called an inverse element for x provided =z xy *x = x.
The semigroup S is called regular if there exists an inverse element for any x € S and inverse
if for any z € S there exist the unique y € S such that z is inverse for y and y is inverse for
x, in other words if each z € S uniquely defines a pair of inverse to each other elements. If
(S, ) is inverse, for each element = € S the corresponding unique element y, forming with
x the pair described above, is denoted by z#. One has (z#)# = x and (z * y)* = y* x 27,
The last equality is not straightforward. Its proof uses the characterization of inverse
semigroups as regular semigroups with commuting idempotents. If (S,%*) is an inverse
semigroup then there is a canonical partial order on S defined as follows: zwy if and only
if % % x = y# x x if and only if z * £% = y x 7. For inverse S the set F(S) with respect
to both w and < is a lower semi-lattice.

Assume that (S, *) has the identity element 1. The Green’s relations L, R, H, D
and J on (S, ) are defined as binary relations in the following way: zLy if and only if
Sxx=8Sxy, xRy ifandonlyif x xS =y*xS; xJy if and only if Sxz xS =Sxy*x S
for any z,y € Sand H =L AR, D =L\ R. If S is periodic (i.e. each element generates
a finite subsemigroup) then necessarily J = D. Further, zLy if and only if there exist
u,v € S such that x = uxy and y = v * z; 2Ry if and only if there exist u,v € S such
that x = y*xu and y = = xv; Dy if and only if there exists z € S such that xLz and zRy.

A subset, I, of a semigroup, (S, *), is called a left ideal (resp. right ideal) provided
SxI C I (resp. IS C I). A subset, which is both left and right ideal is called a two-sided
tdeal or simply ¢deal.

If z € S for n € N we define recursively z! = z and 2" = 2™ x z. If (S, %) has the
identity element 1 we set z° = 1.

Assume that (S, *) has the zero element 0. An element, z € S, is called nilpotent of
nilpotency degree k € Z, provided 2¥ = 0 and z*~! # 0. The semigroup (S, ) is called
nilpotent of nilpotency degree k € Z . provided xy *xxo%*---xx = 0for all zy,..., 2, € S and
there exists y1,...,yx—1 € S such that y; x yo * - - - xyp_1 # 0. If S is finite, its nilpotency
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is equivalent to the nilpotency of all elements.

If z € S then the centralizer of x in S is the set Cs(z) = C(z) = {y € Slzy = yx}.
The center of S is the set Z(S) = NyesC(x). Z(S) can be empty, but if it is non-empty, it
is a commutative (abelian) subsemigroup of S.

If z € S, by (z) we will denote the subsemigroup of S, generated by z, i.e. (z) =
{z*|k € N}. This semigroup coincides with the minimal subsemigroup of S, containing
x, or, in other words, with the intersection of all subsemigroups of S, containing x. The
number of elements in (z) is called the order of x and is denoted by o(x). If S is an inverse
semigroup, by (z);, we will denote the minimal inverse subsemigroup of S, containing
x, i.e. the intersection of all inverse subsemigroups of S, containing z. The number of
elements in (x);y, is called the inverse order of x and is denoted by 0, ().

Assume that S is finite. Then so is (x) for any z € S. Hence 2" = z* for some minimal
positive integers r < s. In this case r is called the index of x and m = s — r is called
the period of x. The index and the period of x are denoted i(z) and p(x) respectively.
Obviously i(z) +p(z) = o(z) + 1 and the semigroup K, = {z",z"*' ... 27!} is the cyclic
group of order m.

Let (S, *) be a semigroup with 1 and G be its maximal subgroup of invertible elements.
The elements z,y € S are said to be G-conjugated provided there exists g € G such that
x = g 'yg. This will be denoted x ~g y. The binary relation ~¢ is an equivalence relation
on S.

The elements z,y € S are said to be primary S-conjugated provided there exists u,v € S
such that x = w* v and ¥y = v * u. The binary relation ~,g of primal S-conjugation is
reflexive and symmetric, but not transitive in general. We denote by ~g the transitive
closure of this relation, i.e. the minimal transitive relation containing ~,g. If  ~g 7, the
elements x and y will be called S-conjugated. The relation ~g is an equivalence relation
on S. Both ~g and ~p generalize the notion of conjugated elements in a group and hence
coincide if S is a group. In the general case there is only the following inclusion: ~gC~g.

Let (S, ) be a semigroup. An equivalence relation, ~, on S is called left stable (resp.
right stable) if x ~ y implies s *x x ~ s xy (resp. T *s ~ y xs) for any z,y,s € S. A
relation, which is both left and right stable is called stable or congruence on S. If ~ is
a congruence, then * induces an associative operation on S/ ~ via @ * b = a * b, where T
denotes the equivalence class of x € S. Moreover, the canonical map (S,*) — (S/ ~, %)
is a homomorphism. Conversely, if ¢ : (S, *) — (T, %) is a homomorphism of semigroups,
then the relation x ~ y if and only if p(z) = ¢(y) is a congruence on S. Hence it is usually
said that congruences are “kernels” of homomorphisms of semigroups.

If (S,#) is a semigroup and 7T is a subsemigroup of S, then T is called completely
isolated in S if a xb € T impliesa € T or b € T. T is called isolated if a* € T implies
a € T. Obviously, any completely isolated subsemigroup is isolated. Converse is not true
in general.



4 Definition of ZS, and cyclic decomposition of ele-
ments

For a set, S, let ZS(S) denote the set of all partial bijections on S. If f,g € S then the
map f o g : dom(g) N g~'(dom(f)) — S, defined by f o g(x) = f(g9(z)), z € dom(g) N
g~ '(dom(f)), is a partial transformation. We note that, by definition, dom(fog) C dom(g)
and ran(f o g) C ran(f). As g is injective on dom(g) N g~'(dom(f)) and f is injective
on ran(g) N dom(f), f o g is injective on dom(g) N g~'(dom(f)) and hence is a partial
bijection. Further, if f,g,h € ZS(S) the partial transformation f o (g o h) is defined on
dom(h)Nh~t(dom(g))N(goh)t(dom(f)) and the partial transformation (fog)oh is defined
on dom(h)Nh~t(dom(g)Ng 1 (dom(f))) = dom(h)Nh~!(dom(g))N(goh) *(dom(f)) = A.
Moreover, for x € A we have (fo(goh))(x) = ((fog)oh)(x) because of the associativity of
the composition of usual maps. This means that the operation o defined on ZS(S) above is
associative and hence (ZS(S), o) is a semigroup. This semigroup is called the full inverse
symmetric semigroup on S and is usually denoted simply by ZS(S). The operation o is
certainly called the composition of partial bijections. If S = N,,, ZS(N,,) is called the full
inverse symmetric semigroup of rank n and is denoted by ZS,,. The last semigroup will be
the main object of our interest in this paper.

The element O is the zero element in ZS,, since dom(0 o f) = dom(f o 0) = @& and
hence 0o f = fo0 =0 for any f € ZS,. The identity transformation 1 € ZS,, satisfies
lof=fol= fforany f € ZS, and therefore is the identity element of ZS,,.

One of the main conditions to be able to work with a semigroup is to have a convenient
way to write down the elements of this semigroup and to perform the operation for the
given two elements. Recall that for S, there are two standard ways to write down the
elements: the first one is to present them as permutations

1 2 ... n
a; ay ... ap )’

This way is very comfortable for multiplying elements. The second one is to present them as
products of commuting cycles, e.g (124)(36)(5) € Sg (the so-called cyclic decomposition).
Both these ways have natural analogs for ZS,,.

First we describe the permutation form of partial bijections. Let f € ZS,,. We associate
with f the following partial permutation of N,,:

1 2 ... n
a; a2 ... Qp ’

where a; = f(i) if i € dom(f) and a; = @ otherwise. Thus the symbol @ in the lower row
means that the partial permutation is not defined on the element from N, standing above.
Certainly, one can choose any symbol to illustrate this phenomena (e.g. — is chosen in
[LI]). Our choice is based on the equality f({i}) = &, ¢ & dom(f).

As an example, we can now list all the elements of ZS,:

a) ) Ge)Ga)(ai)(ai)(ss)r

6



The multiplication of elements from ZS,, in this notation can be done in the same way
as for S,,. We want only to emphasize that in the paper we will multiply the elements from
right to left, as it is usually done for transformations. For example

(1 2 3 4)o<1 2 3 4)_(1 2 3 4)
2 g g 3 g 2 41 g @ 3 2 )

Now we want to introduced an analogue of cyclic decomposition for elements from Z§,,.
For this we have to introduce two classes of elements first. Let A = {x1,z9,...,2x} C N,
be an ordered subset. Denote by (z1, ..., xx) the unique element f € ZS,, such that f(z;) =
Tiv1, 1 =1,2,... k=1, f(xx) =z1, and f(z) =z, z & A. Clearly (x1,...,25) € S,. We
will call (z1,...,zx) a cycle of length k. The set A will be called the support of (z1, ..., xy).
Now assume that A # @ and denote by [z1,...,zx] the unique element f € ZS,, such
that f(x;) = x4, 1 = 1,2,...,k =1, f(zx) = &, and f(z) = z, x ¢ A. Obviously
[1,...,2k] € ZS, \ Sn- We will call [x1,...,zk] a chain of length k£ and A the support of
[1,...,2¢]. We note that (z1,...,2,) = (22, ..., 2, x1) but [z1,..., 2] # [22,..., Tk, 21]
if k> 1.

It is convenient to have a common name for both cycles and chains, so an element,

f € IS, which is either cycle or chain will be called a connected element. We start with
the following trivial observation.

Lemma 4.1. Let f and g be connected elements of IS, with supports A and B corre-
spondingly. If ANB =& then fog=go f.

Proof. This is true because f and ¢ are transformations which actually act on disjoint
sets. 0

Theorem 4.1. Any element of ZS,, decomposes into a product of connected elements with
pairwise disjoint supports. This product is unique up to a permutation of factors provided
the union of all supports in the product equals N,.

Proof. Fix an element, f € ZS,. We associate with f a finite oriented graph, I'y, the
so-called graph of the action of f on N,. The set of vertices of 'y is V,,. For z,y € N, we
draw an arrow from z to y if and only if f(z) = y. Consider the connected components
of I'y. Let A be one of them. As f is a partial transformation, for any z € A there exists
at most one arrow starting in . As f is injective, for any x € A there exists at most one
arrow terminating in x.

There are two possibilities. The first one is that for any z € A there is an arrow
terminating in . This means that f~!(z) is defined for any x € A. So, take any zy € A
and consider the set {z; = f (x)|i € Z,}. This set is finite, hence there exist 4,5 € Z,,
i < j, such that f~'(z) = f~(z). Applying f/ we get f/~(z) = z. Set y; = f'(z),
i=1,...,7 — 1, and we will have f(y;) = yit1,i=1,...,7—i—1, and f(y;—;) = 1. In
particular, {yi,...,y;_;} is a connected component of I'y, hence coincides with A. Denote
by fa the cycle (y1,...,Y—:)



The second possibility is that there exists € A such that there are no arrows termi-
nating in x. Consider the set B = {y; = 2} U {y;;1 = fi(z)|i € N and fi 1(z) € dom(f)}.
This set is finite, hence either there exist 7,j € N, 7 < j such that y; = y; or there exists
i € Zy such that y; ¢ dom(f). The first possibility is impossible by injectivity of f and
hence there is some ¢ € N such that y; ¢ dom(f). As in the first case, as B is a connected
component of I'y, we get B = A. Denote by f4 the chain [y, ..., ).

If A # B are two connected components we obviously have AN B = & and hence
fafe = fefa by Lemma 4.1. From U4A = N,, we also have [[, fa = f (in both cases
A runs through the set of all connected components of I'y). This gives us the desired
decomposition.

The uniqueness statement is trivial and left to the reader. O

Each (unique only up to permutations of factors) decomposition, given by Theorem 4.1
will be called the chain decomposition of the elements of ZS,,. From now on, if nothing is
stated, the notation

f:(al,...,ak)...(bl,...,bl)[cl,...,cm]...[dl,...,ds] (1)

means a chain decomposition of f € ZS,,. For f let [; (resp. m;) be the number of cycles
(resp. chains) of length 4 in the chain decomposition. We will write ct(f) = (l1,...,l,) and
cht(f) = (mq,...,m,) for the cyclic type and the chain type of f respectively. We remark
that sometimes the cycles of length 1 are omitted in the decomposition (1).

Theorem 4.1 justifies the name “connected” for cycles and chains, as these elements
come from the connected components of the graph of action. As an illustration of the
above theorem we give a chain decomposition of all elements from ZS, (omitting cycles of
length 1):

(i §>:1’(5 ?)Z“’Z%G §>=[2L(§ §)=[12],
(52)=m (L 2)=en () 2)=ma

5 Idempotents and maximal subgroups in ZS,

We proceed with the description of the idempotents of ZS,,. If A C N,, we denote by £4
the element of ZS,, defined as follows: e4(z) = z, z € A, and ex(z) = &, 2 € A. In
particular, ey, = 1 and €5 = 0. Clearly €4 o4 = €4 and hence €4 is an idempotent of
ZS,,. It is not difficult to find out that 4, A C N, exhaust all idempotents of ZS,,. For
z € Ny, we set £(x) = enr,\(a)-

Lemma 5.1. If f € ZS,, such that fo f = f then f = €qom(y)-

Proof. Let x € dom(f) and f(x) = y. From fo f = f we get f(f(z)) = f(z) =y, in
particular, f(z) =y € dom(f) and f(y) = f(x). As f is a partial bijection, we have x = y,
which implies f = €gom(s)- [



Lemma 5.2. Let A,B C N,. Theneaoecp = canp. In particular, E(S) is a commutative
subsemigroup of ZS,,.

Proof. If z € AN B we have ¢4 0ep(x) = calep(x)) = ca(z) = x. If z € B\ A we have
eaoep(x) = calep(z)) = ea(x) = @ and if x ¢ B we have ¢4 o eg(z) = calep(x)) =
£4(2) = @. Thus e4 0 ep = €4np and the lemma follows. O

In each semigroup there is a natural bijection between idempotents and maximal sub-
groups. The above description of idempotents makes the description of maximal subgroups
of ZS,, quite easy.

Lemma 5.3. The mazimal subgroup G(A) of IS, which corresponds to €4 is S(A). In
particular, the group S, of invertible elements is the unique mazimal subgroup of ZS, of
cardinality n!.

Proof. Clearly S(A) C G(A). If f € G(A) then from ¢ 40 foe 4 = f we get dom(f), ran(f) C
A. But f¥ = ¢, for some k € N implies that dom(g4) = A C dom(f). Hence dom(f) = A,
thus rank(f) = |A| and ran(f) = A. This means f € S(A). O

6 Centralizers of elements in 75,

Our next step in study of ZS,, is to describe the centralizers of elements in this semigroup
(compare with [LI, Chapters 3 and 4]). Assume that we have fixed an element, f =
(a1, yag) ... (by,...,b)[c1, ... ¢m]-..[d1,...,ds] € ZS,. Here we require that for any
z € N, such that f(z) = z the cycle (z) appears once in the decomposition. Set A =
A(f) == {al,...,ak,...,bl,...,bl} andB:B(f) :Nn\A

A sequence, x1, ..., z, will be called a chain of f provided f(z;) = i1, i=1,...,t—1,
and f(z;) = @. In general, [z1,..., ;] does not necessary occur as a factor in the chain
decomposition of f. But from the proof of Theorem 4.1 it follows that any mazimal chain,
i.e. which is not a proper subsequence of any other chain, does occur in this decomposition.

Lemma 6.1. 1. If f € IS, such that fog=go f then g(A) C A and g(B) C B.

2. The centralizer C(f") of the element f' = (a1,...,ax) ... (b1,...,b) in ZS(A) equals
Cy0C, where Cy is the centralizer of f' in S(A) and C = (€4, €{ay,..ax}> - - -+ E{br,bi}) -

3. The centralizer C(f") of the element f" = [c1,...,¢m]...[d1,...,ds] in ZS(B) con-
sists of all elements of the form

cit ... C Ciy1 ... Cpyp ... dl P d] dj+1 ce d5
/ / ! ! I
aqa ... ¢ 9 ... g ... d ... d D ... O
where the sequences cy,...,c; ... ; dy,...,d; are chains of f" (not necessarily maz-

imal).



Proof. Take x € A. Without loss of generality we can assume = = a;. If g(a;) # &, from
g(a1) = g(f(ax)) = f(g(ax)) we get g(ax) # @ and hence by induction g(a;) # @ for all
i=1,...,k. Moreover, f(g(a1)) = g(az), --., f(g9(ar)) = g(a1). Hence (g(a1),...,g(ax))
is a cycle containing in the chain decomposition of f. This means {g(a1),...,g(ax)} C A.

Now assume g({c1,...,cn}) # & and let 7 be the maximal index such that g(c¢;) # &.
By the same arguments as above we get g(ci—1) # &, ..., g(c1) # @ and f(g(c1)) = g(c2),
ooy flg(ciz1)) = g(ci). Moreover, from @ = g(c;11) = g(f(ci)) = f(g(¢;)) it follows that
{g9(c1),---,9(ci)} is a chain of f.

Combining the two paragraphs above we get all three statements of the lemma. O

Lemma 6.1 immediately implies the following description of C(f).

Theorem 6.1. Let f be as above. Then Czs,(f) = (C1 o C) & Cy, where Cy o C is the
centralizer of ' and Cy is the centralizer of f", described in Lemma 6.1.

Proof. Follows from Lemma 6.1. O

7 The structure of ZS, as an inverse semigroup

In this section we want to justify the word “inverse” in the name of Z§,,.
Proposition 7.1. ZS,, is an inverse semigroup and f#* = f~1 for all f € IS,.

Proof. Directly from definition of f~! we get foflof= fand flofof!=f"1
Hence ZS,, is regular and f, f ! is a pair of inverse to each other elements in ZS,,. Assume
that g € ZS,, such that fogo f= f and go fog =g. Let z € dom(f). Then f(z) € N,
and from the first equality we have f(g(f(z))) € N,. In particular, ran(f) C dom(g) and
rank(f) < rank(g). From the second equality we analogously get ran(g) C dom(f) and
rank(g) < rank(f). Hence rank(f) = rank(g) and thus ran(f) = dom(g), ran(g) = dom(f).
So, we can consider f : dom(f) — ran(f) and ¢ : ran(f) — dom(f). Multiplying now
fogo f = f with f~! from the left and from the right we get ¢ = f~!. This completes
the proof. O

It will be also very useful to know how to calculate f~! from the known f. If f is given
as a partial permutation,
1 2 ... n
a; az ... Qp ’

then in f~! = f the rows should be replaced, leaving all a; € N,, and completing the upper
row with the rest of elements, which will be mapped to @. For example:

2345\ (12345
2192 3) \325 0 o)
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In cyclic notation we have:

((a1,...,a8) ... (b, .., 0)[cL, ... cm]...[di,. .., dg])¥
(ay-oyar)...(byy...;b)[cm,...,c1] ... [ds, ..., d1].

8 The (inverse) order of elements in ZS,

Denote P(n) = maxsezs, o(f) and PI(n) = maxsezs, 0iny(f). The aim of this section is
to obtain asymptotic formulae for P(n) and PI(n). We start with the description of i(f)
and p(f) for f € ZS,,, which we will need.

Lemma 8.1. Let f € ZS,,.
1. If f €S, then i(f) = 1. Otherwise i(f) equals the length of the longest chain in f.

2. p(f) equals the least common multiple of the lengths of cycles, contained in the cyclic
decomposition of f (p(f) =1 if this decomposition does not contain any cycles).

Proof. For f € S, the first statement is obvious. Let
f: (al,...,ak)...(bl,...,bl)[cl,...,cm]...[dl,...,ds] EISn,

where all cycles of length 1 appear ones, and N be the length of the longest chain of f.
Set A= {ay,...,a5,---,b1,...,b} and B =N, \ A. Then for k£ > N we have f*(z) = @
for any z € B while for m < N there exists an element, z, of the longest chain such that
f™(z) # @. Hence f* # f™ for any k > N and m < N implying i(f) > N. Let N denote
the least common multiple of the lengths of cycles, containing in the cyclic decomposition
of f (N = 1 if this decomposition does not contain any cycles). Then fNV(fN)V = ¢, and
hence f*NN — fk for all k > N. This means i(f) < N and thus i(f) = N. This proves
the first part. The second part is left to the reader. O

Lemma 8.2. Let f € ZS,, then
1[N =) +p(f) = 1;
2. [(Flinol < 2G(f) +1)° +p(f).

Proof. The first statement is true for any element of any semigroup, see Section 3. To
prove the second statement we have to construct T = (f);n,. Of course T contains f and
g = f' = f# and all possible products of f and ¢g. Let T be a subsemigroup of ZS,,
generated by f and g. From (axb)# = b#xa# it follows that T is closed under # and hence
coincides with T'. So, our problem reduces to the question: how many different elements
does T contain?

First of all we show that any & € 7' can written as a(i, j, k) = fio g’ o f* or b(i, j, k) =
g'ofiogF i,j,k € Z,. Indeed, this is enough to prove for z(i,j) = fogio fiog,i,j € N.
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If i =1 (resp. j =1) we have z(4,7) = ffog (resp. fog'). Ifi,j > 1, assume i < j. We
have z(i,j) = (fog)o (g Lo fit)o fi-**log. Being idempotents of an inverse semigroup,
the elements f o g and g* ' o f! commute and we get x(i,j) = ¢" L o f/ o g. The case
1 > j can be treated analogously from the right side.

Let A and B be as in Lemma 8.1. Then f(A) C A, f(B) C B, g(A) C Aand g(B) C B
and hence 2(A) C A and 2(B) C B for any z € T. If one of 4, j, k is greater than i(f) we
immediately get that a(i, j, k)(B) = @ and b(4, 5, k) (B) = @ as this holds for some factor of
a(i,j, k), resp. b(i, J, k). Hence, modulo f*, 7 > i(f), T contains only a(i, j, k) and b(s, j, k)
for 4, j, k < i(f). Therefore |T'| is not greater than 2(i(f) +1)? plus the number of different

[t i >i(f), which, as we know, is not greater than p(f). We are done. O
Theorem 8.1. In(P(n)) ~ In(PI(n)) ~ y/nln(n) for n — co.

Proof. Denote by C(n) the maximal order of elements in S,. For any f € ZS,, we have
obvious inequalities i(f) < n and p(z) < C(n). Hence, by Lemma 8.2,

C(n) < P(n) < PI(n) < C(n)+2(i(f) + 1) < C(n) + 2(n + 1)°.

Applying In(z) and taking into account In(z+y) < In(z)+In(y), z,y > 2, we get In(C'(n)) <
In(P(n )) < In(PI(n)) < In(C(n)) + 3In(n + 1) + In(2). Using the known asymptotic for
C(n): In(C(n)) ~ y/nln(n) for n — oo, see e.g. [Lal], we get the necessary statement. [

9 Conjugated elements

Proposition 9.1. Let f,g € ZS,,. Then f ~s, g if and only if ct(f) = ct(g) and cht(f) =
cht(g) if and only if T'y and T'y are isomorphic.

Proof. If f=htogoh, he S, and
f:(al,...,ak)...(bl,...,bl)[cl,...,cm]...[dl,...,ds]

is a chain decomposition of f, then

g=(h(ar),...,h(ag)) ... (h(b1),...,h(br))[h(c1), ..., h(cm)]---[h(d1),- .., h(d)]

is a chain decomposition of g. Conversely, if

f:(al,...,ak)...(bl,...,bl)[cl,...,cm]...[dl,...,ds]

is a chain decomposition of f and

g=(ay,...,ap)...(0,....00)[c, .. ] [dyy -, ]

the element

b= a ... ap ... b1 bl CiT ... Cp ... d1 ds
ab ..oa, oo bW Lo W s, oo d L d
gives f = h™!' o g o h. The equivalence of last two conditions is obvious. 0J
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Theorem 9.1. Let f,g € ZS,. Then f ~zs, g if and only if ct(f) = ct(g).

Proof. First we prove that ct(f) = ct(g) implies f ~g g. As the first step we note that
[al, as, ..., CLk] ~NISn [CL1, as, ..., ak_l][ak] as

[a1,a9,...,ak] = [a1,a9,...,ak] o [ag], [a1,a9,...,ax_1][ax] = [ak] © [a1, a9, ..., ak)-

If we now recall that for f,g € S, the relation f ~zs ¢ holds if and only if ct(f) = ct(g),
the induction arguments give us that for the elements

f:(al,...,ak)...(bl,...,bl)[cl,...,cm]...[dl,...,ds]

and

Fr=(a1,.. an) . by, 0)lcr]. . [em] . [di]- .. [d)

there holds f ~zs, f'. Now if ct(f) = ct(g) we have f ~zs, f' and g ~zs, ¢'. But
ct(g') = ct(f') and cht(g') = cht(f'). Hence f' ~g, ¢’ by Proposition 9.1. By transitivity
of ~zg, we finally get f ~zs, g.

To prove the necessity it is enough to consider f,g € ZS,, such that f ~,zs, g. We
start with the statement that f ~,zs, g implies f¥ ~,zs g¢* for any k£ € N. Indeed, if
f=vouand g=uowv then ff =vo((uov)*lou)and ¢* = (uov)ftou)ouw.

Hence, we can assume that all maximal chains of f and g have length one. So, f = vou,
g = uowv. Denote A = dom(f), B = dom(u) \ A, C = dom(g), D = dom(v) \ C,
E = N, \ dom(v), C; = u(A)NC, A, = v }C,), D; = u(A)N D, Ay = v }(D;) and
Cy=C\Ch.

As v(u(B)) = f(B) = @, we get u(B) C E. Moreover, from A = f(A) = v(u(A)) it
follows that u(A) C dom(v) = CU D, u(A) = C; U D; and v(C; U D) = A.

Consider now v(Cy). As C = C; U Cy and ¢(C) = u(v(C)), we have v(Cy) C dom(f)
and from injectivity of v we get ANwv(Cq) = v(CLUD;)Nv(Cs) = v((C1UD;)NCy) = v(D).

Hence v(C2) C B and u(v(Cs)) C u(B) C E. But, from the other had, u(v(Cs)) =
9(Cy) C C. As ENC = @, we get u(v(Cq)) = @. Therefore v(Cy) = @ and Cy = &. So,
we have

| dom(g)| = |C1 U Co| = |Cy| < |Cif + [Ds] = |As| + [As] = [ dom(f)].

Switching f and g we also get |dom(f)| < |dom(g)| hence |dom(f)| = |dom(g)| and thus
D, = @, u(dom(f)) = dom(g) and v(dom(g)) = dom(f). If we now fix a bijection between
dom(f) and dom(g) we reduce our question to the same question for the symmetric group
S|dom(y)|, where the answer is positive because of the known description of conjugacy classes.
This completes the proof. O

10 Green’s relations

The analysis of Green’s relations on a semigroup is one of the most basic questions. As
IS8, is finite we automatically get 7 = D and hence have to concentrate us only on the

13



study of £ and R. Moreover, the antiinvolution # on ZS,, transfers left ideals to right
ideals and vise versa, so it will be enough to get a description only for, say L.

Theorem 10.1. Let f,g € ZS,,. Then
1. fLg if and only if dom(f) = dom(g);
2. fRyg if and only if ran(f) = ran(g);
3. fHg if and only if ran(f) = ran(g) and dom(f) = dom(g);
4. fDg if and only if rank(f) = rank(g).
5. fJg if and only if rank(f) = rank(g).

Proof. Recall that fLg if and only if there exist z,y € ZS,, such that f = z o g and
g = yo f. In particular, from the first equality we get dom(f) C dom(g) and from
the second dom(g) C dom(f). Hence fLg implies dom(f) = dom(g). Conversely, if
A = dom(f) = dom(g) we write A = {z;,..., 2} and consider any © € S, such that
w(f(x;)) = g(x;), i = 1,...,k. Such 7 exists as |ran(f)| = |dom(f)| = |dom(g)| =
|ran(g)|. We have g = 7o f and f = 7! o g. This implies fLg as mentioned above.

The antiinvolution # interchanges domains and ranges and hence the second statement
follows from the first one after applying #.

As H = L AR, the third statement follows from the first and the second ones.

Recall that fDg if and only if there exists h € ZS,, such that fLh and ARg. From the
first and the second statements we get dom(f) = dom(h) and ran(h) = ran(g). Hence
rank(f) = |dom(f)| = |dom(h)| = |ran(h)| = |ran(g)| = rank(g). Conversely, let
rank(f) = rank(g). Then |dom(f)| = rank(f) = rank(g) = |ran(g)| and we can con-
sider a partial bijection, h : dom(f) — ran(g). Again applying the first two statements we
have hLf and ARg and hence fDg.

The last statement is now trivial. O

Corollary 10.1. Let f,g € ZS,,. Then
1. fLg if and only if there exists x € S,, such that f =x 0 g;
2. fRg if and only if there exists x € S, such that f = gox;
3. fDg if and only if there exist x,y € S,, such that f =xogoy.
Proof. Exercise. O
As a corollary we get a description of two-sided ideals of ZS,,.

Corollary 10.2. ZS,, has ezactly n+1 ideals, I; = {f € IS, |rank(f) <i},i=0,1,...,n
Moreover, I; C I; 11 for all v and hence the poset of ideals s linear.
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Proof. 1t is enough to show that 1" = IS, o f 0o ZS,, = ILank(y)- By Theorem 10.1, T
contains all element of ZS,, of rank rank(f). If rank(f) = 0 then f = 0 and 7" = {0}. If
rank(f) > 0 then by induction in ¢ = rank(f) it will be enough to show that 7' contains
an element of rank rank(f) — 1. Fix z € dom(f), then dom(f o e(x)) = dom(f) \ {z} and
hence rank(f oe(z)) = rank(f) — 1. Certainly, foe(x) € T. This completes the proof. [

11 Generators and presentation

Lemma 11.1. ZS,, is generated by S,, and any element of rank n — 1.

Proof. Let f € ZS,, such that rank(f) = n — 1 and let T" denote the semigroup of ZS,,
generated by S, and f. We claim that 7" contains all elements of rank n — 1. Indeed, if
rank(g) = n — 1 then by Theorem 10.1 ¢Df and hence g = x o f oy for some z,y € S,, by
Corollary 10.1. This implies g € T'. From the proof of Corollary 10.2 it now follows that
T contains an element of rank n — 2. Applying the same arguments as above we complete

the proof by induction. O

Theorem 11.1. ZS,, is isomorphic to the inverse monoid M, generated by the set of self-
inverse generators X = {s1,...,8,_1,€} subject to the relations

5= (si5i11)° = (si5;) =1, 1<i,j<m, [i—j|>1 (2)

e =e,(es1)? = (es1)®, and es;=se, 1<i<n. (3)

Proof. Let ¢ : X — IS, be the map defined by ¢(s;) = (i,i +1), 1 < i < n, and
¢(e) = 13- The relations (3,i+1)? = ((4,5+1)(i+1,i+2))* = ((i,i+1)(j,j+1))> = 1 for
1<14,5 <n,|i—j| > 1 are Coxeter relations for S,,. That 6%1} =epyand eqpo(4,i4+1) =
(4,4 1) oggyy is obvious. Finally, z = e(13 0 (1,2) = [2,1] and hence 2? = [1][2] = 2®. This
shows that ¢ is a homomorphism of monoids. Moreover, the image of ¢ contains S, and
eq1y and hence coincides with ZS,, by Lemma 11.1. Therefore, ¢ is an epimorphism and
to complete the proof we have only to show that |M| < |ZS,|.

We start with introducing new element. Inductively define e; € M as follows: e; = e
and e; = s;e;_18;. It is straightforward that e;e; = e;. But we want to obtain some
additional relations:

First we claim that (es;)? = (s1€)? = (s1€)3. Indeed, as X is an inverse monoid, its
idempotents commute and hence siesie = eze = eey = esies;. The equality (s1e)? = (s1€)?
follows from (es;)? = (es;)® by applying #-.

Next we claim that s;e; = e;115;, 1 <4 < n; €;8; = 8:€541, 1 < 1 < Nj €541 = Si+164,
1 <i < mn; siej = e;si, [t —j| > 1. Indeed, the first follows from s;e; = s;e;sis, =
e;+15; and the second one is similar. If we write e; = s;_1...51€81...5,_1, we see that
s;+1 commutes with all multiplicands and thus s;;; commutes with e;. This proves the
third relation and analogous arguments prove the last one for 7 > ¢. If j < 7 we
have sje; = s;(Si—1...51€51...5;-1) = Si_1...5j125j€j+25j42--.5;—1 and hence it is suf-
ficient to consider the case ¢ = j + 2. In this case we have sjej .o = 5;5;415;€;5;5j41 =
$j4+18j5j4+1€j5jSj4+1 = Sj4+15j€jSj4+15j5j+1 = Sj+15j€j5jSj4+15j = €j42€; aAS desired.
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Now it follows that in any w € M we can collect all e; on the right-hand side or on the
left-hand side and thus w can be written as s;, ... s;,€j, ...¢€;j, or as e; ...ej sy ... Si.
For i > j set

Sij+1 = Sj+1,i = 8iSi—1---S5j415jSj4+1---8i-18;i = S§jSj41---8i-15iSi—1...5j4+15j

(the last is a relation in S,,) and s;41; = si;+1 = ;. It is straightforward that s, je;s;; = e;.
Finally we claim that s;,eie; = eje;s;; = eje;. Indeed, the first equality easily fol-
lows from the above rule of moving e, on the right, so we will prove only the second
one. Start with s;esie = esies;, which implies s;esjes; = esje; but (si€)? = (si€)?
and hence sjesie = (siesiesi)e = (esie)e = esje. S0, €51 ,€ = €Sg_1...525183...5p—1 =
Sk—1---52(€81€)82...Sk_1 = Sk_1...52(81€51€)82...Sk_1 = €xe = eex, = exe; = e1ex. NOow
e1€251,2 = e2es1 = s1es1es; = esje = sjesie = ege;. Conjugating first with s;; and then
with sy ; we get the desired equality.

Let T C N, and ep = [[;cr€i- Let S,/S(T) denote the set of left cosets. Then for
any m € S,/S(T) and any z,y € 7 from the previous paragraph we derive zer = yer.
Hence the number of elements from M, which can be presented in the form wer, w € S,
is less or equal [S,/S(T)| = n!/(n— |T|)!. So, M| <> ", (’;)("—' = |ZS,| (see facts in

n—i)!

Section 23). This completes the proof. O]

12 Isolated and completely isolated subsemigroups

Proposition 12.1. The only completely isolated subsemigroups of IS, are IS,, S, and
ZS8, \ Ss.

Proof. As for a finite semigroup the product of non-invertible elements is not invertible
itself, the subsemigroups ZS,,, S, and ZS, \ S,, of ZS,, are completely isolated. Conversely,
let T be a completely isolated subsemigroup of ZS,,. Assume first that 7'NS,, # @ and thus
contains an element, say a. Then T contains 1 as a power of a and then it contains any
b € S, because b¥ = 1 for some k and T is isolated. Therefore we have either TNS,, = @ or
S, CT. Let S =7Z8,\S, and assume that T'NS # & and thus contains an element, say c.
Then T contains a non-invertible idempotent, say e. As any non-invertible idempotent of
7S, is a product of e(x)’s, we get, using the complete isolatedness, that T contains some
e(x), € N,,. Take any y € N,, and write e(z) = (z,y) o e(y) o (z,y). If S,, C T we get
that T contains £(y) as it is a semigroup. Otherwise it contains (y) as it is completely
isolated. This implies that 7" contains all non-invertible idempotents. Now, as some power
of each d € S is a non-invertible idempotent, S C T as T is completely isolated. We get
either S C T or SNT = @. Altogether, we have only three possibilities for 7" and they
are precisely those, listed in the formulation. O

For x € N, let S(z) denote the maximal subgroup of ZS,,, associated with idempotent
e(z). In other words, S(z) consists of all elements f from ZS,, satisfying the following
conditions: rank(f) =n —1, f(N,\ {z}) = N, \ {z}. Equivalently, S(z) consists of all
elements f such that f* = e(z) for some k.
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Lemma 12.1. All S(x) are isolated subsemigroups in ZS,.

Proof. Let f* € S(x) for some k. As rank(f*) = n — 1, we have rank(f) = n — 1 as well,
moreover, from dom(f*) C dom(f) and | dom(f*)| = |dom(f)| we get dom(f*) = dom(f).
As k is arbitrary, we can assume that f* is an idempotent and hence f*¥ = £(z). From
ran(f*) C ran(f) and |ran(f*)| = |ran(f)| we get ran(f¥) = ran(f). This means that
dom(f) =ran(f) =N, \ {z} and the statement follows. O

Theorem 12.1. The only isolated subsemigroups of LS, are ISy, Sn, ZS, \S, and S(z),
Tz €N,.

Proof. Clearly all listed subsemigroups are isolated. So, let 7" be an isolated subsemigroup
of ZS,,. As in the proof of Proposition 12.1 one gets that either S,, C T or S, NT = @.

First we consider the case S,, C T. If T' # S,, then there exists a € T'\ S, and hence T
contains a non-invertible idempotent, say €4, as a power of a. Write V;,\ A = {x1,..., 24}
and consider f = [x1,...,74], 9 = [2k,...,21]. As f¥ = g*¥ = ¢4, we have f,g € T and
hence f o g = ¢(xy) belongs T as well. But S,, C T and thus T contains all ¢(x), therefore
all non-invertible idempotents and, finally, all non-invertible elements, as 7" is isolated. In
this case T = ZS,,.

Now assume that S,, NT = & and T contains a non-invertible element, say a. As in
the previous paragraph we see, that T contains some &(z). If () is the only idempotent
of T, then T contains S(x). Hence it coincides with S(x) since any element outside S(x)
will come with other idempotent in 7". The only case left is when 7" contains some other
idempotent, which, as it is easy to see, is equivalent to the condition that T contains
e(r) = [z] and e(y) = [y] for x # y. It will suffice to prove that T contains all £(z),
z € N, because in this case it will again contain all non-invertible idempotents and hence
coincide with ZS,, \ S,. Let z # z,y. Let f = [z] and g = (z,2)[y]. ¢*> = [y] and hence
f,9 € T. But (fog)? = [z][y][z] € T. Consider f' = [z,y,2] and ¢’ = [2,y,x]. We have
(f? = (¢")* = [z][y][2] € T. Hence f',g' € T. This means that ¢’ o f' = &(z) € T. This
completes the proof. O

13 Description of maximal nilpotent subsemigroups
of 7S,

Let S C ZS,, be a nilpotent semigroup. Then S has a zero element, say e, but there are no
reasons why e should coincide with the global zero element 0. So, the study of nilpotent
subsemigroups of ZS, naturally divides into two parts: the study of those, whose zero
coincides with 0 and the study of all other. Our first step here is to show that the second
problem reduces to the first one, however n can be changed during this reduction process.

Lemma 13.1. Let S be a nilpotent subsemigroup of IS, with zero element e4, A C N,,.
Then {x € N,|n(x) = xz} = A holds for any 7 € S. In particular, S is a nilpotent
subsemigroup of ZS(N, \ A) with usual zero.
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Proof. Let m € S, x € A and m(x) = y. Then eq om(x) = ea(x) = x = ea(nw(x)) = ealy)-
Hence x = y. From the other hand, if + ¢ A and 7(z) = z we get 7/(z) = x for any [ € N,
But S is finite and e4 is the only idempotent of S. Hence 7! = e4 for some | and we get
ea(z) = x, which contradicts the definition of e4. The second statement follows from the
first one. O

From now on we assume that the zero element in all nilpotent semigroups we consider is
0. From the above proof it also follows that 7(z) # x for any element 7 from any nilpotent
subsemigroup of ZS,,.

Our study of nilpotent subsemigroups will be based on the following construction, which
connects nilpotent semigroups with partial orders on N,. Let T' C ZS,, be a nilpotent
semigroup. Define the binary relation o(T) =<7 on N,: x <r y if and only if there exists
m € T such that w(y) = x. As T is a subsemigroup, the relation <r is transitive. As
m(x) # z for any m € T, <r is anti-reflexive. Combining last thing with the fact that
T is a subsemigroup we also get that <p is any-symmetric and thus is a partial order
on N,. Conversely, if < is a partial order on N, we can consider the set of elements
(<) = Mon(<) = {m € IZS,|m(z) < zforallz € N,}. This set is not empty as
0 € Mon(<). Let m,7 € T< and x € N, such that 7(7(z)) € N,. Then n(7(z)) < 7(z) < z
by transitivity of < and hence Mon(<) is a subsemigroup of ZS,,. The transitivity of <
also forces 7(z) # x for any m € Mon(<) and hence Mon(<) has the unique idempotent,
namely 0, which is a zero element of Mon(<). This means that Mon(<) is a nilpotent
subsemigroup of ZS,,, whose zero coincides with 0.

A partial order, <, on a set, S, is said to be a consolidation of another partial order,
<q, if x <9 y implies x <; y. It is obvious that any non-linear order on S admits a non-
trivial consolidation. For a partial order, <, on S call the depth of < the maximal length
of a chain x1 < 23 < --- < z; in S and denote it by d(<). It is also obvious that if a partial
order, <, of depth k£ does not admit any non-trivial consolidation of depth k, then < is a
linearly ordered decomposition of S into £ non-empty subsets.

Lemma 13.2. 1. Let T} C T3 be two nilpotent subsemigroups of ZS,. Then <r, is a
consolidation of <r.

2. Let <; and <y be two partial orders on N, and <; be a consolidation of <5. Then
Mon(<y) C Mon(<y1). Moreover, if <1 and <y are different, then Mon(<z) #
Mon(<y).

Proof. All statements but the last one are trivial. The last statement follows from the fact
that [iaj]g{i,j} € ISH ]

Lemma 13.3. 1. Let T be a nilpotent subsemigroups of ZS,. Then T C ¥(p(T)).
2. Let < be a partial order on N,,. Then o(¢(<)) equals <.

Proof. Obvious from the definition. O
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Corollary 13.1. Let < be a partial order on N,,. If T is a nilpotent subsemigroups of IS,
such that <p equals < then T C Mon(<).

Lemma 13.4. 1. Let < be a partial order on N,,. Then the nilpotency degree of the
semigroup Mon(<) equals d(<).

2. Let T be a nilpotent subsemigroups of IS, of nilpotency degree k. Then d(<rt) = k.

Proof. To prove the first statement we take any 7 = 1 o --- o7, € Mon(<) and z € N,,.
As d(<) = k, we get that 7(x) is undefined and thus # = 0. This means that the
nilpotency degree of Mon(<) is less or equal k. Let z; < ...x; be a maximal chain. Then
T, = [z, 2 1] € Mon(<) forall 1 < i < kand 7 = 7y 0...7 1(x,) = x;. Hence the
nilpotency degree of Mon(<) is greater than k — 1.

To prove the second statement we consider 0 # 7 = 1y 0---0om_1; € T. Then there
exists © € N, such that 7(z) is defined and we get m(z) <r mo...m_1(x) <p -+ <7 Z.
Thus d(<7) > k. If 21 <7 --- <7 x; and m; € T are chosen such that m;(z;) = z; 1,
1 <i<kthen m o---om #0 and hence | < k. Hence d(<r) < k. O

We have to note that 7' # ¢ (p(T)) in general. As an example consider T = ([4321]) C
ZS8,. Then <t is the natural order on {1,2,3,4}. Then [43][21] € Mon(<r) but [43][21] &
T. Now we are ready to prove the main result of this section.

Theorem 13.1. The maps ¥ and ¢ are mutually inverse bijections between the set of
mazimal nilpotent subsemigroups of ZS, of nilpotency degree k and linearly ordered de-
composition of N, into k non-empty subsets.

Proof. Let T be a maximal nilpotent subsemigroups of ZS,, of nilpotency degree k. By
Lemma 13.4, ¢ sends any nilpotent subsemigroup of ZS,, of nilpotency degree £ to a partial
order on N, of depth % and 1 does the opposite. But if 7" is maximal of nilpotency degree k,
then, by Lemma 13.2, the order <; does not admit any non-trivial consolidation of depth
k and hence defines a linearly ordered decomposition of A, into k non-empty subsets.
Conversely if < is such order, then any nilpotent subsemigroup L of ZS,, containing
Mon(<) defines a non-trivial consolidation <; of <. But < is a maximal consolidation
of depth k, hence d(<) > k and the nilpotency degree of L is also greater than k. This
completes the proof. O

Corollary 13.2. The maps ¥ and ¢ are mutually inverse bijections between the set of
mazimal nilpotent subsemigroups of IS, and linear orders on N,. In particular, there
exists precisely n! mazximal nilpotent subsemigroups in ZS,, and they all have nilpotency
degree n.

Theorem 13.1 justifies the following notion. Let 7" be a maximal nilpotent subsemigroup
of ZS,, of nilpotency degree k and p = (M, ..., M) be the ordered decomposition of N,
into non-empty subsets, which corresponds to <. The vector (|M,],...,|M|) € N¥ will
be called the type of T' and will be denoted by type(7’). We will also use the same notation

for type(p).
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It is easy to see that the statement of Theorem 13.1 will remain true if one substitutes
IS, with any subsemigroup of ZS,, containing the ideal I;.

If we have a maximal nilpotent subsemigroup of ZS,, of nilpotency degree k <, it can
be properly contained in nilpotent semigroups of bigger nilpotency degree. In fact, as we
will see this is always the case. Knowing all maximal nilpotent subsemigroups of a fixed
nilpotency degree it is natural to ask when a given maximal nilpotent subsemigroup of ZS,,
of nilpotency degree k is contained in a given maximal nilpotent subsemigroup of ZS,, of
nilpotency degree > k.

Theorem 13.2. The mazimal nilpotent subsemigroup T, in IS, of nilpotency degree k,
which corresponds to an ordered decomposition, py = (N{,...,N;), is contained in the
mazimal nilpotent subsemigroup Ty in ZS,, of nilpotency degree m > k, which corresponds
to an ordered decomposition, po = (NZ,...,NZ2), if and only if each block of py is a union
of some neighbor blocks of py and the linear order on {Ni,...,N}} is induced from that
on {N2,...,N2}.

Proof. The sufficiency of the conditions is obvious, so we will prove only the necessity part.
Let T} C T5. If two elements, say « and y, containing in the same block of ps, would belong
to different blocks of pi, then either [z, yle(s,y) OF [y, Z]e {4y} Would belong to 77 but not to
T,. Hence each block of p, is contained in a block of p;. Now assume that two blocks, N?
and N7, are contained in one block N} and that some N2, i < p < j, is not contained in
N;. Then N7 is contained in some N/, ¢ # r. If ¢ < r, we choose in N? and N} elements
x and y correspondingly. Then T) contains 7 = [z,y]e(z,}, but 7 does not belong to T
and we get a contradiction. Analogous arguments yield contradiction in the case ¢ > r
proving that each N} is a union of neighbor blocks of ps.

The statement about the orderings of {N{,...,N}} and {N{,..., NL} is left to the
reader. O

Corollary 13.3. The poset of all mazimal nilpotent subsemigroups of ZS,, of all nilpotency
degrees (with respect to inclusions) is a lower semi-lattice.

Proof. Follows immediately from Theorem 13.2. O

14 Isomorphism and inclusions of maximal nilpotent
subsemigroups of ZS,

Having described all maximal nilpotent subsemigroup of ZS,, of nilpotency degree k, there

arise a natural question: given two such semigroups, 77 and 75, how to find out if they are
isomorphic or not. This will be the content of this section.

Lemma 14.1. Let S and T be two mazimal nilpotent subsemigroups of ZS,, of nilpotency
degree k. If type(S) = type(T) then there exists T € S, such that S = 7' oT o, in
particular, S and T are isomorphic.
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Proof. Let (Mjy,..., M) and (N,..., Ng) be the ordered decompositions of N, which
correspond to <g and <. As type(S) = type(T), we have |M;| = |N;| for all 1 < i < k
and hence there exists m € S, such that 7(M;) = N;. It is obvious that 7 !oTow C S
and moT om~! C T and hence the bijection z — 77! o x o 7 is an isomorphism. O

For any vector, (vy,...,v), we set (vi,...,ve)" = (vg,...,v1).

Lemma 14.2. If S is a maximal nilpotent subsemigroup of IS, of nilpotency degree k
then S* is a mazimal nilpotent subsemigroup of IS, of nilpotency degree k as well and

type(S) = type(S#)#.
Proof. Left to the reader. O

Lemma 14.3. Let S and T be two mazimal nilpotent subsemigroups of ZS,, of nilpotency
degree k. If type(S) = type(T)* then there exists m € S,, such that S¥ is isomorphic to
7 toT o, in particular, S and T are antiisomorphic.

Proof. Follows from Lemmas 14.1 and 14.2. O

Our goal is to reverse the statement of Lemma 14.1. It happens that we should consider
two different cases: k£ = 2 and K > 2. The reason is that each nilpotent semigroup of
nilpotency degree 2 is the so-called semigroup with zero multiplication, i.e. z xy = 0 for
any x,y. Obviously, two such semigroups are isomorphic if and only if they have the same
number of elements and, additionally, for such semigroups the notions of isomorphism and
ani-isomorphism coincide.

Lemma 14.4. If two mazimal nilpotent subsemigroups S and T of nilpotency degree 2 in
I8, are isomorphic then type(S) = type(T) or type(S) = type(T#).

Proof. As we remarked above, S ~ T if and only if |S| = |T'|. So, to prove the lemma we
will calculate |S| for type(S) = (m,n —m). Let the corresponding decomposition of N,
be M, M,. So, = € S if and only if dom(7) C M, and ran(r) C M;. Using elementary

min(m,n—m)
m\ [n—m
binatori btain |S| = | = )
combinatorics, we obtain |S)| ; (z) < . )z f(m)
Now we claim f(my) # f(mg) if 1 < my < mye < n/2. For this we prove that
f(m) < f(m+1), m+1 <n/2. This is equivalent to

S (e () (e

Now it is enough to prove that (7)(™.™)il < (™) (" ™ ')i! and this is equivalent to
n—m < m+1

_ -. The last reduces to m+1 < n—m, which is true as m+1 < n/2.
n—m-—¢t m+1-—1
This completes the proof. O

So, the case k = 2 is completed and we can move to the case k > 2.
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Lemma 14.5. Let p; and py be the decompositions of N, of the types (n},ni,ni) and
(n?,n3,n3) correspondingly. If Ty = Mon(<,,) is isomorphic (resp. antiisomorphic) to
Ty = Mon(<,,) then type(p1) = type(pz) (resp. type(p1) = type(pa)*).

Proof. Let p; = (M}, M}, M3) and py = (ME, M2, MZ). Clearly, because of Lemma 14.2
it is enough to consider the case T} ~ T5. Denote by L, (resp. R;) the set {z € Tj|zom =
0 for any 7 € Tj} (resp. {z € Tjjmox = 0 for anyw ET}) j =1,2. It is easy to see that
L; = Mon(< ]) and R; = Mon(<, 2) where pj = (M UM, M) and p; = (M7, MU M).
As Ty ~ Ty, we have |L;| = |Ly| and |Ry| = |Rs|.

In the proof of Lemma 14.4 it was obtained that last two equalities are equivalent to
{ni +n3,n3} = {n? +n3 n3} and {n{,ny + nj} = {n?,n2 + n2} correspondingly. So, we
have four possibilities:

The first one is ni +nd = n? +n2, nd = nZ ni =n? and nl +n} = n3 +n3. In this case
we clearly get (ni,n}, ni) = (n?,n2,nd).

The second one is nj + ny = n3, nj = n? + n3, n{ = n3 + n? and ny + n{ = n?. This is
impossible, because this system does not have any solution in positive integers.

The third one is nl +ni = n%—l—n%, ni =n3, ni =n3+n?and ni+ni=n? Putn} =1,
ny =kand nZ =m. ThennZ =1, n} =l+mand n? = k+1. If k = m, we get (n{,nd, n3) =
(n?,mn3,n3). If k # m, we can assume k < m without loss of generality. Let us prove that
in this case |T}| < |T»| and thus this case is impossible. It is enough to consider m = k+ 1.
By arguments of Lemma 14.1, we can assume Ny = N2, N2 = Ny U {a}, N} = N} \ {a}.
To each m € T} we associate p(7) in the following way: If a ¢ dom( ) or w(a) € Nj, then
p(r) = 7. If a € dom(nw) and 7(a) € Ny, let iy < i3 < --- < i, be all elements from
N3 \ w(N?), increasingly ordered, and 7(a) = i,. We also increasingly order all elements of
Ni\dom(m): j1 <jo<-+-<Jg Asmi=k+l,ni+ni=k+1, 7(N?) CN;UNj and 7w
is a partial bijection, we have ¢ > s. Now define p(7) as follows: for all z € dom(n) \ {a},
p(m)(z) = 7(x), p(7)(j,) = i, and in all other points p(7) is undefined. It is obvious from
the construction that p : Ty — T5 is an injection and we have |T7| < |T3|. Now we note
that for any 7 € p(T1) we have a ¢ dom(7) Nran(7). Take any a € N? and y € N3 and
consider y such that u(z) = a and p(a) = y and p is not defined in all other pints. Clearly
w € Ty \ p(Th) and thus |T1] < |Ts|.

And the last case n} + ny = n3, ny = n? + n2, ni = n? and nj + n} = n2 + n3 reduces
to the third one if we consider 77 and T3

Finally, if T} ~ T5, we get type(p;) = type(pz). The statement is proved. O

Theorem 14.1. Two maximal nilpotent subsemigroups 17 and Ty of IS, of nilpotency
degree k > 2 are isomorphic if and only if type(T1) = type(Ts) and antiisomorphic if and
only if type(T1) = type(T»)*.

Proof. Of course, we have only to show that for £ > 3 the isomorphism of S and 7" implies
type(T7) = type(Tz). We use induction in k with £ = 3 as the basis (Lemma 14.5) and
prove the induction step from k to k 4+ 1. Let (N{,...,N.,,) and (N7,...,N7,) be the
decompositions, corresponding to Ty and T3 and (ni,...,n;, ) and (n3,...,n;_ ) be their
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types. Define
Li={x€Tjlxoa;---oap_y =0foralay,...,ap_1 €T;},7=1,2.

These sets will clearly be some maximal nilpotent subsemigroups of ZS,, of nilpotency
degree k, corresponding to decompositions (N{ U N3, N3,..., N} ;). As T} ~ T, we get
L, ~ Ly and by inductive assumption nj + ny = n? + n3, n} = n3 and so on. Considering

Rj={z €Tjla;---oap_10zx=0forall ay,...,a,1 €T;},7=1,2,

1 _ 2 12 1 12 2 1 1y
we get ny = ng, ..., ng_; = nj_; and np +n,,, = np +nj,,. Hence (nf,...,np,) =
(n,...,n%,,) and the proof is complete. O

Corollary 14.1. If two mazximal nilpotent subsemigroups T and Ty of ZS,, of nilpotency
degree k > 2 are isomorphic then there exists m € S,, such that Ty =7 toTyo.

Proof. Follows from Theorem 14.1 and Lemma 14.1. O

15 Cardinality of maximal nilpotent subsemigroups
of 7S,

The next natural question about maximal nilpotent subsemigroups: can we compute |T'|
in terms of type(7')? This is done in the present section, but we will need two notation to
be able to state the main result. If f(z) = a,2" +a,_12" ' +- - -+ a7+ aq is a polynomial
with integer coefficients, we set f(B) = a, By, + an_1Bn_1+ -+ -+ a1 By + ag, where B;’s are
Bells numbers. We also set [z]y = z(x — 1)(z — 2)...(x — k + 1).

Theorem 15.1. Let T be the maximal nilpotent subsemigroup in ZS,, of nilpotency degree
k, which corresponds to an ordered decomposition, (Ni,...,Ny), of Np. Let n; = |Ny,
i=1,...,n, and set fp,,  n. () = [Z]n, [0y - - - [Z]ny,- Then |T| = fo,,..n. (B).

We start the proof with considering the case £k = n in the following lemma. In this case
all n; =1 and f1,1,...,1(33) = z", hence f1,1,...,1(B) = B,,.

Lemma 15.1. If T is a mazimal nilpotent subsemigroup in IS, then |T| = B,,.

Proof. We construct a bijection between decompositions of N, and elements of T. If
m € T, we associate with 7 the decomposition of I'; into connected components. Since m
is nilpotent, this also coincides with the decomposition of ZS,, into the disjoint union of
maximal chains with respect to m. Conversely, let V,, = NyUNyU---UN,. For1 <i <k
write N; = {_]1 <T j2 <7 - <t jp} and set T = [jp,jp_l, R ,j1]. Then all T; commute
and the element 7 = Hlem clearly belongs to T'. It is obvious that these two maps
between T and decompositions of ,, are mutually inverse and our lemma is proved. [

Set |T| = t(ny,...,ng). This is well-defined as we know that |T| = |S| provided
type(T') = type(S). Next we want to show that ¢(n4, ..., n) satisfy a recursive relation.
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Lemma 15.2.

t(nla <y M1, 1) iyt .- ank) =
=t(n1, .- mimn i+ 1o ) F naat (e, s i, - ).
Proof. We decompose the elements of T = T(Ny,...,N; 1,{a}, Nis1,..., Ni) into two
groups. The first one, M, will contain all elements in which {a} is not the image of any

element from N, ,;; and the second one, Ms, will contain all other elements.
Each element of M; can be considered as an element of the semigroup

T1 - T(Nl, .. -;Ni—laNi—i—l U {a}, .. ,Nk)

and this correspondence between M; and 77 is bijective. Hence |M;| = t(nq,...,ni_1, N1+
1, R

Now consider M. Let Njiq = {b1,...,bn,,, }. Decompose M, into Mz U---U My,
where M} = {m € My|r~'(a) = b;}. Then for any j the map

7K Mg - T(Nla SRR Ni*la Ni+la SRR Nk)a
defined by: ¢;(7)(z) = 7(z), x # b;, and ¢;(7)(b;) = m(a) is a bijection. Hence |M,| is
equal to 1 1t(ny, ..., Mim1, Nig1y .-, Ng)- O

Proof of Theorem 15.1. We use induction in n/, which is the sum of all n; # 1. If n' = 0,
T is a maximal nilpotent subsemigroup of ZS,, and ¢(1,...,1) = fi__1(B) be Lemma 15.1.
Now assume that we have n; > 2 for some 7. From [z],, = (x — m + 1)[z]n—1 we deduce
the equality

f(n1,...,ni,ni+1,...,nk)(:1:) = f(nl,...,ni,l,n¢+171,...,nk)(x) - (ni+1 - ]-)f(n1,...,ni,ni+171,...,nk)(x)-

From the other hand, we have

t(nl, ey N1, 1,ni+1, .. .,’I’Lk) =

=t(n,. MmN F 1) it (e, - M1, Mg, - )

from Lemma 15.2. So, we have two recursive sequences with the same recursion rule and
the same initial values. We conclude that these sequences coincide. O

16 Description of automorphisms of maximal nilpo-
tent subsemigroups of ZS,,

Let T be the maximal nilpotent subsemigroup in ZS,, of nilpotency degree k, which corre-
sponds to an ordered decomposition, p = (Ny,..., Ng), of M. The aim of this section is
to describe the group Aut(7’). We need some preparation to be able to state our results.
We start with the description of the obvious part of Aut(7). Denote by S the direct sum
@;S(N;) of the symmetric groups acting on the blocks of p. Clearly, S C S,, C ZS,,. This

inclusion defines the action of S on T via conjugation: S > 7 — 7, where 7(z) = 7 'ozor.
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Lemma 16.1. The map 7 — @ is a homomorphic injection of S into Aut(T).

Proof. The statement about homomorphism with image in Aut(T) follows from 7=! oz o

yomw = 7 lozomon!
circyorm and (to7)lozo(ror)=7"1lo(r tozom)or.

To prove the injectivity of the map, consider some 1 # 7 € S. Then there are z,y € N,
such that 7(z) = y and x # y. We consider any element f = [a,blefqpy € T such that

r € {a,b}. Then 7! o fon # f and the proof is complete. O

1

An element, f € T, will be called decomposable if there exist a,b € T such that f = aob
and indecomposable otherwise.

Lemma 16.2. Fach element from T decomposes into a finite product of indecomposable
elements (this decomposition is not unique in general).

Proof. Let x € Ny, y € Ny and b = [y, z]e(zy}- Then 0 = bo b is a desired decomposition
of 0. Now assume that for some 7' 3 a # 0 such decomposition does not exist. Then we
decompose a = a; o0 ay and at least one factor is decomposable. Continuing this procedure
we get a decomposition a = c;ocgo...cp1 = 0 as 7T is nilpotent of nilpotency degree £,
a contradiction. O

For an indecomposable element, a € T, we set
dom(a) = dom(a) \ {z € dom(a)|xz € Ny and a(z) € N;}.

For a € T we denote by a, the restriction of a on dom(a) if a is indecomposable and a, = a
otherwise. We define an equivalence relation, ~, on 7"\ {0} as follows: a ~ b if and only
if a, = b, and extend this to 7" assuming that {0} is a separate class.

Lemma 16.3. ~ is a congruence on T

Proof. We prove that ~ is right stable. The left stability can be proved analogously. Let
a,beT\{0},a~b,and f € T. Asao f and bo f are decomposable, (ao f), =ao f and
(bof). = bof. Moreover, from the definition of a, it follows ao f = a,of. Thus bof = b,o f
as well and from a, = b, we derive (ao f), = (bo f),, which means ao f ~ bo f. O

Decompose T into equivalence classes U; M; with respect to ~. Denote by G = @;S (M)
the direct sum of symmetric groups, acting on these classes.

Theorem 16.1. Aut(T) =S x G.

The rest of this section will be devoted to the proof of Theorem 16.1. But before turning
to it we give two immediate corollaries of this result for the cases of maximal and minimal
possible k.

Corollary 16.1. If T is mazimal nilpotent (i.e. k = n), then Aut(T) is a finite direct
sum of cyclic groups of order 2.

25



Proof. Clearly, all blocks of p are 1-element and all classes of ~ contain not more than 2
elements. ]

Corollary 16.2. Let T be a mazimal semigroup with zero multiplication (i.e. k = 2).
Then Aut(T) equals the stabilizer of {0} in S(T).

Proof. Clearly, Aut(T) is a subgroup of this stabilizer. Let o be an element of the stabilizer.
As for any a,b € T we have o(aob) = 0(0) = 0 = o(a) o o(b), the element o belongs to
Aut(T). This completes the proof. O

To prove Theorem 16.1 we will need several lemmas.
Lemma 16.4. Letr € N, r > 1, and ay,...,a, € T. Then
a10a30--+0a, = (a1). 0 (az). 00 (a),.
Proof. Left to the reader. O
Lemma 16.5. Let 7 € G and a € T then w(a) ~ a.
Proof. Obvious. O

loagonm =m(a).

For m € S and a € T we set for simplicity a™ = 7~
Lemma 16.6. Let m € S and a € T be indecomposable. Then (a,)™ = (a)..

Proof. 1If a, = 0 we have dom(a) C Ny and ran(a) C N;. Hence dom(a™) C N, and
ran(a™) C N; and we get (a™), = 0. Now assume a, # 0. We want to show that
dom((a,)™) = dom((a™),) and that (a.)"(z) = (a™).(z) for any x € dom((a.)™). We have
dom(a™) = m(dom(a)) and hence

dom((a"),) = m(dom(a) \ {z € dom(a) N Ni|a(x) € N1}).
Analogously, from the definition of a, we get
dom((a4)™) = w(dom(a) \ {z € dom(a) N Ni|a(x) € N1}).

If y = w(x) € dom((as)™), we have (a.)"(y) = m(a«(z)) = 7(a(x)). From the other hand,
(@™)+(y) = a"(y) = m(a(z)). 0

Lemma 16.7. Let a,b € T and m € S. Then a ~ b implies a™ ~ b".

Proof. If at least one of a and b is decomposable, a ~ b implies a = b and the statement
is obvious. If both @ and b are indecomposable, ¢ ~ b means a, = b, and hence (a,)" =
nloa,opi=71"tob,om = (b)". Now Lemma 16.6 guarantees (a"), = (b"), and thus
a™ ~ b". O

If for a € T we can find z € dom(a) N N; such that a(z) =y € N, we will say that a
has the arrow z — y from N; to N;.
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Lemma 16.8. Assume that a;0---oag_1 # 0. Then for any 1 < i < k — 1 the element
a; has an arrow from N;i1 to N;.

Proof. Take z € N, such that a(...(ax_1(z))) # 0. As

al(. .. (ak_l(x))) <r CI,Q(. .. (ak_l(x))) <r---<rcx
is a chain of length k, we get a;(... (ax_1(2))) € N;. O

Lemma 16.9. Let 0 € Aut(T') and a € T such that rank(a,) = 1, dom(a,) = {z} C N;
and ran(a,) = {y} C€ N;_1. Then rank(o(a),) = 1, dom(o(a),) C N; and ran(o(a),) C
N; 4.

Proof. Choose some representatives z; € N;, j # 4,4 — 1, set ; = 2 and z;_; = y, and
denote by a;, j # i, the elements of T" defined as follows: rank(a;) = 1 and a;(z;) = z;_1.
We have b = ax_1ax_3...a;1100;_1...a1 7 0 as b(xx) = z1. Hence o(b) # 0 and o(a) has
an arrow from N; to N;_; by Lemma 16.8. Thus the same is true for o(a).

Consider the left annihilator Annp(T) = {a € T|aob = 0 for any b € T} and the
set T(b) = T obnN Anng(T) for some b € T. It is easy to see that T(b) consists of all
elements from 7', whose domain is a subset of dom(b,) and whose range is a subset of V.

(| dom(b, N,
In particular, if m = min(|dom(b,)|, |Nk|) then |T(b)| = Z <| OH;( )|> <| Z_k|)i! and

1=0
rank(b,) = 1 if and only if |T'(b)| = |Ng| + 1. As |T'(b)| = |T(c(b))| for any b € T we get
that rank(b,) = 1 is equivalent to rank(o(b,)) = 1, which completes the proof. O

Lemma 16.10. Let 0 € Aut(T), a,b € T such that rank(a,) = rank(b,) = 1, dom(a.),
dom(b,) C N;; ran(a,),ran(b,) C N;_1. Then

1. dom(a,) = dom(b,) if and only if dom(o(a).) = dom(o(b).);
2. ran(a,) = ran(b,) if and only if ran(o(a),) = ran(o(b),).

Proof. As Aut(T) is a group, it is enough in both cases to prove that the first condition
implies the second one. We will consider the first implication and the second one can be
done by analogous arguments. Let dom(a,) = dom(b,) = {z}.

First we will work with the case ¢ > 2 and consider sets T'oa and T'ob. Each contains 0
and all other elements have rank 1, the domain {z} and the range being an elements from
N;_oU---UN;. Hence, Toa =T ob. As o is an automorphism we get T oo(a) = T o o(b)
and hence T oo(a), =T o o(b)., which means dom(o(a),) = dom(o(b).), see Section 10.

Now let i = 2 and y € N3. Consider the rank 1 element ¢ € T such that c(y) = x. We
have aoc # 0 and boc # 0. Hence o(a)oo(c) # 0 and o(b)oo(c) # 0. Now from Lemma 16.4
we get o(a).o0(c). # 0 and o(b).oo(c)« # 0. Hence Lemma 16.9 implies that the elements
o(a)«, o(b). and o(c), have rank 1, o(c), has an arrow from N3 to N, and both o(a), and
o(b). have an arrow from N, to N;. So, the last equalities imply ran(o(c).) = dom(o(a).)
and ran(o(c),) = dom(o(b),), which finally means dom(o(a),) = dom(o(b).)- O
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Lemma 16.11. Under conditions of Lemma 16.10 we have a ~ b if and only if o(a) ~
o(b).

Proof. By definition of ~, taking into account that rank(a) = rank(b) = 1, we have that
a ~ b is equivalent to dom(a,) = dom(b,) and ran(a,) = ran(b,). This is equivalent to
dom(o(a),) = dom(o(b),) and ran(o(a),) = ran(o(b),), which means o(a) ~ o(b). O

Lemma 16.12. Let 0 € Aut(T) and a be an indecomposable element from T. Then for
any 1,7, 1 < j <1 <k, the elements a, and o(a), have the same number of arrows from
Ni to Nj.

Proof. Fix i,j and denote by n;; (resp. n; ;) the number of arrows from N; to N; for the
element a, (resp. o(a).); and let z; — y;, | = 1,...,n;; be the list of these arrows for a,.
As both a and o(a) are indecomposable, a, and o(a), do not have arrows from N; to Ny.
Now consider three possibilities:

The first one is ¢ < k and j > 1. It is enough to prove that n;J > n,; j, which is trivial
if n;; = 0. So, we can assume n;; > 0. Fix some v € N;;; and v € N;_; and consider
the elements a;, b, [ = 1,...,n;;, of rank 1 in 7" such that ¢;(u) = x; and b,(y;) = v. By
Lemma 16.9, the rank of o(a;). equals 1 and this element has an arrow from N;;; to ;.
Analogously, rank(o(b;).) = 1 and it has an arrow from N; to N,_;. Set z} = ran(o(a;).)
and y; = dom(o(b;),). From Lemma 16.10 it follows that =} # z!, and y; # v, for [ # s. By
Lemma 16.4, b, 0 a 0 a; # 0 implies o(b;), o 0(a). o 0(a;), # 0 and hence z; € dom(o(a).),
Yy, € ran(o(a).), moreover, o(a).(z;) € N;. This means precisely that n; ; > n; ;.

The second case is ¢ = k£ and 7 > 1. We again will prove njm- > nyg; assuming ny ; > 0.
Fix some v € N;_; and consider the elements b;, [ = 1,...,n;; of rank 1 in 7" such that
bi(y)) = v. As above we get that o(b;). has rank 1 and an arrow from N, to N,_;. Set
y; = dom(o(b;).) € N; and again y; # vy and y; € ran(o(a).) by the same arguments as
above. Let (o(a).)?(y]) € Ny. If ¢/ # k then o(a), will have an arrow from Ny to N;,
which, by Lemma 16.10, does not coincide with any of arrows constructed in the first case
and we get a contradiction with the conclusion of the first case. Hence ' = k. This implies
ny ; > Ng,; and the second case is complete.

The last case ¢ < k and j = 1 is proved by arguments analogous to the second case. [

As an immediate corollary we get.

Corollary 16.3. Let 0 € Aut(T') and a be an indecomposable element from T. Then
rank(a,) = rank(o(a),).

We have arrived the key lemma of this section.

Lemma 16.13. Let 0 € Aut(T). Then there exists 1 € S such that o(a) ~ a™ for all
aeT.

Proof. First we construct such m. For each N;, 1 < i < k, we set N; = {zi|s € Iy,}.
Choose representatives z; in blocks N; for all 4.
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Fix N;, i > 1, and let A; = {ai|s € Iy,} be the set of elements of rank 1 such that
af(x) = x}_;. From Lemma 16.9 we have that (c(af)). has rank 1 and an arrow from N;
to N;_1 for any af. Hence we can defined the map m; : N; = N; by m;(zf) = dom(o(af).)
and Lemma 16.10 guarantees us that ; is injective, hence bijective.

Denote by B = {b*|s € In,} the set of all elements of rank 1 such that b*(z3) = 5.
As above, o(b°), has rank 1 and an arrow from N, to Ni. So we can define 7 : Ny — N
by mi(z5) = ran(o(b®),) and as above get that 7 is injective and hence bijective. Put
T = (1., k).

Now we want to check that o(a) ~ a™, which is equivalent to o(a), =7
part of the proof is naturally divided into three steps.

Step 1. First let a coincide with one of af. As rank(a) = 1, it is enough to show
that dom(o(a),) = m(dom(a,)) and ran(o(a),) = w(ran(a,)). The first equality follows
directly from the construction of 7. To prove the second one we first assume that ¢ > 2.
As a}_; oai # 0, we have o(a,_;). o o(af). # 0 and both factors have rank 1. So, we get
ran(o(a$),) = dom(o(a} 1)) = {7 (z 171)} = 7(ran((af).)). Now assume that i = 2. Then
ran(a3) = ran(b') implies ran(o(a$).) = ran(o(b'),) = {n(z])} = w(ran((a$).)). So, the
case a = a; is complete.

Now let a = b°. As rank(a) = 1 we have to prove the same equalities as above. The
second equality follows from the construction of 7. For the first one we take b° o aj # 0
and hence o(b%). o o(aj). # 0 and both factors are of rank 1. We get dom(c(b°).) =
ran(o(a3),) = {m(z3)} = m(dom(b})).

Step 2. Now let a be any indecomposable element in 7', which does not equal any of
af and b*. If a, = 0, then o(a), = 0 by Lemma 16.12 and, using Lemma 16.6, we get
(a™), = (ax)™ = 0 and hence o(a), = (a"), = 0. So, we can assume a, # 0. Take any z €
dom(a,). As rank(a,) = rank(o(a).) by Corollary 16.3, we need only 7(x) € dom(o(a).)
and o(a).(m(x)) = 7(a.(z)). Let x = zf and a(r) = 2%. As a, does not have any arrow
from Ny to Ny, we have 1 — j < k — 1. We have to consider two cases.

The first one is 7 > 1. Take a‘ oa = a o---oal_;oaf, apply o and use Lemma 16.4.
We get o(af), o o(a) = o(aj) o0 a(a 1) o(a?) and, using the arguments above,
obtain 7(z;) = dom(o(a;).) € dom(o(a).), 7(x{) = dom(c(a),) € ran(o(a).) and, finally,
o(a).(m(z)) = o(al)#(x(a} ) = =(a).

The second case is j = 1 and ¢ < k. We consider the auxiliary element b; ; of rank
1 such that dom(bf,,) = {z},,} and ran(bzﬂ) {zf}. From Lemma 16.10 we derive
dom(o(bi,,).) = {m(z{,,)}. Moreover, since af o b, # 0, we get o(af), o o(bi ;) # O
and hence ran(o(b},,),) = dom(o(af),) = {7r( ?)}. At the same time from a o b}, =
boaj,y0- - -oa;,, for some b of rank 1 we get o(a),00 (b5, ). = o (b').00(aj,5)0- - -00(aj, )
and, combining all the equalities, we derive 7(zf) = ran(o(b,,).) € dom(o(a),), 7(z}) =
ran(o(0'),) € ran(o(a),) and 7(at) = o(b5 )« 00 (a)«(m(z{,)). Hence o(a).(m(zf)) = m(at).

Step 3. Finally, we assume that a is decomposable in 7. If @ = 0, then o(a) =0 = a",
so we can assume a # 0. Let a = a, o--- 0 a; be a longest decomposition of a into a
product of indecomposable elements. We note that dom(a) C dom(a;) and denote by b;
the restriction of a; on dom(a). Now a = a, o- - -0 ay o by should again be a decomposition
of a into indecomposable elements, as one we started with was a longest one. But now we

S

“loa,om. The

29



have dom(a) = dom(b;). Using Lemma 16.4, we get a = a. = (a,)« 0 -+ 0 (a2)« © (b1)x-
Applying o we get o(a), = o(a,)«0---00(az).00o(by). and so dom(o(a),) C dom(c(by).)
and rank(c(a),) < rank(o(b1),). But dom(a) = dom(b;) and dom((b;).) C dom(b;), hence
dom((b1)«) C dom(a) = dom(a,). Hence previous inequalities are, in fact, equalities and
Corollary 16.3 implies that rank((b;).) = rank(o(by)). and we get rank(o(a).) > rank(a.).
Applying 0=! we will obtain the opposite inequality and hence these ranks coincide. So,
rank(o(a),) = rank(a,) = rank((by),) = rank(o(b1))-

Take any z € dom(a,) = dom(b;). Taking into account the indecomposability of
by we get m(z) € dom(o(by),). From this we easily derive n(z) € dom(o(a).). Hence
o(by)«(m(z)) € dom(o(azg)s), ..., 0(ar1)s0---00(by)«(n(z)) € dom(o(a,),) and applying
the statement for indecomposable elements we get o(a).(7(x)) = 7(a.(z)).

Finally we prove the uniqueness of 7. Assume that for some 7 € S we have o(a) ~ a”
for all @ € T. Then a™ ~ a7 for all a € T, in particular, (af)™ ~ (af)” and (b%)™ ~ (b%)7,

2

which means (af)T = (af)] and (b°)T = (b%);. The last implies w(z{) = 7(zf) and hence

T=T. ]

Corollary 16.4. Let 0 € Aut(T) and m € S be such that o(a) ~ a™ for all a € T. Then
7 ={1} if and only if a ~ o(a) for alla € T.

Proof. We have only to prove that a ~ o(a) for all a € T implies 7 = 1. Let A4;,2 <i < k,
and B be sets from the proof of Lemma 16.13. Then (o(af)). = (af). and (o(b%)). = (b%).
for all af € A; and b° € B. Hence the construction of 7 gives us 7(zf) = «¢ for all z¥ € N;,

1< <k. ]
Corollary 16.5. Let 0 € Aut(T') and a,b € T. Then a ~ b implies o(a) ~ o(b).

Proof. This is an immediate corollary from Lemmas 16.7 and 16.13. 0J
Corollary 16.6. G is a normal subgroup of Aut(T).

Proof. First we show that G is a subgroup of Aut(7). Indeed, by Lemma 16.4, for any
m € G and a,b € T we have 7(a)on(b) = 7w(a),om(b)s = a,ob, = aob = w(ab). Now we show
that G is normal in Aut(7"). Choose any 0 € Aut(T), 7 € G and @ € T. From Lemma 16.5
we get 0 *(m(a)) ~ o *(a). This and Corollary 16.5 imply o (7 (c(a))) ~ o '(o(a)) = a.
Hence o~ 'm0 € G. O

Now we are ready to prove our main result, Theorem 16.1.

Proof of Theorem 16.1. 1t is enough to show that Aut(7")/G ~ S. Let 0 € Aut(7T"). From

Lemma 16.13 it follows that there exists unique m = 7, € S such that o(a), = 7, ' ca,om,

holds for any a € T. Define the map £ : Aut(T) — S by £(0) = 7,. For any 01,09 € Aut(T)
1

and a € T we have 0,03(a). = 7, ©a, © Ty s, From the other hand,

(0102(a)). = (02(01(a)) = 7, © 01(a). 0 7o, =7, 0T, 0G0 Ty, 0 Ty

and hence 74,5, = Ty, © Ty,, 0 € is @ homomorphism. From Corollary 16.4 we get that
Ker(§) = G and our theorem is proved. O
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17 The number of automorphisms of maximal nilpo-
tent subsemigroups of ZS,,

It is quite surprising, but some extension of arguments from Section 15 can be used to
compute | Aut(7')| for T from the previous section. Our main result is the following:

Theorem 17.1. Let T be as in Section 16. Then

k ni—1lng—1
Aut(T)| = Tt T [T (6 = p, g = @t)eommscso, n
=1 p=1 g¢g=1

where t(x,y) are as in Section 15 and

min(p,q) i\ (1
a(panQa"'ank—laq): Z ( )( )
ico P/ \4
el (P (q\ (p+a—i
} Z (_1)p+quf]i! (7,) (z) ( ; )t(nQ, ey N1, ])-

Jj=0

To prove this we will need two lemmas and new notation. Consider the following
set: T* = {f € T|Ny C dom(f),N; C ran(f), and f(z) ¢ N,z € Ni} and put
t*(n1,...,ng) = |T*|. Let T" ={f € T|N; C dom(f)} and ¢ (ny,...,ng) = |T"|.

Lemma 17.1.
ni Mg nl nk
t(n, ..., nk) = ( - ) < . )t(nl —i,n — )t (4,9, ..., k=1, ).
i0 j—o \° J

Proof. For f € T set dom'(f) = {z € Ni|f(z) ¢ N.} and ran’(f) = {y € Ni|7¥(y) &
Ni}. We can assume that f is “glued” from f; € T(N; \ ran’(f), Ny \ dom’(f)) and
fo € T(ran'(f), Ny, ..., Ny 1,dom’(f)). If |dom'(f)| = j and |ran’(f)| = 4, there are

precisely t(n; — i, ng — j) choices for f; and t*(i,ng, ..., ng_1,j) choices for fo. Now we just
need to decompose T into classes with respect to values of ¢ and j and count the number
of elements in each class using elementary combinatorics. O

The importance of Lemma 17.1 becomes clear if we note that f ~ ¢ if and only if
fa ~ go, as defined in Lemma 17.1. If f € T and y € ran(f), in the next proof the notation
(f,x) — y will mean that there exists a sequence x = 21, 23, . ...z, = y of maximal length
such that f(z;) = 2zj41.

Lemma 17.2.

min(ny,ng) n n
t*(nl,...,nk): Z (Zl) (;)i!t'(nQ,...,nk_l,nl+nk—i).

=1
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Proof. The elements x € N, and y € N; will be called connected by f if they belong
to the same connected component of I'y. Decompose elements from 7" into classes with
respect to the number of pairs of connected elements. For the set P of those elements of

T*, whose set of connected pairs is {(ai,b1),..., (a;,b;)} we consider the map ¢ : P —
T'(Nay ..., Ng—1, Ny U (N1 \ {b1,...,b;})) defined as follows:

o(f)(x) = f(z), € NyU---UN, f(z) € My
(P(f) ):®a f(x)EB:{bl""ﬂbi}
o(f)(z) =z x € N1\ B; (f,2) — x.

From the construction of ¢ it follows that it is surjective and ¢(f) = ¢(g) if and only if
f#(B) = g*(B) and the restrictions of f and g on N, \ f#(B) coincide. Now the statement
follows by elementary combinatorial computation. O

Proof of Theorem 17.1. By Theorem 16.1, |Aut(T)| = |S||G| and by definition, |S| =
Hle n;l. So, we have to compute |G|, which reduces to the computation of cardinalities
of equivalence classes with respect to ~.

If we decompose the elements of T into classes with respect to the cardinality of
dom(f) N Ny, we get

(x
(x

N
n .
t(ny,...,ng) = Z <jk>t'(n1, e M1, ).

Jj=0

Using the Mobius inversion we obtain

(na,...,m) = %(—1)%1 (n_k>t(n1, M1y ).

§=0 J

After Lemma 17.2, each element of 7" has exactly i! pre-images under ¢ and hence for

any pair (p,q), 0 < p < ny, 0 < g < ng, of parameters the relation ~ on 7T has
ni\ (n

( 1) ( k) t*(p,na,-..,ng_1,q) equivalence classes of cardinality t(n; — p,ny — q) each.

p q
Distinct pairs of parameters correspond to disjoint groups of equivalence classes and each

equivalence class is contained in one of these groups. As ¢(0,b) = ¢(a,0) = 1 and one
element equivalence classes does not effect on | Aut(7’)|, we can consider only p < n; and
g < ng. Now, using Lemma 17.1, we compute that a pair, (p, ¢) corresponds to

min(p,q)
nq o p q y ’
't _ A =
(p)<Q) ; <Z><z> (no, ..., g1, +q — i)

n - min(p,q) 2\ (¢ p+q—i—j ptg—i
- ! —1)pra—i=d t ... 1.1
<p><Q> ; <’L> (Z)Z Z ( ) ( ] ) (nQ’ y g laj)

J=0

equivalence classes of cardinality ¢(n; —p, ny—q) each. As [ equivalence classes of cardinality
r give the factor (r!) in | Aut(T)|, our statement follows. O

32



For example, if [N;| = |Ny| = |N3| = 3, then |T| = 2971 and at the same time
| Aut(T)| = (3")3(2!)324(31)324(41)35(71)81 (13!)1834! ~ 2 - 1096,

18 Automorphisms of 7S,

We have already described all automorphisms of maximal nilpotent subsemigroups of ZS,,.
At this stage the description of all automorphisms of ZS,, itself will look very easy.

Theorem 18.1. Any automorphism of ZS,, is an inner automorphism, i.e. has the form
g2+ g Loxog for some g €S,. In particular, Aut(ZS,) ~ S,.

First we recall that the analogous result for the group S, looks a little bit different:
Aut(S,) ~ S, for n # 2,6. The group S, is abelian and does not have any non-trivial
automorphisms, whereas S¢ has an outer automorphism, which sends any transposition
into a product of three commuting transpositions.

Lemma 18.1. Let ¢ € Aut(ZS,). Then ¢©(S,) = S,, in particular, the restriction ¢ =
©ls,, is an automorphism of S,,.

Proof. Follows from Lemma 5.1, where S,, is described as the unique subgroup of ZS,, of
cardinality n!. O

Lemma 18.2. Let ¢ € Aut(ZS,). Then for any x € N, there exists y € N, such that
p(e(x)) = £(y)-

Proof. If A C N, we have 4 = HzeNn\Aa(z), which means that the only idempotents,
which can not be decomposed into a non-trivial product of other idempotents are £(¢)’s.
Hence the set of these idempotents should be preserved by ¢. O

Lemma 18.3. Let n > 2 and ¢ € Aut(ZS,,) such that ¢|s, is trivial. Then @ is trivial.

Proof. Recall that ZS,, is generated by S, and e = ¢(1) (see Section 11). So, we have only
to prove that p(e) = e. By Lemma 18.2, p(e) = &(z) for some z € N,. Assume that
x # 1. As n > 2, there exists y # 1,z. We have (z,y) oeo (x,y) = e. But, applying ¢ we
get (z,y)oe(z) o (z,y) = e(y) # z, a contradiction. O

Lemma 18.4. Let ¢ € Aut(ZSs). Then v = ¢l|s, is an inner automorphism of Se.

Proof. Let e = e(x), € Ng. If y and z are distinct elements from N such that = & {y, 2},
we have (z,y) oe = eo (z,y). So, e commutes with many transpositions. From the
other hand, it is clear that e does not commute with any product of three commuting
transpositions. Each ¢ € Aut(ZSg) should send e to some e(y) and, if ¢ is outer, all

transpositions to products of three commuting transpositions and we get a contradiction.
O
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Proof of Theorem 18.1. Clearly all ¢,, g € S,, are automorphisms of ZS,. Let ¢ €
Aut(ZS,) and ¢ = ¢|s,. From Lemma 18.4 it follows that ¢ is an inner automorphism of
Sn. Let us assume that ¢ is the conjugation with ¢! € S,,. Consider 7 = ¢, o ¢. The
restriction of the last one to S, is trivial. Hence, if n > 2, 7 is trivial by Lemma 18.3 and
thus ¢ = @g-1. Let n = 2. Then 1 is always trivial and either ¢(e(2;) = €9}, hence ¢ is
trivial, or ¢(eq2}) = eq1}, hence ¢ = ¢(1,9). This completes the proof. O

19 Endomorphisms of ZS,

In contrast with description of automorphisms, the description of endomorphisms of ZS,,
is not so concise and unified. In particular, cases n = 2,4, 6 happened to differ from all the
others. We will start the description with the definition of several endomorphisms, which
we will then prove to be all.

Lemma 19.1. Let 7 € Aut(S,) and define the map ¢, : IS, — IS, as follows: ¢.(f) =
w(f), f € Sy, and . (f) =0, f € ZS, \ Sn. Then ¢, € End(ZS,,).

Proof. We have to check o (xoy) = or(z) o o (y). If z,y € S,, this reduces to m(z oy) =
7(x) o w(y), which is true as 7 is an automorphisms of S,, and if at least one of z,y does
not belong to S,,, both sides of the equality equal 0. O

We note that for n # 6 the elements m above are conjugations with respect to an
element from S,, i.e. has the form z — ¢g=' o z o g for some g € S,,, whereas for n = 6 the
non-inner automorphisms are also involved. To formulate the next lemma we need a new
notation. For ¢,j € A, by f; ; we will denote the element of rank 1 such that f;;(¢) = j.

Lemma 19.2. Let g € S, and define the map ¥, : IS, — IS, as follows: ¥,(f) =

gil © f °©g, f € STL; ¢g(f) = fg(i),g(j)7 rank(f) =n—11 € dom(f), j € ran(f), and
Ye(f) =0, rank(f) <n —1. Then ¢y, € End(ZS,).

Proof. Again we have to check 1,(z o y) = 9,(z) o ¢,(y). If z,y € S, this reduces to
mw(xoy) = m(x) onw(y), which is true as 7 is an automorphisms of S,. If at least one of z,y
belongs to I,, o, both sides of the equality equal 0. The same happens if z,y € I, 1\ I, o
ran(y) # dom(z). Finally, if i ¢ dom(y), j ¢ ran(y) = dom(z) and k ¢ ran(z) then
i € ran(z oy), k & ran(z o y) and the equality reduces to f; = fjx o fij, which is true.
This completes the proof. O

Lemma 19.3. Choose a,b € ZS,, such that a® = a and > =aob=>boa = b and define
ga,b(f) = b; f € Sn\An; ga,b(f) = b27 f S A’n; and fa,b(f) =a, ac ISTL \ Sn Then ga,b 18

an endomorphisms of ZS,,.

Proof. By the choose of a and b, the set {a, a?, b} is a semigroup with identity a? and zero
b. So, &upls, is the projection of S, to S, /A,,, hence a homomorphisms, and if at least one
of z,y does not belong to S,, the both sides of &, ,(z 0 y) = & () 0 & p(y) equal b. This
completes the proof. O
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We note that if a*> = a = b then the image of &, ; has one element which is an idempotent.
If a> = a # b the image of &, has two elements, both being idempotents (automatically
commuting). In all other cases the image is {a, a?, b}, which is a three-element semigroup
with unit a? and zero b. The set {a,a?} is a two-element subgroup. We are almost done
and have to consider only some special endomorphisms in the case n = 4. In this case
we denote by K the normal subgroup {1;(1,2)(3,4);(1,3)(2,4); (1,4)(2,3)} of S4. Each
of six cosets Kg, g € Sy, contains exactly one permutation oy(g), which fixes 4. Let o¢(g)
denote the permutation of {1,2,3} induced by o4(g), so we have two maps oy : S; — Sy
and og : S4 — Ss.

Lemma 19.4. Let n = 4. Define 0, : IS4 — ISy, i,j € {0,1}, as follows:

e Joilf), f€ESs o Jeif), feSs
O“O(f)_{o, f €TS8\ Sy, U”l(f)_{s{l,Q,g}, feTI8;\ Sy,

and for g € Sy set o} ;(f) = g~ 0 0ij(f) og. Then all of; are endomorphisms of IS..

Proof. Checking of ;(z o y) = o7 ;(x) 0 0] ;(y) as in the previous lemma the case =,y € S,

reduces to an endomorphism of S, and in all other cases both sides are equal O (resp.
6{15273})' |:|

Now we are ready to state our classification result.

Theorem 19.1. 1. Ifn # 4 then each endomorphism of ZS,, is either an automorphism
or coincides with one of pr, Yy or &g p.

2. Each endomorphism of IS4 is either an automorphism or coincides with one of ¢,
9

Vg, ap OT Oi4-

We note that for n = 2 the endomorphism 14, g € S», are in fact automorphisms and

01 = pa2 = §u2),0- For n =1 the list reduces to the trivial automorphism and two
endomorphisms &; 1 and &g .

Proof. We left the trivial case n = 1 to the reader and assume n > 1.

Step 1. Let ¢ € End(ZS,,) and ¢ = ¢s,. First we assume that the kernel of v is
trivial. This implies that ¢ is an automorphism of S,,. Let n # 6. Then % is an inner
automorphism and hence there exist an inner automorphism, ¢, of ZS,,, whose restriction
to S, coincides with . Set ¢’ = (¢')™' o ¢ and we get ¢'(z) = z, * € S,. As IS,
is generated by S, and e = ex;,\(1} it is enough to determine f = ¢'(e), which is an
idempotent, say f = 4. Now, if 1 # yz,€ N, then eo (z,y) = (z,y) o e and hence
fol(z,y) = (z,y) o f, which implies that either {z,y} C A or {z,y} N A = &. Hence
either M, \ {1} C A or N, \ {1} N A = &. This reduces the possibilities for A to N, &,
{1} and N, \ {1}. If A = {1}, then ¢' is the identity and hence ¢ is an automorphism. If
A = N, \ {1}, then ¢’ =41 and hence ¢ = ¢, for some g € S,,. If A = @, then ¢' = p;q,
where id is the identity automorphism of S,. Let us prove that A = A/, is impossible.
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Indeed, in this case ¢'(e) = 1 and hence ¢'(en;,\(2}) = ¢'((1,2)) o ¢'(e) 0 ¢'((1,2)) = 1 for
any x € N,. Decomposing all other non-invertible idempotents into a product of EN\{z}s
we get ¢'(g) = 1 for any ¢ = g € S,.. In particular, ¢'(0) = 1 and hence 1 = ¢'(0) =
¢'(ho0) = ¢'(h)o¢(0) = ¢'(h) for any h € ZS,,, which contradicts the fact that ¢'|g,, is
identical and n > 1.

Now assume that n = 6 in the situation above. For this case the only difference with
arguments above is that 1 can be non-inner. Let us prove that this is possible only if
©(ZS8, \'S,) = 0. Indeed, let f = f? = p(e). As e commutes with all transpositions
(z,y), xz,y # 1, we get that f commutes with all their images, which are products of
three transpositions and direct calculation gives us f = 1 or f = 0. But the first case
is impossible by the same arguments as in the previous paragraph, so f = 0 and hence
P(ISu\S,) = 0.

Step 2. Now assume that Ker(p) is not trivial. Then we have three possibilities:
Ker(p) =S, Ker(p) = A, and n = 4 and Ker(¢) = K. Consider now the first two cases.
Set b = ¢(e) and a = p((1,2)). Then a? = ¢(1) and we obviously get boa? =b. If n =2
then Ker(y) non-trivial implies a = a®> commutes with b. Let n > 2. Then a = ¢((2,3))
commutes with b as (2, 3) commutes with e. Hence for all n from ey;,\(z3 = (1,2)ceo(1,x)
we also get p(en,\(z}) = acboa = b and hence ¢(g) = b for any non-invertible idempotent
g, in particular, for h = ex;,\q1,2. But (1,2)oh = ho(1,2) = h and hence aob=boa =b.
Now any element from ZS,, \ S, can be expressed as product of elements from S, and e,
moreover, at least one e should be present. This implies ¢(ZS, \ S,) = b and ¢ = & .

Step 3. To complete the proof we are left to consider the case n = 4 and Ker(¢) = K.
Multiplying with an inner automorphism of ZS,,, we can assume that ¢(S,) either stabilizes
4 or is not defined in this point. Using the arguments of Step 1, we also get that ¢(e1,2,3})
is either O or £y4) and using the arguments of Step 2 we get that p(ZS4\ S4) = @(e(1,2,3})-
Hence ¢ coincides with one of o; ;. This completes the proof. O

20 Transitive representations of ZS, by partial bijec-
tions

The aim of this section is to study representations of ZS,, by partial bijections, that is
to study homomorphism from ZS,, into ZS(X) subject to some additional conditions. To
formulate our main result here we will need to recall some standard notions concerning
representations. Let S be an inverse semigroup. A representation of S by partial bijections
is a homomorphism, ¢ : S — ZS(X), for some X. This representation is called effective
provided X = Uyrcg dom(p(f)), and transitive provided for and z,y € X there exists f € S
such that ¢(f)(z) = y. Effective transitive representations of S are closely connected with
the notion of closed subsemigroups in S, in fact they can be realized as representations on
the cosets with respect to such subsemigroups. These are defined in the following way. Let
H C S. The closure Hw of H is the set {f € S|gwf for some g € S}. H is called closed
if H = Hw. We first describe all closed subsemigroups in ZS,,. It worth to note that for
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f,9 € LS, the relation fwg holds if and only if dom(f) C dom(g) and f|dom(s) = gldom(s)-
Our main result will be the following.

Theorem 20.1. Let M C N, and G is a subgroup of S(M). Then G ®ZS(N, \ M) is a
closed inverse subsemigroup of ZS,,, moreover, each closed inverse subsemigroup of LS, is
of this form.

Proof. Obviously, each H = G&®ZS(N,, \ M) from formulation is an inverse subsemigroup
of ZS,,. Let h € H and hwa. Then M C dom(h) C dom(a) and h(x) = a(z) for all z € M.
Hence M is invariant under a and a|y; € G. Hence a = a|y @ aly;,\pr and a € H. Therefore
H is closed.

Now let H be a closed inverse subsemigroup of ZS,,. Then E(H) is a lower semi-lattice
with respect to the divisability order and hence contains the minimal idempotent, say e. Set
M = dom(e). First we prove that f(M) = M for any f € H. First of all M C dom(f) for
any f € H. Indeed, otherwise there should exist g € H and € M such that ¢ dom(g).
Consider the idempotent f = eogog# € H. We have dom(f) = dom(gog#)Ndom(e) # M
and hence f # e, which contradicts the minimality of e. Second, take f € H and let
f(M) = M'. Consider foe € H. Then dom(foe) = dom(e) = M and dom((foe)¥) = M’
But g = (f* oe)# o (f# oe) € E(H) hence dom(g) = M’ N M should contain M as the
idempotent e is minimal. This implies M' = M.

As the next step we prove that e ® ZS(N,, \ M) C H. Indeed, for any s = e @ h,
h € IS(N,, \ M), we have se = e, hence ews and s € H as H is closed.

We proceed with the fact that H oe is a subgroup of H. We have dom(f) = M for any
f€Hoeand f(M) =M from above. This implies that f* = e for some k and hence e is
a unit in H o e and all elements of H o e are invertible. Clearly, H o e C S(M).

And finally we claim that H = H o e ® ZS(N,, \ M). From the previous paragraph
we have H C Hoe ® ZS(N, \ M), but it is easy to see that for any h € H we have
hoe®ZIS(N,\ M) C H and hence both semigroups should coincide. O

Two representations ¢ : S — ZS(X) and ¢ : S — ZS(Y) are called equivalent if there
exists a bijection, § : X — Y, such that 6(p(s)(x)) = ¥(s)(f(x)) for all z € X and s € S.
The last essentially says that ¢(s)(z) = y is equivalent to ¥(6(z)) = 6(z) for all z,z € X
and s € S.

The Schein’s construction of representation involves the following data: an inverse
semigroup, S, and a closed inverse subsemigroup, H, of S. Set i = {(s,t) € S x S|t¥s €
H}. Tt is a partial left congruence on S with the domain Dy = {s € S|s*s € H}. The
equivalence classes modulo 7y are (sH)w, s € Dg. In particular, s € (sH)w and H is
an equivalence class. Denote by X the set of these equivalence classes, i.e. the set of all
(sH)w, s*s € H. Define the map ¢y : S — ZS(X) as follows: (px(s))((tH)w) = (stH)w
if (stH)w € X otherwise (¢x(s))((tH)w) is not defined. This is a representation of S in
ZS(X) which is called the representation of S on left w-classes with respect to H.

Lemma 20.1. Let S be an inverse semigroup and H be a closed inverse subsemigroup
of S. Then the representation of S on left w-classes with respect to H is effective and
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transitive. Conversely, each effective and transitive representation of S is equivalent to the
representation on left w-classes with respect to some closed inverse subsemigroup.

Proof. The equalities s(Hw) = (sH)w and s*(sH)w = ((s*s)H)w = Hw imply that the
representation of S on left w-classes with respect to H is effective and transitive.
Conversely, let ¢ be an effective and transitive representation of S in ZS(z). Fix z € X
and denote by H = H, the semigroup of all s € S, which stabilize z, in particular, they
are defined on z. The equality ss*s = s guarantees that H is an inverse semigroup. Let
h € H and s € S such that hws. Then z = hh*(z) = sh¥(z) = s(z) and hence s € H.
This means that H is closed. If y € X then the transitivity of ¢ implies that there exists
sy € S such that sy(x) = y. Then the left w-class (s, H)w belongs to the stabilizer H,, of y.
But, conversely, s#(Hy) C H,, from which it follows that the map y — (s,H)w provided
an equivalence between ¢ and the representation of S on left w-classes with respect to H.
This completes the proof. O

The following Lemma cane be found in [KP, Theorem 7.27] and we refer the reader to
this book for the proof.

Lemma 20.2. Let S be an inverse semigroup and Hy, Hy be two closed inverse subsemi-
groups of S. Then g, and gy, are equivalent if and only if there exists a € S such that
aa® € Hy, a*a € Hy, a* Hia C Hy and aHya® C H;.

Now we will use Lemma 20.1 to describe all faithful (i.e. monomorphic) effective tran-
sitive representations of ZS,, in the following statement.

Theorem 20.2. Fach faithful effective transitive representation of IS, s equivalent to
standard representation id : TS, — IS,

Lemma 20.3. Let M C N, G a subgroup of S(M) and H = G®IS(N,, \ M). Then the
number of left w-classes of IS,, with respect to H equals n!/(|G|- | N, \ M|!), each class has
the form g o H for some g € S,, and all classes have the same cardinality |H|.

Proof. If g € S,,, g 0 g = 1 € H and hence each such g is contained in (g o H)w. Hence
(gro H)w = (g20 H)w if and only if g;' 0 g; € HNS,, = GHS(N,,\ M). Hence (g, 0 H)w =
(goo H)w if and only if g; and g, belong to the same left class of S,, modulo G®S(N,,\ M).
In particular, the number of left w-classes of such form is precisely n!/(|G| - N, \ M|!).
As for g € S,, x +— g o x is a bijective map on ZS,,, all the above classes have the same
cardinality |H|.

It is left to prove that each left w-class has the above form. Consider some class, say
(a o H)w. The set of maximal elements with respect to w on ZS,, is S, hence there exists
g € S, such that awg and thus g € (a0 H)w as the last is closed. We get (a0 H)w = (goH)w
and the proof is completed. O

Lemma 20.4. The representation of IS, on left w-classes with respect to Hi = G1 &
IS(N,\ My) and Hy = Go®ZS (N, \ M) are equivalent if and only if the actions (G, My)
and (G, Ms) are equivalent.
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Proof. First we prove the “only if” part. We use Lemma 20.2 and find a € ZS,, such that
a*oa € Hy,aoa” € Hy, aHa* C Hy and a* Hya C H;. Then dom(a*a) = dom(a) D M,
and dom(aa”) = dom(a*) D M,. Set A; = dom(a), Ay = dom(a*). We want to show that
a®(Ms) = M. If not, there exists x € M, such that a¥(z) € A; \ M;. Take = € H; such
that m(a™(x)) = @, which obviously exists, and we have aomoa® (M,) # Ms, which means
aHya* ¢ H,. Obtained contradiction implies a¥ (M,) = M; and analogously a(M;) = M.

Set X; = {(go Hj)w,g € S,.}, i = 1,2, and let § denote the bijection from X; to X,
which provides an equivalence of ¢y, and ¢g,. From Lemma 20.3 it follows that each left
w-class with respect to H; contains a left coset of S, modulo B; = G;®S(N,\ M;), i =1,2.
Hence 6 induces a bijection, say 9, between left cosets of S,, modulo B;. It is easy to see that
this bijection is in fact an equivalence of actions (S,,S,/B1) and (S, S,/Bs). In particular,
S,/Bi| = |Sn/Bs| and hence |G| = |Ga|. Choose s € S, such that 6(Bs) = s o B.

Consider any g € G and set pg, = ¢u,|a, ¢ = 1,2. We have B;p%(g) = B, and hence
goso By =so By, which is equivalent to g € so A; o s™%. Set s, = 5|y, and s¥ = s7|y,.
Then g € s¥ o G, o s, and therefore G3 = s¥ o G; o s,, which means that G; and G, are
conjugated in S,,.

Define 1) : G; — G by ¥(g) = s¥ogos,, g € G1. At the same time s, defines a bijection,
T : My — My, by 7(z) = s.(x), * € M;. Moreover, ¥(g)(7(z)) = s¥ o g o s.(s.(z)) =
7(g(z)) and hence the actions (G, M;) and (G2, M5) are equivalent.

We proceed with the “if” part. We have that the actions (G1, M;) and (G2, M,) are
equivalent. Let 7 : My — M; and ¥ : Gy — G5 be some bijection and isomorphism, which
give us this equivalence. Then |Gy| = |Gq| and |M; = |M,|. In particular, [S,/B;| =
IS,/ Bs| and hence |X;| = |X3|. Choose s € S, such that s(z) = 7(x) for all z € M. For
any g € G, and y € M, we have ¥(g)(y) = 7(g(77*(y))), which gives ¥(g) = s o g o s*.
Hence Gy = so G o s# and G is conjugated with Gy in S,,.

Take f € ZS,, such that f|y, = s|a, and f(N, \ M) = @. Then f#|y, = s¥|y;, and
f#(N, \ My) = @. Moreover, f#*o f € H; and fo f# € Hy. Let a= foho f# h e H,.
Clearly a(Msy) = M, and a(N,, \ My) = &. Set g = h|y, and take any y € M,. We have
a(y) = foho f#(y) = fohos*(y) = foh(rl(y)) = fog(r™(y)) = s(¢(r™'(y))) =
7(9(77(y))) =¥ (9)(7(77(y))) = ¥ (g9)(y). But ¥(g) € G and hence a € H,, which means
foHof# C Hy. The same arguments imply f# o Hyo f C Hj, which in turn means that
wm, and @g, are equivalent by Lemma 20.2. O

Proof of Theorem 20.2. Let H = G®ZS (N, \ M) be a closed inverse subsemigroup of ZS,,
and ¢y be the corresponding representation of ZS,, on left w-classes with respect to H,
which we assume to be faithful. If M = @ then H =78, and ¢y is obviously non-faithful,
so M # @. Consider an idempotent, e € ZS,, such that |dom(e)| < |M|. If pg(e) is
defined on some left w-class, (s o H)w, then eo s € ((s o H)w)?#(® and |dom(e o 5)| <
|dom(e)| < |M]|. But, by Lemma 20.3, any left class is g o H for some g € S, hence
|dom(z)| > |M| for any = € g o H. This contradiction means that ¢g(e) is not defined
on all classes and thus e = 0 by faithfulness of . Hence, |[M| = 1. Thus G is trivial
and from Lemma 20.4 it now follows that all there exists exactly one, up to equivalence,
faithful effective and transitive representation of ZS,. But the standard representation
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id : IS, — IS, is faithful, effective and transitive. This completes the proof. O

21 Appendix I: Theorem of Preston and Wagner

Here we present one of the most famous results about ZS,, the so-called Theorem of
Preston and Wagner, which illustrates the universal property of ZS,, to contain all inverse
semigroups. This is analogous to the Kelly’s Theorem for S,,.

Theorem 21.1. Let (T, *) be an inverse semigroup with identity. Then (T, *) is an inverse
subsemigroup of ZS(T).

Proof. With each a € T we associate a partial transformation, ¢, : T x a® — T * a, defined
by ¢.(z) =z *a, z € T xa~L. We have to check three things. First, we want ¢, to be a
partial bijection. Second, we want the map a +— ¢, to be injective. And third, we want
the last map to be a homomorphism of inverse semigroups.

First we prove that ¢, is a partial bijection, i.e. that for z,y € T * a the equality
zxa=yx*aimpliesx =y. As z,y € T x a*, there exist z1,y; € T such that z = z; * a*
and y = y; xa”. From z x a = y x a we get ¥, x a” x a = y; * a” x a. Multiplying with a#
from the right, we get z1 *x a” x a x a” = y, * a¥ * a * a¥. But 2, * a” * a ¥ a¥ = 11 * a”
and y; xa? xaxa” =y, *a¥ and hence v = 71 ¥ a¥ = 71 xa¥ xaxa¥ =y xa¥ xaxa¥ =
y1 ¥ a” xaxa® =y xa¥ =y.

Now let us show that a — ¢, is an injection. Assume that ¢, = ¢, and consider the
idempotents a x a* and b * b*. If we succeed to prove that a * a” = b * b%, from ¢, = ¢y
we will get

a=axa” xa=p,(a*a®) = gy(a*a’) = @y(b*b") =bxb" xb=b.

As T is inverse, all idempotents of it commute and we have axa? xb*b* = bxb* xaxa”.
Further Txaxa® C Txa? = Txa* xaxa” C T xaxa” and we have T xa?# =T xaxa”.
From ¢, = ¢, we now have T x a x ¥ = T x a# =T x b*¥ =T x b b*. Hence, there exist
z,y € T such that a xa™' = z x b * b and b * b# = y* a xa®. It is left only to calculate:

axa? =zxbx b =z xbx b xbxb” =axa” xbxb" =

=bxb" xaxa” =ysxaxa® xa*xa” =yxaxa® =bxb"

and the second step is completed.
So, the only thing we are left to check is that a — ¢, is a homomorphism. We know
already that ¢, : T xa* — T xa and @4 : T *a — T x a*. We have

® Pa#
zxa? S rxa’ ka5 zxa” xaxa’ =z *a”

and hence ¢, and ¢,# are inverse to each other bijections between T * a# and T x a. It
is obvious that y(p.(z)) = T *a * b = Qaup(x), if x € T x a” and xxa € T x b*. So,
to complete the proof we have to show that dom(y; o ¢,) coincides with dom(@a.). We
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have dom(py 0 0,) = (o) H(T *aNT % b#) = Qs (T xaNT xb%) = (T xaNT * b¥#) x a¥
and we have to check that this coincides with 7' * (a * b)# = T * b x a*. The inclusion
(T *anNT*b%)*a® C T xb* xa” is obvious. Let x € T *b¥ xa¥. Then z = y x b? xa¥ =
y* b xa” xaxa” € T xaxa”! and the proof of our theorem is completed by applying
the canonical anti-automorphism of ZS (7). O

22 Appendix II: Theorem of Nemirovskaya

The classical Theorem of Frucht, [F], states that each finite group is an automorphism
group of a finite non-oriented graph. The aim of this appendix is to prove an analogous
result for inverse semigroups. As a first step for this it is natural to switch from automor-
phisms to partial automorphisms, which we define as follows. Let I' be a graph, a partial
automorphism of I is a partial bijection, ¢, on the set V(I') of all vertices of I" satisfying
the following: for any vertices z,y from the domain of ¢ the existence of the arrow (z,y)
is equivalent to the existence of the arrow (¢(x),¢(y)), i.e. that “partiality” of the map
essentially relates to the vertices of I'. It is natural to ask if any finite inverse semigroup
is a semigroup of partial automorphisms of a finite graph. The answer is no and one of
the main reasons is that the inverse semigroup PAut(I") of all partial automorphisms of
[ has too many ideals, in particular, in will never be a group. We improve the situation
by considering weight graphs, i.e. a graph, I, together with a surjection w : V(I') — P,
where P is a lower semi-lattice. A set, W C V/(I'), will be called principal ideal provided
W = {z € V(I')|w(z) < a} for some o € P. A partial automorphism, ¢, of T" will be
called weight automorphism if both dom(y) and ran(p) are principal ideals and ¢ pre-
serves the order on weights, i.e. for any a,b € V(I') the equality w(a) = w(b) implies
w(p(a)) = w(p(b)) and the inequality w(a) < w(b) implies w(p(a)) < w(p(b)).

Lemma 22.1. The set PAut, (") of all weight automorphisms of a weight graph, T', is an
inverse subsemigroup of PAut(T).

Proof. Clearly, if ¢ € PAut,(T") then ¢* € PAut,(T') and that the composition of two
elements, ¢,1 € PAut,(I") preserves the order of weight. So, it is left to show that both
dom(p o)) and ran(p o)) are principal ideals. Let ran(v)) and dom(¢) be principal ideals
defined by « and § in P respectively. Then ran(y) Ndom(y) = {z|x < inf(c, 3)} as P is
a lower semi-lattice. Now if we choose one vertex ¢ of weight inf(«, #) in ran (1) N dom(¢p)

we will get dom(p o)) = {y|lw(y) < w(¥#(c))} and ran(p oy)) = {z|w(z) < w(p(c))}. This
completes the proof. O

Now we can formulate the following result.

Theorem 22.1. If S is a finite inverse semigroup, then there exists a weight graph, T,
such that S ~ PAut,,(T).

We note that |P| = 1 implies PAut,,(I') = Aut(I') and hence the statement is true if
S is a group according to the Frucht’s theorem mentioned above. To prove this statement
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we will need certain constructions and several lemmas. First we associate with S a colored
oriented graph, I, whose vertices are S, there is an arrow from a to b if an only if b € Sa
and this arrow has color ba*. Clearly, it is enough to consider the semigroups up to
an anti-isomorphism, as the semigroup, anti-isomorphic to an inverse semigroup, is itself
inverse. So, we consider the Preston-Wagner (anti-) representation a — ¢, : Sa* — Sa,
©va(z) = za, of S by partial bijections on S, given by Theorem 21.1.

Lemma 22.2. For any a € S the map ¢, s a partial automorphism of T, which preserves
colors of arrows.

Proof. Let x,y € Sa¥* and there is an arrow from z to y of color yz#. By definition
of ¢, there exist s,t € S such that y = sa” and y = tz. Then ya = tra € Sa and
(ya)(za)* = yaa*z# = sa’aa*z# = sa*x# = yr~! that is there is an arrow from za to
ya of color yz#.

Let now = ua®,y = va¥ € Sa” and y € Sz. Assume that there is an arrow from za
to ya. We use ¢,# and by the conclusion above obtain an arrow from zaa# = ua®aa# =
ua* = z to yaa# = valaa# = va# =y, a contradiction. O

Recall that F(S) is a lower semi-lattice with respect to the natural partial order. To
the vertex a of I’ we assign the weight w(a) = a¥a = w(a¥a).

Lemma 22.3. There hold the following equivalences:
1. b € Sa if and only if w(b) < w(a);
2. Sb C Sa if and only if w(b) < w(a);
3. Sb= Sa if and only if w(b) = w(a).

Proof. Clearly, it is enough to prove the first statement. As Sa = Sa*a, from b = za¥a
it follows b*b = a*ax®ra”a and thus (b7b)(a*a) = b*b, that is w(b) < w(a). Conversely,
from w(b) < w(a) we get b#b = b#ba*a and b = ba*a € Sa. O

Lemma 22.4. ¢, %, is the identity map on Sa.
Proof. Follows from S(a*a)* = Sa and raafta = za. O

Lemma 22.5. Let a € S and ¢ be a partial automorphism of T, which preserves colors of
edges, with domain {z|w(z) < w(a)}. If pi(a™a) is an idempotent of S, then © = P #,.

Proof. From Lemma 22.3 it follows that dom(¢) = Sa = Sa*a and hence for any ya € Sa
there is an arrow from a#a to ya of color ya. But then there is an arrow of the same color
from ¢;(a*a) to ¢i(ya) and ¢,(ya) = spi(a*a) for some s € S. From the other hand, as
¢4(a*a) is an idempotent, the arrow from ;(a*a) to ;(ya) should have color

pr(ya)(pe(a”a))* = spi(aa)(pi(a”a))* = spi(a”a) = @i(ya).

hence ¢(ya) = ya for all ya € Sa and the statement follows from Lemma 22.4. O
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Figure 1: The graph I',.

Lemma 22.6. Let a € S and ¢ be a partial automorphism of T, which preserves colors of
edges, with domain {z|w(z) < w(a)}. Then there exists b € S such that ¢ = py.

Proof. Assume that such element does not exist. Then Lemma 22.5 says that ¢ = p(a*a)
is not an idempotent. But ¢(Sa) C Sc. Consider the partial automorphism ¢ = ¢ o 4.
If v = ¢, for some y € S, we would have ¢ = po s, = o s 0@, = Pop, =
©y © P = Pye, Which contradicts our assumption. But v preserves the colors of the edges
and dom(¢)) = dom(y). Therefore, by Lemma 22.5, ¢(a*a) is not an idempotent either.
But ¢ (a*a) = (pope)(a*a) = p4(c) = cc*. This contradiction completes the proof. [J

Lemma 22.7. Fach partial automorphism ¢ of T preserves the order of weights of vertices.

Proof. Let a,b € dom(y) and w(a) = w(b), i.e. by Lemma 22.3, a € Sb and b € Sa. Then,
by construction of T, there is an arrow from a to b and an arrow from b to a. Hence there
are arrows in two directions between ¢(a) and ¢(b) as well. So, we get w(¢(a)) = w(p(b))
by construction of I' and Lemma 22.3. That w(a) < w(b) implies w(yp(a)) < w(p(b)) is
proved analogously. O

So, for any a € S the partial automorphism ¢, of [ is weight and preserves the colors
of edges. Hence, by Lemma 22.6, we get that all weight partial automorphisms of I, which
preserves the colors of vertices from a semigroup, (anti-) isomorphic to S. Now we are
ready to prove Theorem 22.1.

Proof of Theorem 22.1. Denote by A the set of colors of I. Take any injections: A —
{n € Nj]n > 2}, z — n,, and E(S) - {m € N\m > M}, e — m,, where M = max,ea n,.
Now we can transform I into a weight graph I. From a = aa*a € Sa it follows that T
contains a loop of color aa” in the vertex a. If a # 0, we replace this loop by subgraph I',
from Picture 1. Otherwise (if a = 0) we consider a as a vertex without loop. Each arrow
from a to b, a # b we replace by subgraph I',;, from Picture 2 and the weight of all new
vertices of these subgraphs is w(a) = aa” by definition.

We note that for any b € Sa” from ba = 0 it follows b = 0. Hence, the construction of
I implies that for any 0 # b € Sa* there exists the unique isomorphism  : I'y = Ty, (5),
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Figure 2: The graph I'y ;.

satisfying 1, (b) = 1,(b). Moreover, for any b € Sa* and ¢ € Sb the construction of T'
implies the existence of the unique isomorphism 9. : Ty — Ty, (5),00(c)- Now for any
a € S we define a partial map, ¢}, on the vertices of I' in the following way:

va(x), € Sa¥;
‘() p(z), mis a vertex of ['y for some b € Sa*;
) =
¥ Une(z), = is a vertex of 'y, for some b, ¢ € Sa;

a, otherwise.
Since @4(z) = ¥p(x) = Py () for any b € Sa¥, the map ¢} is well-defined.

It is obvious from the construction that ¢ is a partial automorphism of I' and that it
preserves the order of weights. Let us prove that dom(y}) = {z|w(z) < w(a¥)}. Indeed, if
z € dom(y}), then w(z) coincides with the weight of some b € Sa#. Hence w(z) < w(a®) by
Lemma 22.3. Conversely, if w(z) < w(a®), then there exists b € Sa* such that w(z) = w(b)
and z is a vertex of either [', or I'y.. As ¢ € Sb, we have b € Sa* implies ¢ € Sa* and we
have z € dom(p}) in both cases.

From ran(y}) = dom(y},) it follows that ran(e}) is a principal ideal as well. Hence
¢ € PAut, (). It is obvious that a — ¢! is a homomorphisms from S into PAut,(T').
As @7 coincides with ¢, on vertices, this homomorphism is injective and it is left to prove
that each partial weight automorphism of I' is of the form ;.

Let ¢ € PAut,(T'). Then dom(p) = {z|w(z) < w(e)}, where e € E(S). If e = 0,
then dom(p) = {0} and ¢ = ¢f as {} is the unique principal ideal containing exactly one
element.
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Now let e # 0. As for any 0 # b € Se all vertices of I'y and I'; . have weights < w(b), we
get that ¢ is defined on all such vertices. But |Sb| > 1 as b # 0. Hence I contains a loop
in b and an arrow from b to ¢, b # ¢ € Sb. Hence any vertex b, 0 # b € Se, has degree > 4
in the subgraph of I', generated by dom(¢), and any vertex of I, which was not vertex in
T, has the degree < 3. Thus ¢ maps vertices of T into vertices of ' and new vertices of T
into new vertices of I respectively. In particular, we can restrict ¢ onto I' and denote the
result by ¢.

It is obvious that ¢ preserves the order of vertices and that both dom(®) and ran(@)
are principal ideal. Moreover, if there is an arrow from a to b for a,b € dom(¢), then ¢
should map Ty into T'y(a) (). But T'ye),0) 18 isomorphic to some subgraph of T' 4 if and
only if 'y ~ I'; 4. This implies that the arrows from a to b and from ¢(a) to ¢(b) has the
same color. Therefore ¢ is a weight partial automorphism of [, which preserves the color
of edges. That is ¢ = ¢, for some a € S. But ¢} = ¢, and @1 = @, implies 1 = @o. And
we finally get ¢ = 7. O

23 Some facts without comments
1. dom(f o g) C dom(g) and ran(f o g) C ran(f) for any f,g € ZS,,.

2. |Z8,| = 3r, ()%l

3. The number of elements in ZS,,, the chain decomposition of which contains I; cycles
and m; chains of length 7, i = 1, ..., n equals n! (H?:l(ilili!mi!))fl.

4. Say that two elements f, g € ZS,, have the same typeif for any 2 = 1, ..., n the number
of cycles (resp. chains) of length ¢ in the chain decomposition of f and g coincide.
The number of different types among element in ZS,, equals Y, _, s(k)s(n—k), where
(%), i € N denotes the number of different cyclic types of elements in S; and s(0) = 1.

5. [(f)ine| = i(f)(i(f)+16)(2i(f)+1) +p(f) = 1.

6. The number of maximal nilpotent subsemigroups of ZS,, of nilpotency degree k equals
n k i(n \m
> mek i (1) (m) (lzc) (k=)™
7. The number of non-isomorphic maximal nilpotent subsemigroups of ZS,, of nilpo-
n+k— 1)

tency degree k > 3 equals ( b1

8. The number of non-isomorphic maximal nilpotent subsemigroups of ZS,, of nilpo-
tency degree 2 equals [%34].

9. Each maximal nilpotent subsemigroup of ZS,, of nilpotency degree k£ and of type
(n1,...,mnyg) is contained in precisely ni!ny!...n;! maximal nilpotent subsemigroups
of ZS,,.
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10. Let kK =2 and f(n,m) be as in Section 15, then
min(m,n) n m
= .
s =52 () (7)

11. For n > 2, n # 4 the semigroup ZS,, has proper endomorphisms only of rank 1, 2, 3,
n!+ 1, n! +n? +1 and ZS, has additionally endomorphisms of rank 7.

12. For n > 2 the semigroup ZS,, has 2" endomorphisms of rank 1, 3" —2" endomorphisms

of rank 2,
n_[m/2] 2m—3k:
!
" Z Z (n —m)!(m — 2k)!k!
m=0 k=1

endomorphisms of rank 3, n! endomorphisms of rank n! 4+ 1 and n! endomorphisms
of rank n! + n? + 1 and that ZS, also has 96 endomorphisms of rank 7. Compute
then the formula for | End(ZS,,)|.

24 Historical comments

Definition of ZS,, and its elementary properties can be found in [LI] or in [KP].
Centralizers in ZS,, were described by Lipskomb, [Lil], this approach can be found in
[LI] in very detailed exposition. We follow closely an independent paper [GK1]. The results
of Section 8 and 9 are also taken from [GK1]. An alternative approach of description of
G-conjugated elements can be found in [LI]. The presentation, discussed in Section 11
is due to Lipskomb, [LI], but is a refinement of the result of Popova, [Po]. Isolated and
completely isolated subsemigroups of ZS,, are described by Ganyushkin and Kormysheva
in [GK2|, where the general philosophy, how to study nilpotent subsemigroups of ZS,,
was also formulated. The description of the maximal nilpotent subsemigroups of a given
nilpotency degree in ZS,,, their inclusions and the isomorphism problem was obtained in
[GK3, GK4]. The isomorphism problem here was technically difficult and the proofs in
[GK3] and [GK4] are different. We follows the shorter version from [GK4]. On this place
it is natural to say that the philosophy of study of maximal nilpotent subsemigroups of
transformation semigroups in terms of partial orders was quite successful also for study of
the semigroup of all partial linear transformation of a finite-dimensional vector-space over
a finite field. This was done by A.Shafranova (maiden name - Kudryavtseva) in [Sh1, Sh2].
The results about the cardinality of maximal nilpotent semigroups is a recent result of
Ganyushkin and Pavlov, [GP], and the paper is still quoted as “to appear”. The description
of the automorphisms of the maximal nilpotent subsemigroups in ZS,, is taken from [GTS].
In fact, in [GTS] the authors consider the case of ZS(M), where M is an arbitrary set and
study maximal nilpotent semigroups of finite nilpotency degree. Their result is analogous
to one in the finite case but several arguments in the proof require more care because
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of consideration of maps between infinite sets. The cardinality of these automorphisms
groups for ZS,, is also due to Ganyushkin and Pavlov, [GP].

The automorphisms of ZS,, were described by Liber, [Lib], and independently by
Lyapin. The endomorphisms are recently described by Schein and Teclezghi in [ST1].
The results of Section 20 are due to Voloshyna, [Vo]. The result of Appendix I is the
famous Theorem of Preston and Wagner, see [KP]. The result of Appendix II is due to
Nemirovskaya, [Ne].
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