UNIT BASES IN INTEGER GROUP RINGS AND THE
KERVAIRE-MURTHY CONJECTURES

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. In 1977 Kervaire and Murthy presented two conjectures regarding
KoZCpyn, where Cpn is the cyclic group of order p™ and p a semi-regular prime.
There is a group V,, that injects into K'OZCpn = PicZCyn. Vy, is a canonical
quotient of an in some sense simpler group V,,. Both groups split in a “positive”
and “negative” part. While V,~ is well understood there is still no complete
information on V. Kervaire and Murthy conjectured that V,;F = (Z /p"Z)"®),
where r(p) is the index of irregularity of the prime p and that V} = V'
Under an extra assumption on the prime p, Ullom proved in 1978 in [U2] that
Vit =(2/p"2) P @ (Z/p* 7)) where X is one of the Twasawa invariants.
Hence Kervaire and Murthy’s first conjecture holds only when A = r(p). In the
present paper we prove that under the same condition Ullom used, conjecture
two always holds. We also discuss a different assumption on p regarding the p-
rank of certain class groups in relation to the order of certain groups of units.
Under this assumption, which is implied by Ullom’s assumption, we give a
complete characteristation of V;'. Finally, in the case A = r(p) we reprove
Ullom’s result by first proving that Vi = (Z/p"Z)"® and then by a direct
construction proving that V= V;t. This is done by constructing a special
basis for a ring closely related to ZCp», consisting of units from a number field.

1. INTRODUCTION

In his talk at the International Congress of Mathematicians in Nice 1970, R.G
Swan named calculation of KyZm for various groups 7 as one of the important
problems in algebraic K-theory. In the paper [K-M] published in 1977, M. Ker-
vaire and M.P. Murthy took a big step towards solving Swans problem in the case
when m = Cpn is a cyclic group of prime power order. Before explaining their
results we recall that KyZm = 7Z @ KyZx and that KyZxr = Pic Zx. In this paper
we will formulate the result in the language of Picard groups.

From now on, we let p be an odd semi-regular prime, let Cp» be the cyclic group
of order p" and let ¢,, be a primitive p"T!-th root of unity. Kervaire and Murthy
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prove that there is an exact sequence
0= V.feV, — PicZCpu+1 — ClQ(¢,) @ Pic ZCyn — 0,

where

n—1 11—
p=3 (-1)%pn—17J

Cpit xl:[(]pj 2 .
j=1

and Char(V,") injects canonically in the p-component of the ideal class group of

Q(Cnfl)-

The exact sequence originates as a Mayer-Vietoris sequence of a certain pull-back
of rings. Explicitly, V,, is defined by

1%

V.,

Fp[X]
V — ((XP"—I))
I {Z[Go)* X (i)™ = ()"}

where R* denote the group of units in a ring R (see [K-M] for details). The

homomorphism ¢ defined by X — X! in ( ( gﬁyi]l))* extends to V;, and Kervaire

and Murthy define V.V :={v €V, : c(v) =v}and V, :={v eV, : clv) =
v™'}. Getting the exact structure of V.~ is then just a matter of a straightforward
calculation. When they get to the part of the proof that concerns V. things get

much harder, however. Kervaire and Murthy’s solution is to consider the group
V. defined by

V, = Fpl2]/ (2" = 1))*
Im{Z[Cn]* — Fp[a]/(a#” —1))*}
instead. They make extensive use of Iwasawa- and class field theory to prove
that Char(V}) injects canonically into C1®(Q(C,—1)). This is actually enough

since V,, is a canonical quotient of V,, so clearly we have a canonical injection
Char(V,) — Char(V;)

Kervaire and Murthy also formulate the following conjectures.

(1.1) Vit = v
~ (L \rp
(12) Char(Vn+) = (W) p’

where r(p) is the index of irregularity of the prime p and G" denotes r copies of
a group G.

In the case n =1 both conjectures were proven in [K-M] for semi-regular primes
and in [ST1] complete information, without any restriction on p was obtained by
Stolin.
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In 1978 Ullom proved in [U2] that under a certain condition on the Iwasawa
invariants associated to the semi-regular prime p, conjecture 1.2 holds. More
explicitly the assumption is the following.

Assumption 1. The Iwasawa tnvariants A\_; satisfy 1 < A\_; <p—1

We refer you to [I] for notation. S. Ullom proves that if Assumption 1 holds then,
for even 1,

Z Z

1. Vo & —— Y-l
(13) eV 2 ® ()
This yields, under the same assumption, that

Z 7
1.4 + o (L) (2 \A-r(p)
(14) Vi TP e (g,

where

(p)
A=) A

t=1,7 even

Hence, when A = r we get 1.2. Note however, that if A > r, then conjecture 1.2
is false.

In this paper we concentrate on conjecture 1.1, which we will prove under the
same assumption on the A;_;’s Ullom uses. In contrast to what happens to conjec-
ture 1.2 we prove that 1.1 hold even if A > r (only assuming Assumption 1). We
also discuss two different assumptions, both concerning the p-rank of certain class
groups. Under the weaker one of these assumptions we calculate the structure of
V.. Under the stronger we prove both Kervaire-Murthy conjectures by construct-
ing a certain basis for a p-adic completion of ZC}. := {a € ZCp» : c(a) = a},
where c is the canonical involution of ZC)» defined above.

2. PRELIMINARIES

We start this section by defining some rings that in some sense are close to ZCyn.
We discuss why we can and want to work with these rings instead of ZC)» and go
on get an exact Mayer-Vietoris sequence from a certain pull-back of these rings.

Let for k >0and ! >1
Z\x
Akl:—_ []

T ER
wT‘kfl
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and
Dk,l = Alc,l mod p-

We denote the class of z in Ay by zx; and in Dy by Zr;. Sometimes we will,
by abuse of notation, just denote classes by z. Note that A, ; = Z[(,] and that

F,|x
-Dk:lg p[]

By a generalization of Rim’s theorem (see for example [ST1]) Pic ZCy» = Pic Ay 5,
for all n > 1 so for our purposes we can just as well work with Ay, instead of
directly with ZCp». It is easy to see that there exists a pull-back diagram

Tk, i+1

(2.1) Ak Z[C+1]
Jh,i41 Nea Tr,l
Apg ——— Dy

where i 41 (Tru41) = Cotts Togt1 (@kgr1) = Trygy foi(Cet) = Ty and g, is just
taking classes modulo p. The norm-maps N ; will be constructed later in this
paper. These maps are really the key to our methods.

The pull-back 2.1 induces a Mayer-Vietoris exact sequence

Z[G)" ® Ay — Dy, — PicAypn — PicZ[(] © PicAgn — Pic Dy,

Since Dy, is local, Pic Dy, = 0 and since Z[(,] is a Dedekind ring, Pic Z[(,] =
Cl1Z[(,]. By letting V;, be the cokernel

Do
Vo= :
T Im{Z[G x A5, — Di}
we get an exact sequence
0— Vn — Pic AO,n+1 — ClZ[Qn] &) Pic AO,n — 0.

Note that definition of V, is slightly different from the one from [K-M] but the
two groups are isomorphic. By abuse of notation, let ¢ denote the automorphisms
on A}, Z[¢,]* and Dj; induced by c(t) = t" for t = a4, t = ¢ and t = Ty
respectively. We also denote the maps induced on V,, and V,, by c.

Before moving on we need to introduce the map N ;. An element a € Ay ;41 can
be uniquely represented as a pair (a;, b;) € Z[(x4i] X Ax,;. Using a similar argument
on b;, and then repeating this, we find that a can also be uniquely represented
as an (I + 1)-tuple (a;,...,Gpm, ... ,a9) where a,, € Z[Cx1m). In the rest of this
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paper we will identify an element of Ay ;4 with both its representations as a pair
or an (I + 1)-tuple.

For k>0and ! >1 let NkH,l : Z[Ck11) — Z[(x] denote the usual norm.

Proposition 2.1. For each k > 0 and | > 1 there exists a multiplicative map
Ny, such that the diagram

Z[Ge+1]

Ng,i ;
k1

Gk !
Agy — Dy
is commutative. Moreover, if a € Z[(xi), then

Ny(a) = (Negi1(a), Nea-1(Niet1,1(0) = (Nega,1(a), Negap(a), - -, Niyra(a)).-

The construction of Ny, can be found in [ST2]. Since it may not be well known
we will for completeness repeat it here. Before the proof we notice an immediate
consequence of the commutativity of the diagram in Proposition 2.1.

Dgn

Corollary 2.2. Vn = m

Proof. The maps Ny ; will be constructed inductively. If 7 = 1 and & is arbitrary,
we have Ay, = Z[(x] and we define Ny ; as the usual norm map Nk+1,1- Since
Nk+1’1(<-k+1) = (;, we only need to prove that our map is additive modulo p, which
follows from the lemma below.

Lemma 2.3. For k>0 andl > 1 we have

i) Akt1, s a free Ay -module under xy; — Tii1y.
ii) The norm map N : Agi1; — Ay, defined by taking the determinant of the
multiplication operator, is additive modulo p.

This is Lemma 2.1 and Lemma 2.2 in [ST2] and proofs can be found there.

Now suppose Vi ; is constructed for all £ and all 7 <1 —1. Let ¢ = @pi1y :
Z[Cky1] — Aks+1; be defined by p(a) = (a, Ngt14-1(a)). It is clear that ¢ is
multiplicative. From the lemma above we have a norm map N : Ay ; — Ay
Define Ny, := No. It is clear that N, is multiplicative. Moreover, Ny ;({541) =
N(Cetis Tht1,1-1) = N(xg411) = Tk, where the latter equality follows by a direct
computation. To prove that our map makes the diagram in the proposition above
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commute, we now only need to prove it is additive modulo p. This also follows
by a direct calculation once you notice that

k+1+1
$i+1,z -1
pla+b) —¢la) —pb) = —5— -
L1l — 1

for some r € Agyq,.

Regarding the other two equalities in Proposition 2.1, it is clear that the second
one follows from the first. The first statement will follow from the lemma below.

Lemma 2.4. The diagram

N

Z[Cr+1] = Z[Ckti-1]
Ni1 Ni_1,1 |
Akl Ak—l l

)

18 commutative

Proof. Recall that the maps denoted N (without subscript) are the usual norms
defined by the determinant of the multiplication map. An element in A, can be
represented as a pair (a,b) € Z[(g1i1-1] X Ak —1 and an element in Ag_q; can be
represented as a pair (¢, d) € Z[(xy1—9] X Ag—1,4-1. If (a,b) represents an element
in Ay, one can, directly from the definition, show that N(a,b) = (N(a), N(b)) €
Ag_1,;. We now use induction on [. If [ = 1 the statement is well known. Suppose
the diagram corresponding to the one above, but with ¢ replaced by ¢ — 1, is
commutative for all k. If a € Z[(;] we have

N(Ngi(a)) = N(N((a, Ngt1,-1(a))) = (N(N(a)), N(N(Ngt1,-1(a))))
and
Ni-14(N(a)) = (N(N(a)), N(Ni;-1(N(a)))).

By the induction hypothesis Ny ; 10N = No Ny, ;1 and this proves the lemma.
O

With the proof of this Lemma the proof of Proposition 2.1 is complete. O

We will now use our the maps Ni; to get an inclusion of Z[(y4;1]" into Aj .
Define ¢y : Z[Cr1i1]* — A, be the injective group homomorphism defined by
€ — (€, Ny (e)). By Proposition 2.1, ¢y is well defined. For future use we record
this in a lemma.
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Lemma 2.5. Let By, be the subgroup of Ay, consisting of elements (1,b), b €
Alt:,l—l' Then Alt:,l = Z[Ck:—f—l—l]* X Bk,l
In what follows, we identify Z[(y1;—1]* with its image in Aj ;.

Before we move on we will state a technical lemma which is Theorem 1.2.7 in
[ST3].

ket _pk
2ty 1) = {€ € Z[Geia]" : € =1 mod A, 7

Lemma 2.6. ker(gy,

We will not repeat the proof here, but since the technique used is interesting
we will indicate the main idea. If a € Z[(41;—1|* and gk (a) = 1 we get that
a=1 mod P in Z[Ck—}—lfl]a Nk,l,l(a) =1 mod P in Ak,l*l and that fk,lfl(ale) =

gk,l_l(]\]’“’%@_l). Since the norm map commutes with f and ¢ this means that

Nk’l,l(ap%l) = N’“’%@*l. The latter is a congruence in Ay; ; and by the same
method as above we deduce a congruence in Z[(;;—o| and a congruence in Ay ; .
This can be repeated | — 1 times until we get a congruence in Ay ; = Z[(x]. The
last congruence in general looks pretty complex, but can be analyzed and gives

us the necessary information.

If for example | = 2, we get after just one step a =1 mod pin Z[(x41], N(a) =1
mod p and N(“’%l) = % mod p in Ak = Z[(x], where N is the usual norm.
By viewing NV as a product of automorphisms, recalling that N is additive modulo
p and that the usual trace of any element of Z[(x, 1] is divisible by p, we get that
N(a) = 1 mod p® and hence that N(“>*) = 0 mod p. By analyzing how the

norm acts one can show that this means that a =1 mod )\ﬁk”—pk

In the rest of this paper we paper will only need the the rings Ay; and Dy in the
case k = 0. Therefore we will simplify the notation a little by setting A; := Ay,

Dy := Dy, 91 = giy, f1:= frg 2 = gy, Ji := Jeg and Np:= Ny,
Now define V,, as

_ D;

- Im{Z[¢y1]* — Dz}’

n

where Z[(,_1]* are the group of all units € such that e = 1 mod \,_;, where ),
denotes the ideal (¢, — 1), and D;“L are the units that are congruent to 1 modulo
the class of (z — 1) in D;. This definition is equivalent to the definition in [K-M]
since, by Lemma 3.3, N : Z[(,|* — Z[(, 1]* is surjective when p i semi-regular.



8 OLA HELENIUS AND ALEXANDER STOLIN

3. ON CONJECTURE 2

Let Vi :={v €V, : ¢(v) =v}. What we want to do is to find the structure of
Vr. Forn >0 and k > 0, define

Upi = {real ¢ € Z|(,]* : ¢ =1 mod \F}.
One of our main results is the following proposition.

Proposition 3.1. Ifp is semi-regular, |V;i| = [Vi_ |- |[Un_1po—1/(Up_1pn-141)®|.

Here U denotes the group of p-th powers of elements of the group U.
For £ =0,1,..., define r; by

|Uk,p’°+1—1/(Uk,pk+1)(p)| =p'k.

By Lemma 2 in [ST1] we get that Uy ,s+1_; = Uj pe+1 and since the the \,-adic
valuation of € — 1, where € is a real unit, is even, Uy j+1 = Uy ,r+1,,. We hence
have

Lemma 3.2. Uk,pk+1—1 = Uk,pk+1+1'

One can prove that rog = r(p), the index of irregularity, since if the Ag-adic
valuation of € € Z[(o]*" is less than p— 1, then local considerations show that the
extension Q((p) C Q((o, ¥e) is ramified. The result then follows from the fact
that

Uop-1 ~ i

(Uo2)?  pSo

where Sy is the p-class group of Q((p)-

Before the proof of Proposition 3.1 we will state and a lemma, which is well-
known.

Lemma 3.3. Ifp is semi-reqular Ny_1 : Z[(p—1] = An—1 maps U,_1 1 surjectively
onto Up_g1.

Proof of Proposition 3.1. In a similar way as the ideal \, := ({, — 1) equal
the ideal (¢, — ¢,"') in Z[(,] one can show that that (z —1) = (z —Z~") in D,.
It is easy to show that DXt can be represented by elements 1 + ag(i T2+
a(Z — )+ .+ apn_g(x — 27" 3 q; € F,. Hence |D:t| = p®"~3/2. We
want to evaluate

1D:%1/190(Un-1,1)].
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By Lemma 2.6 we have
Un-1,1
Un—1pn—1
Since gn(Un—1,1) € gn(Z[(n1]*t) C E;‘LJ’ the group U,_1,1/Up_1pn_1 is finite.

Similarly Z[,—1]*"/Up—1,n—1 is finite. This shows that Z[(,—1]*"/U,_1,1 is finite
since

12

gn(Unfl,l)

ot
Z[Cn 1] n 1,1 ‘_ Z[C’n—l]
Un—l,l Un—l,p"—l Un—l,p”—l
We can write
Unfl,l | _ ‘ Unfl,l HUnfl,p“—lfl‘ Unfl,pn—1—|—1| _
Un—l,p”—l Un—l,pn—l—l Un- 1,pn—1+1 Un— 1,pn—1

(3.1) =‘ Un 1,1 Un—1pn-1-1 ‘Un 1141/ (Un—ipn-141)P |_

4 T 4 - P n—

Un 1,pn—1-1 Un 1,p" 141 Un- 1,p 1/( n—1,p"~ 1+1)
‘ Unfl,l Un—l,p“—l—l ‘

Un_l’pn—l_l Un_l,pn—1+1 (Un 1,p7— 1+1

Un 1,pn—141 H Unfl,pnfl |*1

Un—l,p”—l—i—l)p

By Dirichlet’s theorem on units we have (Z[(, 1]*) = Z” ~F—-1 Since all quo-

tient groups involved are finite we get that Un_11, Up—1pn_1, Up_1pn-1_1 and

Up—1pn-141 are all isomorphic to Z ~5—-1. The rest of the proof is devoted to
the analysis of the four right hand factors of 3.1.

Obviously,
Unfl,pn—l—kl ~ an_gkl*l ~ p"—g"71_1
(Un—l,p"—l—f—l) (pZ)pn_pn = ! .
This shows that
Un_l,pn—l_i_l ‘ :pp"—gnfl _1.

(Unfl,p”‘lﬂ)p

We now turn to the second factor of the right hand side of 3.1. We will show
that this number is p by finding a unit € ¢ U,n-14; such that

U —1pn—-1_1
<e>=_———F -

Un—l,pn*1—|—1 ‘
Since the p-th power of any unit in U,_; yn-1_; belongs to U,_q n-14; this is
enough. Let ¢ = (,.1 and 5 := ("2 . Then 52 = ¢ and c(n) = n~!. Let

A L G ) . .
€= = . Then c(e) = € and one can by direct calculations show

that € is the unit we are looking for.
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We now want to calculate
Unfl,l
Un—l,p"—l—l

Consider the commutative diagram

Z[Cn—l]*

It is clear that f,—1(Up—1,1) C D;“:l and that g,—2(Up—21) C f);;fl. By Lemma 3.3
we have a commutative diagram

Un—l,l

f

Un—2,1 ! - Dz—i_—l
where N is surjective. Clearly, f(U,_11) = g(Un—2.1).

It is easy to see that ker(f) = U,_1 pn-1_1 so by above

Un-
S f(Uno11) = g(Un—2y)-
Un—l,pn—l—l
Now recall that by definition V" | = DT, /g(U,_51). Hence
Unf % — pn——l_3 —
| = |g(Un—ap)| = [D3H|IVE |7 =07 (Vi
Un—l,p"—l—l

This finally gives
Vil = D lg(Un-1a)| =

n_ n—1_ n_,n—1
p_=3 j2 3 + p-=p +1

= p 2 .p_T.|vn_1|.p_1.p_ 2

Up—1.pn—
= W:—l"‘ o 1)p|

(Unfl,pn_l—kl
which is what we wanted to show.

O

Recall that Ay Z[(k41] = A, as ideals in Z[(;41]. By Lemma 3.2, the inclusion
of Z[(y] in Z[(k+1] induces an inclusion of Uy ji+1_1 = Uy pe+141 into Uy g prteyy, C
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Ugi1pk+2_1. Since a p-th power in Z[(;] obviously is a p-th power in Z[(;1] we
get an homomorphism of

Uk,pk+1—1 Uk+1,pk+271

Ui 1)@ " (Upprprtrn)®

If € € Uy e+ is a not p-th power in Z[(;] then one can show that Q(¢x) C
Q(lk,€) is an unramified extension of degree p. If € would be a p-th power
in Z[Ck11] we would get Q(Ck+1) = Q(Ck,€) which is impossible since Q((x) C
Q(Cks1) is ramified. Hence the homomorphism 3.2 is injective. This shows that
the sequence {r;} non-decreasing.

(3.2)

Since it is known by for example [K-M] that |V{| = p", by induction and Propo-
sition 3.1 we now immediately get:

Proposition 3.4. |V | = protmt+rn-1,

On the other hand, recall that [K-M] provide us with an injection of Char(V,)

into C1®)(Q(¢,—1))~, the p-component of the class group of Q((,—1). This shows
that the number of elements in V' is bounded by the number of elements in

C1@) (Q(¢u=-1))~. By Iwasawa’s theorem, there are numbers A > 0, 4 > 0 and v

such that | C1P(Q(Cu—1)~| = p*»~D+#"+ for all n big enough. It has later been
proved that u = 0. This immediately implies the following proposition.

Proposition 3.5. There is a number ng such that for n > ng, |V}| < prn—b+v

By comparing the sequences {ro +r1+ ...+ 7,1} and {A\(n — 1) + v} for big n,
remembering that r, is non-decreasing, we now obtain the following

Proposition 3.6. r, < A for all k and that there exists a number N such that
rn+k = 7N for all k> 0.

Now recall that if Assumption 1 is satisfied, then 1.4 holds so
|V+‘ — pr0n+()\7m)(nfl) — p)\(nfl)+ro
- :
Since V' is a quotient of V" applying this to n = ng + 1 yields
ro+Ang <o+ F Ty ST+ NoTry < To M0

This obviously implies that r, = A for all k =1,2,.. ..
Lemma 3.7. When Assumption 1 holdsr, =X for allk =1,2,....

The following theorem is now immediate.

Theorem 3.8. If Assumption 1 holds, then V' =V T.
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We end this section by discussing another type of assumption on the semi-regular
prime p.

Assumption 2. rank,(C1?(Q((,))”) = 7.

This assumption always holds for n = 0. Note that by the proof of Proposi-
tion 4.1, the rank,(C1®(Q(¢,))) is always greater or equal to 7,. Under As-
sumption 1 it follows from [K-M] and [U2] that rank,(CI®(Q(¢,))”) = A when
n =1,2,.... This and Lemma 3.7 means that Assumption 1 implies Assump-
tion 2. It is worth noting that Assumption 2 implies that the character group of
Sn/PSn, where S, = c1® (Q(¢r))~, is generated by units from Uy, jnt1_1.

Again, recall that o = r(p) and that the sequence {ry} is non-decreasing.

Theorem 3.9. If Assumption 2 holds

Z ro Z r1—"7Q Z Tp—1—Tp—2
)8 ()" e ()T

Vi = (

Before the proof we need some results.

Lemma 3.10. There exists a surjection m, : V, — V.

Proof of Lemma 3.10. The canonical surjection j, : A, — A, _1 can be con-
sidered mod (p) and hence yields a surjection j, : D, — D,_;. Suppose that
u € D, v e D) j.(v) = u and that ¥ = g,(v), where v = (e, Ny_1(e€)),
€ € Z[C—1]- Then j,(v) = Nu_1(€), and & = j,(0) = JugnNu-1(c). But
Np_1(€) = (Nu_1,1(€), Nu_oN,_1.1(€)) by Proposition 2.1. In other words, if o
represents 1 in V,,, then j,(7) represents 1 in V,,_; so the map j, induces a well
defined surjection V. — VI . O

Proposition 3.11. For any semi-regular prime p, ker m, = (Z/pZ)™".

Proof. Proposition 3.1 and the definition of r, clearly implies that | kerm,| =
p™=1. We need to prove that any element in ker 7, has order at most p. Suppose
that in the surjection D}* — D'  the element u € D", is the image of
v € D}t and suppose u = gn_1((€, Ny_2(€))) for some € € Up_o1 C Z[2,_2]. For
some a € A,, v = g,(a) and (¢, N, _5(€)) = jn(a). Since p is semi-regular we
know from Lemma 3.3 that the norm map N,,_; restricted to U, is surjective
onto U,_2; and acts as the usual norm Nn—l,l- Hence there exists € € U,_11
such that N, 1(¢') = (¢, N,—2(€)). This means that (¢/, N, 1(€¢')) € A% maps to
(€, Np—2(€)) under j,. Since f,—1(€') = ¢,—1N,—1(¢') = u and all the maps come
from a pull-back we get that a = (¢/, N,,_1(€')), that is, v is the image of a unit
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in U,_11. Now define D**,. := {a € D!t :a =1 mod (z — 1)*}. Then
’ na(k) n

ferr — __ ker{Dyt = Dit) _ Doy

" ker{Dx+* — Dt} N gu(Z[Goa]*t)  Gn(Un—1pn-1-1)
Now note that if b € D;Ipnfl)a then » = 1 so such a unit clearly has order
p. We will show that any unit a € D;Ipn,l_l) can be written as a = bg;(¢)*
for some b € D::Epn—l)’ natural number k£ and € € U,_jn-1_;. Then o? =

P +1
Vg, (€)* is clearly trivial in kerm, C V. Let n:=(, % . Then n? = (, | and
o ="
o n—n~" -
€ Ec Unfl’pn—lfl \Unfl’pn—1+1. In fact, €= 1+€pn—1,1(<‘n_1 _C{El)p" 71+t(€n—1 —

¢l P"THL for some epn-1 | € L[z, o , not divisible by A,,_1, and some t € Z. If
1 P

c(n)=n"" Lete: . One can by a direct calculation show that

a =14 apm1_1(Tyy — x;il)pn—lfl +...¢ D::Epn,l_l), ap-1_1 € F, choose k
such that keyn-1_; = apn-1_7 mod p. Then it is just a matter of calculations to
show that a = bg; (¢)*, where b € D;tpn_l), which concludes the proof O

Proof of Theorem 3.9. Induction with respect to n. If n = 1 the result is
known from for example [K-M]. Suppose the result holds with the index equal to
n — 1. There are no elements in D, with order greater than p" and hence there
are no elements in V;" with order greater than p". Since V! is a p-group,

)" () e ()"
an panZ v pZ :
By Proposition 3.11 and the assumption we have an exact sequence

Zrns At Zovar e Do e Z
0—>(ﬁ) ﬁ@(piz) %@(ﬁ)( R eB(I,R,IZ)”—N)-

i=1 i=1

ARSN(

The injection from [K-M], V' — Char C1®(Q(Ca—1)) ) together with Assump-
tion 2 means V,' has at most 7,_; generators. Hence V;" has exactly r,_1 gener-
ators and we get

Z \r,

112

( Z )1‘1—7‘0

Z Tn—1—Tn—2
pn—IZ )

+ el
Vi @...@(pZ

4. THE KERVAIRE-MURTHY CONJECTURES WHEN 7, = (D)

We now proceed by making a different assumption under we will give a construc-
tive proof of the two Kervaire-Murthy conjectures.

Assumption 3. rank,(CI®)(Q(¢,))”) = r(p) for all n.
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This holds for example if the Iwasawa invariant \ satisfy A = r(p) =: r which
follows from, for instance, certain congruence assumptions on Bernoulli num-
bers (see page 202 in [W]). Under this assumption we can prove the following
proposition.

Proposition 4.1. Let p be an odd semi-reqular, prime and let r = r(p) be
the index of irreqularity of p. Suppose the Assumption 8 holds. Then p™ :=

Un n+1_
‘(UnppTl)H =p" for alln > 0.

Again, since it is proved in [K-M] that V; = (Z/pZ)", induction and Propositions
4.1 and 3.1 now gives us the following theorem.

Theorem 4.2. When Assumption 8 holds, |V}| = p™.

Proof of Proposition 4.1. By Lemma 3.2 we need to calculate the number
\Uppr+141/(Unpri1)P|. Denote the field Q(¢,) by K, and let L, be the max-
imal unramified extension of K, of period p. Clearly, G, := Gal(L,/K,) =
C1?P(K,)/pC1P)(K,). By the assumption |G,| = p’. It is known by Iwasawa
theory that G, = G},. If € € Uy, pn+144 it follows from local considerations that the
extension K, C K, (¥/e) is unramified so K,,(¥/¢) C L,. Using Kummer’s pairing
we get a bilinear map G, X Uy, yn+141 — ((o), (0,€) — o(€)e~!. The kernel on the
right is obviously the group of all p-th powers in U, yn+141 which is (Up pny1)P. It is

enough to prove that the kernel on the left is trivial. Then, % = Char(G,,).

Since |G,,| = p" this proves the theorem. Suppose < g,¢ >=1 for all €. If we can
show that every unramified extension K, C L of degree p is given by L = Ky(7),
where 7 is a p-th root of some € € U, ,n+1,; we are done. Again, |G,/ | = p", so
there are r distinct unramified extensions of degree p. We now use induction.
Let n = 0 and suppose Ky C L is an unramified extension of degree p. It is
well known that such an extension can be generated by /¢ for some unit e. If
€ € Ups and € € Up 41, then local considerations show that s < p — 1 implies
that Ko C Ko(¥/e) is ramified. Hence L = K(¥/€) where € € Uy, = Uppt1. Now
suppose every unramified extension of K, ; is given by a p-th root of a unit,
that is we have r units €1,...,€6 € Up_1 41 such that each distinct extension
E;, i =1,2,...r is generated by a p-th root of ¢;. Consider ¢; as elements of
K,. A straightforward calculation shows that ¢, € U, pn+1;4;. Hence a p-th root
of ¢; either generate an unramified extension of K, of degree p or y/¢; € K,,. The
latter case can not hold since then we would get E; = K,, which is impossible
since Fj; is unramified over K,,_; while K, is not. Hence we have found r distinct
extension of K, and this concludes the proof. O

Now recall that for n = 1 it is proved in [K-M] that V{ = (Z/pZ)". Suppose
the result holds for all ¥ < n. Then V} ;| = (Z/p" 'Z)" and the surjection



THE KERVAIRE-MURTHY CONJECTURES 15

T+ Vi — Vi | from Lemma 3.10 means that V' has at least r generators.
By our assumption C1® Q(Cn—1) has r generators and by using the injection
Char Vi — CI® Q((,_1) we get that V" has at most, and hence by above exactly
r generators. By Theorem 4.2 V| = p™. Since no elements in D} and hence
no elements in V! have order greater than p” we now get the following theorem
by induction.

Theorem 4.3. Let p be a semi-reqular prime and r the index of irreqularity. If
Assumption 3 holds, then V! = (Z/p"Z)".

We now proceed to show how we can directly show that V; = V¥ when VI =
(Z/p"Z)". The proof of this relies of constructing a certain basis for D) ;| con-
sisting of norms of elements from Z[(,_1]* considered mod p.

Let @ : U, 1pn yn—1 — D;f_| be defined by
€— 1) Np_1(e) = 1

p

Since N,,_; is additive mod p one can show with some simple calculations that
® is a group homomorphism. See Lemmas 4.9 and 4.16 for details.

mod p.

®(e) = Npa (

Explicitly, what we want to prove is the following.

Theorem 4.4. If Assumption 8 holds, then ® is a surjective group homomor-
phism.

As we can see by the following corollary, the theorem is what we need.

Corollary 4.5. If Assumption 8 holds, then V" =V

Actually, what we need to prove the theorem and the corollary is the conclusion
of Theorem 4.3 rather than Assumption 3 itself.

Proof of the Corollary. We want to show that for any (1,v) € A} there exists
(€, Np—1(€) € A% such that (1,7) = (¢, N,—1(€)) mod p, or more explicitly that
forally € A*",, v =1 mod p there exists € € Z[(,_1]* such that (¢, N(€)) = (1,7)
mod pin A,. This is really equivalent to the following three statements in Z[(, 1],

A,_1 and D,,_; respectively
1 modp

Il

€
N, 1(¢) = v modp
_ Naoalg) -7
p p

Nn—l(

I

mod p
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Note that (1,) € A, implies g,_1(7) = fn_1(1) in D,_1, or in other words, that
v =1 mod p. Hence we only need to show that for any v € A:", there exists
€ € Up_1pn_pn-1 such that

Nn—l(e) -1 1- Y

-1
¢ )— = mod p.
p p p

But the left hand side is exactly ®(e) so the corollary really does follow from
Theorem 4.4 0

anl(

We now proceed to start proving Theorem 4.4. Recall that r = r(p) are the
number of indexes 41,45 ...%, among 1,2...(p — 3)/2 such that the nominator of
the Bernoulli number Bs;, (in reduced form) is divisible by p.

Let E, : D, — D7 be the truncated exponential map defined by

- y? !
E,(y)=1 =~
(y) = tyt ot +(p_1)!
and let L, : D; — D, be the truncated logarithm map
2 p—1
- Yy Yy
L,(1 =y—=+...— .
a(l+y)=y— 7+ -1

We also consider the usual A-adic log-map defined by a power series as usual.

Denote the cyclotomic units of Z[(y]** by C;". Cy is generated by —1 and the
units 6; = sin(jn/p)/sin(7/p), j = 2,...,(p — 1)/2. (Details can be found in
[W] p 144.) We now follow [B-S], page 368-375. Let M be the group of real
Ap-adic integers with zero trace. By Lemma 1, page 368 of [B-S] there is a unique
Ao-adic integer Ao such that Ao +p = 0 and Ay = (Co — 1) = X mod )\2 Any
a € M can be uniquely presented as a = > .-, Ly, )\QZ, m = (p— 1)/2. Consider
the homomorphism ¥ : Z[(]* — M defined by € — log(e?~!). It turns out that
\IJ(GJ) = E:i;l b],,j\gz where
12
bj,iz%modp2§j§m, 1<i:<m-—1.

We see that there are exactly 7 A2, namely A2, such that \¥ ¢ U(Cy). Let

: M — Di denote taking classes mod p. Then, for exactly the r indexes
il,ig...ir we have (z; — 1)%* ¢ ¢ (¥(Cy)). Suppose (z — 1)% = g,(loge)
for some € € Z[(o]*". Let h™ be the class number of Q((y). It is well known
that |Z[(o]**/Cy| = h*. Hence there exists s, (s,p) = 1, such that € € Cf
and u,v such that 1 = s(p — 1)u + pv. Then € = $PVuFP = (e5y)P~1eP? 50
log((e*u)P~1) = loge — pvloge = loge = (x — 1)%s, which is a contradiction.
Hence (z — 1)%s & g,(log Z[{o]**). The matrix for changing basis from {z; — 1}
to {z; —x, '} is upper triangular so we also get that(z —271)% & g;(log Z[{]**).
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Since formally, exp(log(1 +y)) = 1+ y it is not hard to see that Ey(Lo(1+y))
1+ y mod p and that we have a commutative diagram

Z[Go)t
91
log L. 7
| mod
M — Dy Dyt

Recall that D;+S) ={ye D" :y=1 mod (r — z71)*} and that we know that
VI = Dit/g1(Z[¢]*) has r := r(p) generators. If we now apply the map Ej
and do some simple calculations we get the proposition below. For n > 1 and
2 < 2s < p" — 3, define

D 'ZIZS) |

In(Z[Cna]* ) N D::EZs) '

Proposition 4.6. The 7 elements Ey((z, — x,")?*) generate D" /g1 (Z[(o]*).
Moreover, t12s = |{Bai, : Bai, > 2s}|.

tn,2s = |

We now want to lift this result to D}. From now on (excepting Lemma 4.13)
we will denote the generator x € D,, by z,.

Proposition 4.7. Suppose Assumption 8 holds. Then the r elements E,((z, —
2, )2V generate the group Vi = Dit/gu(Z[Cu1]*t). Moreover, tno, =

n

[{Bai, : p" ' By, > 2s}|.

Before the proof we state a corollary

Corollary 4.8. If2s > p" — 3p"™', then t, o5 = 0.

Proof. Induction on n. If n = 1 this is exactly Proposition 4.6. Suppose the
statement holds for the index equal to n — 1. The diagram

(4.1) Z[G)™ - Dyt
Nn,l
Z[Cn—l]*+ D::l

is commutative. Hence, if 2, € D] is mapped to 2,1 € D; ; and z,_1 ¢
Im Z[(n—o*, then z, & ImZ[(,—1]*. Moreover, 22 ¢ ImZ[(,—1]*. This follows
from the fact that V;\ = (Z/p*Z)". Hence, if an element z € V; has order p,
then the surjection VI — V' | maps z to the neutral element in V! ;. Now, the
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elements E,((z, —z;)%*)?""" are not in the image of Z[(,_1]* by the assumption

and by above since E, ((z, —z;1)2%)?" " clearly map onto E, ((z, —z;1)%*)?" " ¢
n-1(Z[Cy—1]*"). By 4.3 we have control over a full set of generators of V! and

the proposition follows. O
Recall that ¢ : D,, — D, is the map induced by z — z~! and that D, := {a €
D, : ¢(a) = a} Define ¢ : U, 1 yn_pn-1 — D by () = Nn_l(%l) mod p.

Lemma 4.9. ¢ is a homomorphism from the multiplicative group Up,_q pn_pn-1

to the additive group D, | and the kernel is U1 pn_1.

Proof. Let ¢ and « belong to € U, pn_pn-1. Then, since V,,_; is additive mod
pand N, _1(¢) =1 mod p,

Nn—l(efyp_ 1) — Nn_l(e('y - 1);’ (e — 1))

Il
i
©
£

= an(W; _1) mod p

so ¢ is a homomorphism. Suppose N, i((y — 1)/p) = 0 mod p. Then, by
Proposition 2.1, f,—1((y — 1)/p) = 0 which means v € Uy,_j pn_1. O

In this notation, what we want to prove is the following
Proposition 4.10. If Assumption 3 holds, then the map
@ (Un-1pn-pn-1)/ (Un-1pm41) = D;z'—fl

induced by ¢ s an isomorphism.

Since ¢ is obviously injective it is enough to prove the following proposition
Proposition 4.11. Suppose Assumption 3 holds, Then
|D:er1| = ‘(Unfl,p"fpn_l)/(Unfl,pnfl)‘-

Before the proof we need a lemma. Recall that Z[(, 1|* is identified with its
image in A} under the map € — (¢, N,_1(€)).

Lemma 4.12. Let 1 < s <p" —p" . e € U,_15 if and only if gn(e) € D:(s).
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Proof. We have a commutative diagram

(4.2) AL = Z[Gu]**
mod p mod p
* N~V ]Fp[l'] * N ]Fp[w] *
DTL = ((m—l)pn_l ) - ((:Cfl)pn —pn—1 )
induced by natural the surjection. The lemma follows directly. O
pn71—1

Proof of Proposition 4.11. Recall that |D; ;| =p 2  so we need to prove
that

n—1_,

|Un_1,pn_pn—1 | _ pp 5

Unfl,pnfl
By the lemma above and Lemma 2.6 g, induces a well defined and injective
homomorphism

LLP—Lpn—p"_l

*+
Uit Doty
By Corollary 4.8 this map is surjective and hence an isomorphism. Since we
n—1_
trivially have |D:+pn_pn_1)| — p” 2, this proves the Proposition. O]

We now have to do some careful estimations of some congruences of our norm-
maps.

Lemma 4.13. Let 2 < nand 1 < k < n. Ife € Z[( 1] and If e = 1
mod ps“)\ﬁ:l*pk, then (N,,_1(€)—1)/p can be represented by a polynomial f(zx) =
P fi(z) in Ay_y1, where fi(z) =0 mod (z — 1)*" """ in D, ;.

Before the proof, recall that the usual norm Nn,1, 1 <n,1 <k < n,can be
viewed as a product of automorphisms of Q({,) over Q(¢, 1). If ¢, € Z[(,] and
tn—l € Z[Cn—l] we immediately get Nn’l(l + tn_ﬂfn) =1+ TrQ(Cn)/Q((n_l)(tn)tn—ltl
for some t' € Z[(,_1]. Recall that trace is always divisible by p. In the proof below
we will for convenience denote any generic element whose value is not interesting
for us by the letter ¢.

Proof. Induction on n. If n = 2 (which implies £ = 1), N,, 1 = N1,1 : Z[¢G) —
Ay 2 Z[Co]. Let e :=1+tp*™! Then e = 1 +tp*A” * = 1 + tp* AL L. By the note
above,

Nij(e) =1
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which is represented by some f(z) = p®(zx — 1)P"'fi(z) in A; Suppose the
statement of the Lemma holds with the index equal to n — 2. Let ¢ := 1 +

tp”l)\fln__ll " Note that ¢ = 1+tp5+1/\,’;n__22 ~*"" and by the note before this proof,

No11(e) =1+ tps+2)\ﬁn__22_pk_l. Let (N,_1(e) — 1)/p be represented by a pair
(a,b) € Z[Cn_2] X Ay_s. Then a = (N, 11(e) —1)/p = tp* A" "7 In 4, 4,
a hence can be represented by a polynomial a(z) = p**'(z — 1)*"* ?" ' a (z) for
some a,(z). By the expression for N,_;(€) and by the assumption, we get

N, o(N,_ — 1 N, o1+ttt Y g
b= 2( 1,1(6)) — 2( +ip n—2 ) :ps+1b1($)

p p
where by(z) = (z — 1)?" """ by(z) mod p for some by(z). Define b(z) :=
p*Tlbi(z). We want to find a polynomial f(z) € A, ; that represents (a,b),
that is, maps to a(z) and b(z) in A, 5, and A,_» respectively. Note that

@ -1 " —1
p= ey tie)———
for some polynomial ¢(x) € Z[z]. Hence

n—1 n—2

P -1 P

a(z) —b(z) = (W +t(z)

Then we can define a polynomial f(x) by

z—1

f@): = a@) 49 (= P ) — (@) S =
= mm+ﬁ«x—nﬂ””“%ﬂ@—ﬁd@ﬂ@ﬁ%t€i

Clearly, f maps to a(z) and b(z) respectively. We now finish the proof by ob-
serving that

@ = pla = 1T )+ (@ )~ b)) e =
= (@=1" "7 mle) = @ =P @)@ -1 =
= (a1(z) — (z = 1" 7" Chy(2)) (@ — 1)P" P mod p.
]

By setting s = 1 we in the lemma above we immediately get the following theo-
rem.

Theorem 4.14. Let 2 < n and 1 < k < n. Suppose ¢ € U, _1n_pe. Then
gn 1((Np_1(e) = 1)/p) =0 mod (z — )" """ in D, ,
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The following proposition is immediate by using that ¢g,_1N,—1 = fn_1.

Proposition 4.15. Let 2 <n, 1 <k <n andlete € U,_
Then gn—1((Na—1((e=1)/p))) =0 mod (z—1)P""

k—1

0 mod (z —1)?" "~*"" in D, 4.

1,pn_pk \ Un—l,p"—pk_l .

T but gt (Nama((e-1)/p))) 2

Let w: Up_1pn_pn-1 = D;7_; be defined by w(7) := gn—1((Np-1(7) — 1)/p).

Lemma 4.16. w is a homomorphism

Proof. Suppose € and 7 belong to U, 1pn_pn-1. Then N, _1(y) =1 mod p in
A, _1 because

anl(r)/) = (anl,l (’7), anl,Z(V)a R anl,nfl(’)/))
and Nn_l,k(y) =1 modp?forallk=1,2,...,n — 1. Hence
Np—1(ey) = 1 _ Ni—1(7)Nn—1(€) = Nn—1(€) + Np—1(e) — 1 _

w(ey) = , ,
= Ny =t, Bl =
= Nn_1(€)—1 _i_Nn—l(/Y)_l =w(e)+w(7) mod p

p p
U

Note that if € € U,,_; ;n_1 then w(e) = 0. This can be shown using similar, but
simpler, methods as we did in the proof of Lemma 4.13. We can hence define

~ Un,1 pn,pn—l

2P — D .

Un—l,p"—l !
Now, if a € D, let O(a) be the maximal power of (x — z~!) that divides a. In
this language we can combine Thereom 4.14 and Proposition 4.15 to the following
lemma.

Lemma 4.17. Let 2 <n, 1 <k <n and let € € U,y pn_pi \ Up_1 pn_pi+1. Then
Pt = p* < O(P(e)) < p —p*t < O(@(e)).

Proposition 4.18. The map ® := ¢ — & is an isomorphism.

Proof. By Proposition 4.10 ¢ is an isomorphism. Hence there exists (classes of)
units €;,7=1,2,...,(p""* — 1)/2 such that the set ¢(¢;) forms a basis for D ;.
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If a € D, , there exist unique a; such that a = ngn_l_lw a;p(€;). To prove the
Proposition it is enough to show that the map

(p"'-1)/2 (p"~'-1)/2

Z aip(e;) — Z ai(p(€) — w(e))

1 1

is invertible. Consider the matrix M for this map in the basis {(z — z7")%}.
Obviously this matrix can be written I — M’', where I is the identity matrix
and M’ is induced by ¢(¢;) — w(e;). By Lemma 4.17 the matrix M’ is a lower
diagonal matrix with zeros on the diagonal. This means M is lower triangular
with ones on the diagonal and hence invertible. O

Proof of Theorem 4.4. The map ® is obviously induced by ® which hence
must be surjective by prop 4.18. O

5. FINAL REMARKS

We end this paper with some further discussion about how one can find a basis
for the groups D;'. In the proof of Theorem 4.4 the main idea was that one could
find a basis for D, consisting of the image of certain elements from Z[(,_o| under
a certain mapping. To be a bit more specific we can formulate this as a corollary
to Proposition 4.10.

Corollary 5.1. There is a basis for D} consisting of elements gn(Nn(%)),
where € € Uy pnt1_pn.

Recall that this was proved under Assumption 3 (r; = r(p) for all k). Now
suppose Assumption 1 holds instead. Then, by Lemma 3.7, r, = Afork =1,2,...
and 79 = r(p). From Theorem 3.8 and Ullom’s result we conclude V; has A
generators for all £ > 2 and all of these generators have exponent at least p*~1. In
particular, V} (p) & (Z/pZ)* and hence coincides with ker 7, by Proposition 3.11
and Lemma 3.7. Here for any abelian p-group A we denote by A(p*) the subgroup
generated by all elements of A of exponent pt.

It follows from the proof of Proposition 3.11 that there exist A elements a; =

1+ (w2 — 1)P*% € D37 1y, 1 < s; < p* — p— 3, which generate V5 (p) (see the
_I_
)

proof of Proposition 3.11 for the definition of Dj
The natural projection D;;?(Lp ) D;?(Lp 1) induces the following exact sequence

0 — ker 3 — Vi (p*) — Vi (p) = 0
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which reads as
0— (Z/p2)* = (Z./p*Z)* — (Z/pZ)* — 0.

Let us consider elements b; = 1+ (z3 — 1)P** € Dy ;). The commutativity
of the diagram 4.1 implies that images of b; are nontrivial in V§. Moreover,
Proposition 3.11 implies again that b; are not in ker 73 and therefore all b; have
exponent p? and generate V3 (p?). Thus, we can conclude that b = 1 + (23 —
1)P**7% are not in the image of Z[(2]*. On the other hand p?+p < p4ps; < p*—3p
and Y generate

ng(rp%l)

93(Z[G]*) N D3,

ker g = .
(p*+1)

Now by using the exact same technique as in the proof of Lemma 4.13 we can
extend Lemma 4.12 to.

Lemma 5.2. Let 1 < s <p"—1. € € Up_1,, if and only if gu(¢) € D .

This implies that

D
ker 3 = St
93(U2,p2+1)
It follows that D;Ip?_:,)p +2) € 93(Z[(5]"). Proceeding in the same way we obtain
the following
Lemma 5.3. Letn>3. Ifa € DZLL@”_QH) , then a € gn(Z[Cy-1]").

From this lemma, just as in the proof of Proposition 4.11, we get the following
proposition.

Proposition 5.4. Suppose Assumption 1 holds. Then

p'n—171

[=p

‘ Un’pn—kl,pn—l

Unzpn+1_1

Now define @y : Uy, pn+1_pn-1 — Df | by @o(7y) = gn_l(Nn_l(%Nn_l,l(%))). We
remind the reader that ]\7”_1,1 is the usual norm Z[(,] — Z[(,_1] and N, :
Z[Cn-1] = Ap_1 is our “standard” multiplicative map. By observing that

- nfl,l( ) = anl,l(

)

p P 2P
and then using the proceeding exactly as in the proof of Lemma 4.9 we see that
9 is a homomorphism. A straightforward calculation gives us that ker ¢y, =

1 - v—1 ~ v—1
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Up pn+1-1. We hence get an induced injective homomorphism

902 . Unypn+l_pn—1

— D} _,.
Unypn+1_1

Since
Un n+1 n—1
P —p —_ +
|——r—| =D,

Un;pn+1_1
this map is surjective. Therefore we get the following proposition.

Proposition 5.5. Suppose Assumption 1 holds. Then there exists a basis for
D', consisting of elements py(7y) where v € Uy, pn+1_pn-1.

If we analyze the proof above we see that we really only require that ry = ry =
rank(V;"), n > 1 (rank(V;) is the number of generators of V;") for Proposition 5.5
to hold. We know from Proposition 3.6 that ry = ry.x for some N and all £
and if Assumption 2 is true, then ry = ryy; = rank(V}M), k > 0. In this case
it follows that we have the following exact sequence

0 — ker myi1 — Vi, (p°) = Vi) — 0

and the following two statements are now straightforward.

Lemma 5.6. Suppose Assumption 2 holds. Then D;Ip"—iip"_N-l—?) C gn(Z[Cn-1]")
form> N +1.
Proposition 5.7. Suppose Assumption 2 holds. Then
‘ Un’pn+1_pan _ ppn_;v—l
Un’pn+1,1

forn >N+ 1.

Now define ¢y : Uppnt1_pn-n — D} . by

1 - e—1
on(e) = gn—N(Nn—N(ENn,N(W)))-
As before, it is straightforward to control that ¢y is a homomorphism and that
the kernel is U, yn+1_;. We hence get an induced homomorphism

Un,p”+1 _pn—N

YN - —)D;_N.

Unzpn+1_1

Since
|Un,p“+1—p”*N | _ \D“L
U - n—N
n’pn-i-l_l

this map is surjective and we get the following proposition.
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Proposition 5.8. Suppose Assumption 2 holds. Let N be as in Proposition 3.5
and let n > N + 1. Then there exists a basis for D} . consisting of elements
on(7y) where y € Uy, pn+1_pn-n.

As a final note “on the side”, it is not hard to show that V;, and V,, do not differ by
too much even without any further assumption on p than semi-regularity. Recall
from lemma 2.5 that A} = Z[(,1]* x B,. If (1,¢) € B,, then ¢ = 1 mod (p)
and ¢ = 1 mod (p?) in A%_,. This also means that (¢ — 1)/p = 0 mod (p) in
A? _, which is enough for (1,e)? = (1,1) mod (p) in A%_; to hold. By abuse of
notation,

Va

v .
Im{B, — Dz }+

n

I

and Im{B,, — D} consist of elements of exponent p.
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