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ABSTRACT A generalization of the Erdos-Rényl formulation of the Borel-
Cantelli lemma is obtained.

1 Introduction

The following Borel-Cantelli lemma, plays an execeptionally important role in
probability theory: If Aj, Asg,... is a sequence of events on a common prob-
ability space (2, F,P) and if ) ° P(A,) < oo, then P(limsupA,) = 0; if
Ai, Ag, ... is a sequence of independent events and if y 2 | P(A,) = 0o, then
P(limsup A,) = 1. Here limsup A, = N7, U2, Ag.

Many investigations were devoted to the second part of the Borel-Cantelli
lemma in attempts to weaken the independence condition that means mutual
independence of events A, ... , A, for every n. A short history of the problem
can be found, for example, in [6], Section 6.7.

Erdos and Rényi [2] discovered that the independence condition in the sec-
ond part of the Borel-Cantelli lemma, can be replaced by the weaker condition
of pairwise independence of events A;, Ao, ... . More general results have been
proved independently by Kochen and Stone [3] and Spitzer [7]. The Erdos-
Rényi proof is contained in [2] and [6]. Erdés and Rényi also found that the

condition of pairwise independence of events A1, As,... can be replaced by the
weaker condition P(ApAj) < P(Ag)P(A;) for every k and j such that k # j.
Lamperti [4] formulated the following proposition. If Aj, Ay, ... is a se-

quence of events such that
o
S P(A,) =oo and P(ApA;) < CP(Ap)P(4))

n=1

for all k,j > N and some constants C' and N, then P(limsup A4,,) > 0.
We present a more general and more precise theorem of this type. The
above mentioned results of Erdos and Rényi follow from our theorem.
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2 Theorems

THEOREM 2.1. Let A1, As,... be a sequence of events satisfying conditions
o
> P(4,) = (1)
n=1

and
P(ArAj) < CP(Ag)P(A4)) (2)
for all k, 5 > L such that k # j and for some constants C <1 and L. Then

P(limsup 4,) > % (3)

Note that under condition (1) the probability P(limsup A,) can take on any
value in the closed interval [0,1]. Martikainen and Petrov [5] found conditions
that are necessary and sufficient for the equality P(limsupA,) = « where
0 < a <1 (see also [6], Section 6.1).

The following proposition (due to Erdds and Rényi [2]) is an immediate
corollary of Theorem 2.1.

THEOREM 2.2. Let Ay, Ao, ... be a sequence of events satisfying conditions (1)
and

P(ApA;j) < P(Ag)P(4;) (4)
for all sufficiently large k and j, k # j. Then
P(limsup 4,) = 1. (5)

If Ay, As,... is a sequence of pairwise independent events condition (4) is
satisfied with the sign of equality.

3 Proof of Theorem 2.1

It is possible to suggest several different proofs of THEOREM 2.1. We shall
present a proof based on the following inequality of Chung and Erdés [1]:

P(ug:1 Ak) > (En:P(Ak))Q/ i P(ALAj)
k=1 k,j=1

where Ai,..., A, are arbitrary events (see also [6], Section 6.1, where this
inequality is proved by means of a strengthening of Lyapunov’s inequality for
moments of a random variable).

Let Ay, Ao, ... be a sequence of events satisfying the conditions of THEOREM
2.1. By the Chung-Erdés inequality we have
N 5 , N
P((U 4) > (o Pan) [ 3 Plaay) (6)
k=n k,j=n



Assuming that n < N. It follows from condition (2) that

N
Y. P(AxA) SCTL+ Ty
k,j=n
if n > L, where
N N
Ty = Y P(AW)P(4;), To = Y P(Ay).
k,j=n k=n
k#j

Since C' > 1, (7) implies the inequality

N
Z P(AkAJ) < C(T1 + TQ).
k,j=n
Obviously,
N s N
7= (Y P(A) - D (P(AR)?
k=n k=n
Therefore

k=n k=n

Taking into account inequalities (6)-(10), we obtain

P(Ui, Ax) > 07 XN: () {( i P(Ay) + fj Py}
k=n k=n k=n

>0 1+ (fj P(Ak))_l}_l.
k=n

When N — oo and n is fixed. We get 1+ (chv:n P(Ag))! — 1 by condition

(1). Thus,

liminf P( UL, 4¢) > C!

N—o0

and

P( ue Ak) > oL

Putting B, = U, Ay we observe that By D By D ...

lim sup 4,,. Hence the limit exists

lim P = P(By,) = P(N;21By) = P(limsup 4y,),

and (11) implies the inequality P(limsup A,) > C~L.

(11)

and N;° B, =
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