A discussion of some recent results on stationary
boundary value problems for equations of
Boltzmann type

Leif Arkeryd*

1. ON STATIONARY PROBLEMS IN BOUNDED DOMAINS.

This first part will review some recent ideas and results concerning stationary
boundary value problems for equations of Boltzmann type. In the second part,
those techniques and results will be connected with questions about asymptotics
with respect to time and small mean free paths. The report is mainly based on
joint research with A. Nouri.

Before turning to our more recent studies of stationary problems under var-
ious boundary conditions, I would like to recall some earlier works in the field.
Concerning the linearized Boltzmann equation, existence and uniqueness of sta-
tionary solutions in a bounded domain is well presented in Maslova’s monograph
([27]), using classical Hilbert space techniques such as the Fredholm alternative.
More recently, for the linear Boltzmann equation, stationary measure solutions
were obtained via measure compactness by Cercignani and Giurin ([18]), and
uniqueness of L!-solutions via a study of the relative entropy by Pettersson and
Triolo ([32], [33]). As for the corresponding L'-existence, we shall return to that
in the discussion below.

Concerning the nonlinear stationary Boltzmann equation in IR" in the close
to equilibrium case, the study was started by Grad ([23]) and Guiraud ([24]) in
the mid-1960ies and early 1970ies, and was followed by many others, including
exterior domain results by Maslova and coworkers ([27]) as well as by Ukai and
Asano ([34]) in the early 1980ies. Also some small domain results by Pao ([31])
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in the late 1960ies belong to this group. In such a setting well known pertur-
bation and contraction mapping techniques can be utilized. For large Knudsen
numbers Kn (defined below), the unique solvability of stationary problems for
the Boltzmann equation was similarly established in Maslova’s monograph using
Kn~! as a small parameter.

Discrete velocity models, in particular the Broadwell model, have been well
researched also far from equilibrium, see e.g.([12], [13], [16], [17], [19]). Inspired
by the discrete velocity techniques, with Cercignani and Illner we obtained mea-
sure solutions far from equilibrium for continuous velocities and special stationary
nonlinear Boltzmann equations in a slab via measure compactness ([3]).

In contrast to all these earlier results, the recent development concerning the
full nonlinear stationary Boltzmann equation, which is the main topic in this
first part, is mainly connected with entropy dissipation control. Consider the
stationary Boltzmann equation in the slab,

§%f(x,v) — QU @), w€[-1.1], v € R, (1.1)

The nonnegative function f(z,v) represents the density of a rarefied gas at po-
sition x and velocity v. The collision operator () is the classical Boltzmann
operator

— QT () -Q (. f) =
/ / o WS = dwdo.,
R3 JS2

where Q1 — @~ is the splitting into gain and loss terms,
fr=1f@o), f=f), [7=Ff)

and the pre-and post-collisional velocities are connected by
vVV=v—(v—uww, v.=v,+ W-uv|w)w

The velocity component in the x-direction is denoted by &, and (v — v,|w) denotes
the Euclidean inner product in IR®. Let w be represented by the polar angle 6
(with polar axis along v — v,) and by the azimuthal angle. The function B(v —
Vs, w) is the collision kernel of the collision operator @, and is for simplicity taken
as | v — v, |# b(6), with

—3<fB<2, beLi(0,m), b#)>c>0, ae.

As we shall see below using Greens identity, stationary boundary value problems
only control fluxes of quantities which are conserved in the time dependent case.



In a number of stationary cases, energy and entropy dissipation are then the most
useful among easily available a priori quantities, whereas equally useful mass and
entropy estimates are lacking.

Given a constant m > 0 and positive indata f, bounded away from zero on
compacts, solutions f to (1.1) are sought such that

/ / (1+ | v |)? f(z,v)dzdv = (1.2)
f(—l,?)) = kfb(_L )’ 6 > Oa f(l,’U) - kfb(l’v)’ g < 0’ (13)

for some constant k£ > 0. The constant k is determined from the value m of the
B-norm (1.2). In this way, the lack of a mass estimate is compensated by forcing
a (-norm control m on the solution. If it were not for the problem with small
velocities, the condition (1.2) could have been replaced by the condition k& = 1.

Denote the collision frequency by
v(z,v) = / B(v — v,,w) f(z, v,)dv,dw.
IR3x S2

QT (f.f) —(fof)
Assumlng that W € Lloc’ W € L

solution concepts in the stationary context (1.1-3) can be formulated as follows.

loc; the exponential, mild and weak

Definition 1. f is an exponential solution to the stationary Boltzmann problem
(1.1-3), if f € Li,.((—1,1) x IR?), and for almost all v in IR3,

f+s&v) = kfy(—1,v)e
+/2 e~ Jrv(totndo Ot (¢ £\(1 4 7€, 0)dr, £ >0, s€ (—?0),
&

— fg v(—14+71€0)dr

— [ 2 v(147€w)dT
3

f(=1+s&v) =kfo(l,v)e

+ [ et (g, (1 e oin, <0, € (5,0)
£

Definition 2. f is a mild solution to the stationary Boltzmann problem (1.1-3),
if f € L,.((—1,1) x IR?), and for almost all v in IR3,

F1+ 56,0) = k(Lo + [ QU N +76 0)dr, €0, 5 € (2,0),
3

f(=1+s&v) =kfo(l,v) + ls QUf, /(=1 +71&v)dr, £<0, s€ (%,0).
3

Here the integrals for QT and QQ~ are assumed to exist separately.
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Definition 3. f is a weak solution of the stationary Boltzmann problem (1.1-3),
if fe Ll ((—1,1) x IR?), and

loc

1 A
[ [ €% v au. e vsa
—1JIR3
k[ eetan—k [ et w0

for every ¢ € CH([—1,1] x IR®) with suppp C [-1,1] x {v € R3;| £ |> 6} for
some § > 0, and with ¢ vanishing on {(—1,v);§ < 0} U{(1,v);€ > 0}. In (1.4)
the integrals for QT and for Q~ are assumed to exist separately.

Remark 1.1. This weak form is somewhat stronger than the mild and expo-
nential ones.

Remark 1.2. It follows from the exponential form that f can be estimated from
above and below by the values at ingoing and outgoing boundary,

Efy(—1,0)e” TV < f(z,v) < f(1,0)el Yo (1.5)

for £ > 0 and correspondingly for £ < 0. The entropy control, so useful in kinetic
weak L' compactness arguments, may sometimes be replaced by an entropy dis-
sipation control, when f is distinctly non-maxwellian. Namely, in the integrand
of the entropy dissipation

I

f,f,* 7

at a high concentration with respect to v, i.e. where f is large, one may e.g. use
(1.5) to pick a ’large enough’ set in (v,,w), where f* is ’sufficiently large’ and
f" and f"* ’sufficiently small’ for the integrand to behave like flog f. That is a
common device for obtaining the results presented here.

(ff* = f'f")log

Remark 1.3. With an absorption term af added, the time dependent version
of (1.1) in weak form becomes

t pl Dy
/ / / (—Ozfcp+§f% +Q(f, /o) (T, z,v)drdxdv =
0o Jo1Jms

t
[0  ehpmrado—k [ ehptr-10mlar+
0 vEIR3;£<0 veEIR3;£>0

1 1
/ folt, z,v)dxdv —/ fo(0,z,v)dzdv. (1.6)

1 JIR? -1 JIR?



Now
IR3
/Rs Q(f, f)pdv < 0 for ¢ = log f.

From here when o = 0, we see that only the fluxes may be controlled in the sta-
tionary case for quantities which are themselves controlled in the time dependent
case. But for o positive and fixed, mass, energy and entropy are a priori con-
trolled in the stationary case. Therefore the solving of stationary problems can
be split into first treating the case of positive o, and then letting o tend to zero.
Solutions for a positive can be obtained by variants of the time-dependent solu-
tion scheme, so the existence problem is thereby reduced to removing the a-term.

Suppose
/£ €+ v P+ [ Logh [) + (14 | 0 1o~ L, 0)dv < oo,
>0
/f €L [0 P oafy )+ (1 [0 D1, 0)do < . (1.7)
<

In the case of a slab, i.e. for a one dimensional space domain, important velocity
integrals, such as [ & f(z,v)dv, can be controlled & priori in the maximum norm
of the space variable = using (1.6). The following theorem can be proved.

Theorem 1.1 ([6]) Given m > 0, § with 0 < 3 < 2 in the collision kernel,
and indata f satisfying (1.7), there is a weak solution to the stationary problem
(1.1-3).

An analogous result holds for boundary conditions of diffuse reflection type,

f(=1,0) = M_(v) / €] F(0,0)de, € > 0,

¢'<0
f(1,v) = M, (v) Ef(L,v)dv', € <0, (1.8)
&>0
v 2
where M_ and M, are given normalized half-space maxwellians M;(v) = 27:1T2 e~ :
i€ {—,+}

Theorem 1.2 ([7]) Given m > 0 and 3 with 0 < § < 2 in the collision kernel,
there is a weak solution to the stationary problem (1.1-2), (1.8).



In the proofs, one hurdle is mass concentrated at small &-velocities. This may
be resolved using an a priori control by the mass at large velocities as indicated
in Remark 1.2, with the entropy dissipation estimate replacing the usual entropy
argument.

A number of generalizations, for v € IR™, n > 2, and —n < 8 < 2, together
with cases of b(f) > 0 a.e., or B not in the product form | v — v, |? (), can
also be analyzed straightforwardly by the same approach giving similar results,
such as mild solutions for f < 0. The maxwellians in (1.8) can be replaced by
other reentry profiles, under suitable conditions on the functions replacing the
maxwellians. This type of ideas also lead to corresponding L'-existence results
for the Povzner equation ([8], [30]) and for equations of Enskog type in bounded
domains of IR". For the linear Boltzmann equation on the other hand, we are
not aware of any useful entropy dissipation control. But here information about
small velocity behaviour may instead be directly extracted from the gain term at
large velocities, again resulting in a similar L'-existence picture ([20]).

In the nonlinear cases just discussed, the collision frequency integral along
characteristics essentially behaves like a volume integral, which is a priori con-
trolled in the approximation scheme. It is a serious obstacle that this is not so
for the stationary nonlinear Boltzmann equation in 2 C IR",

v Vaf (@,0) =Q(f, f), z€QuvelR" (1.9)

However, with a new approach this problem can be overcome, at least as long as
the other main obstacle to the full result is cancelled, namely the small velocities
in the nonlinear collision operator. Consider () given by

/Rn /Sn_1 X (0,0, ) B(v — s, 0)(f(z,0) f(z,0') — (@, 0) (2, v.))dv.do

with n > 0, and
Xn(V, 04, 0) = 0 if [v] < por v <nor || <nor [v| <n, xy(v,0.,0) =1 else.

Take  as a strictly convex domain with C* boundary. The inward and outward
boundaries in phase space are

00" = {(z,v) € 00 x R™;v - n(x) > 0},
00~ ={(z,v) € 00 x R";v-n(zx) <0},

where n(x) denotes the inward normal on 0fQ.

The removal of small velcities through x,, allows mass to be estimated by a
priori controlled energy, and we may study the equation with given indata instead
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of the previous #-norm m plus indata profile. So given a function f; > 0 defined
on 0Q*, we look for a solution f to (1.9) with

flx,v) = folz,v), (z,v) €0QT. (1.10)

Under these conditions, a priori estimates along characteristics using the ex-
ponential solution form, together with new local information from the entropy
dissipation control, leads to the following result.

Theorem 1.3 ([10]) Suppose that f, > ae~ " for some a,d > 0 and a.a.
(z,v) € 00T, and that

/ [vn(x)(1+v*+1In fy(x,v)) + 1] fo(x,v)dzdv < co.
(z,v)€0Qt

Then the equation (1.9) has a solution satisfying the boundary condition (1.10).

The technical restrictions on €2 and f, can be relaxed. In fact we expect the
result to hold for the same mathematically and physically natural, non-smooth
domains as in the time dependent case ([4]), namely with boundaries having fi-
nite Hausdorff measure plus a certain cone condition. However, the removal of
the x,-truncation probably requires fresh ideas, since only using the ideas of the
present proof with no x,-truncation seems to permit the alternative that all mass
in the limit becomes concentrated at zero velocity.

The proof of Theorem 1.3 As in the previous theorems, the proof starts from
solutions to the equation with an extra absorption term o f, which is then removed
in the limit o — 0.

af+U'sz(x;U):Q(f7f); .Z'EQ,’UER”.

Using the relevant, stationary form of Green’s formula

/ (f(l“,U)Jr/O af(z+ sv,v)ds) | v-n(z) | dedv =
o0~ —st(z,v)

fo(z,v) | v-n(z) | dedv,
oo+

we can estimate outgoing mass flow & priori by ingoing mass flow. An exponential
estimate of type (1.5) gives uniform estimates of f* along characteristics outside
a small set. So given € > 0, there is C, independent of «, so that outside a set
(depending on «) of characteristics of measure ¢, it holds that f* < C.. This
can be arranged so that the weak limit of f® restricted to the remaining sets,

fe=w —1lim f%_, increases with 1/e.



If we try to use this partial limit of the approximate solutions f = s — lim f,
as a candidate for a true solution, it remains to prove that the limit satisfies
the desired problem. We use the iterated integral form of the equation, which
makes it easy to remove the solution all along characteristics by putting the test
function to zero along them,

/am(fbgp)(x,v) | v-n(z) | dedv

+/69— (/ [—afo+Q(f, e + fv-Vapl(x + ov,v)do) | v-n(z) | dedv = 0.

—st(z,v)

This form of the problem (1.9), (1.10), is equivalent to the mild and exponential
forms, in which case the iterated collision integral is well defined even when Q is
not integrable. The truncation of test functions is possible, since our test func-
tions are in L* and are only required to be differentiable along characteristics.
The argument s*(z,v) is the time it takes to reach the boundary from z along
the line with velocity —uv.

One difficulty with the removal procedure just described, is the following.
Consider the loss term f® [ dw [ Bf®*dv,. It may happen at a point x along a
retained characteristic for f*, that other characteristics through the same space
point x are not retained. This may decrease the collision frequency at x, which is
an integral in v,. For an approximation of the present type to deliver the correct
equation in the final limit, the effect of that decrease should disappear in the
limit. The main step in proving this, is the following lemma, quantifying in what
sense the contribution of the large f*-values is small from those space points that
support a non-negligible amount of ”good” characteristics. (The influence from
the other relevant space points is then also shown to be negligible in the limit.)



To present this key lemma, let v = |”7|, and let (;, be a characteristic through

x € Q in direction v. Denote by X%() the subset of Q consisting of those char-
acteristics in direction 7 for which f¢ is 'reasonably bounded and nontangential,
and with the collision frequency integral along (., also reasonably bounded’ for
'most |v|’. For the precise quantification of 'reasonably bounded’ a relevant ver-
sion of (1.5) is used. The reader is referred to [10] for details. In velocity space
restrict to those v with 7 < |v] <V where V >> 7. Set

fY = fif f*> A, fY:=0 else,
ag(z) = max{1,logz} and inductively a;;1(z) = max{1,loga;(z)}.

Define

Ouni={r e [ frla)iv>0),

n<|v|<V

and
2 o dm
Ouina :={z € Opn;meas{pu € 5%z € X ()} > 7}

Lemma 1.4 Let V,i,n be given in IN and sufficiently large. For X\ large
enough with respect to V,1,n, it holds that

/ / [z, v)dvdx < g1(i,n, A),

a 7,m,A <‘1)‘<V
where the function g1 does not depend on «,

ci®n?a;s(N)

aultim ) = =0y

with ¢ not depending on V,i,n, A, a.

en

The lemma holds for n > eeel, and A = e®  with i* exponentials, which are
the values used in the proof of Theorem 1.3. The proof of Lemma 1.4 is split
into a number of geometrically different situations, which each after appropriate
analysis is resolved using the entropy dissipation control.



2. ON LONG TIME BEHAVIOUR AND BOUNDARY LAYERS

This second part will focus on long time behaviour of initial boundary value
problems for the Boltzmann equation, and on boundary layer asymptotics, two
problem areas where the stationary results of the first part play a role.

Besides their intrinsic interest, stationary solutions to the Boltzmann equation
come up as natural candidates for time asymptotics of corresponding evolution-
ary problems after the transients have died down. Rigorous convergence results
in various topologies for the limit of infinite time are known, when the boundary
conditions are periodic, or specular reflections as well as diffuse reflections with
temperature and pressure constant around the boundary. An important case is
strong convergence in L' to relevant global maxwellians. This was first discov-
ered by NSA techniques ([1]), but once the strong L'-convergence was properly
understood, it did not take long to find also a standard proof ([26]).

I will next discuss a particularly interesting case of the strong L'-convergence
([5], [4]). The key to convergence with time is here, as usual, global in time control
of the entropy dissipation integral. Consider the time dependent equation

Or+v-Vo)f =Q(f, f), teR x€Q, velir (2.1)

where (2 is bounded, strictly convex and smooth, and ) as before denotes the
Boltzmann collision operator, together with an initial condition

f(0,z,v) = folz,v), z€Q, velR. (2.2)

Here f has finite mass, energy, and entropy. Let the maxwellian diffuse reflection
on the boundary be

Ftz,v) = M(€) / W en(a) | F(tzo)d, (2.3)

v n(z)<0
te RY, €09, v-n(z)>0.
where

M (v) = coexp(—.50 | v [%),

is a normalized maxwellian with ¢y a normalization constant and % > 0is a
constant temperature. The relevant equilibrium solution is f, = ¢M with

_ S s fo(z,v)dzdv
fnxlgs M (v)dzdv

10



Recall the following existence result ([5], [28]).

Theorem 2.1 There exists a mild solution
feC(RY, L'Qx R®), [f>0,

to the initial boundary value problem (2.1-3).

Formally the equation gives

f f

(0 +v- Vo) (flog7r) = QS flog 77 + Qf, f)-

Integrating this over [0,¢] X Q X IR and using the initial and boundary values,
implies

f ' o
/szxmg(flogﬁ)(t,x,v)dxdv—/o /asszSU n(x)(flogM)demdU

+/Ot/ﬂms e(f)drdzdv

Jo
< /Q><1R3 fologﬂ(x,v)dxdv, (2.4)
where
_ L _ rpr f'1
e(f) = 4/133 /B+ B(|v—w. [,u)(f'f. — ffe)log 73 dv,du.

The previous argument can easily be made rigorous. Since e(f) > 0 and the
boundary integral is non-positive by Darrozes & Guiraud’s inequality (for a dis-
cussion of this inequality, see e.g. [15]), it follows that

/ flogi(t,x,v)dxdv <c,
Qx IR3 M

and

+00
0< / / e(f)(t, z,v)dtdzdv < c.
0 QxIR3

The density f is a maxwellian, when the integrand in e is zero a.e.. And the
desired convergence to a maxwellian is obtained by an analysis of how f is close
to a maxwellian, when the integral of e for large times is close to zero. Once
the limit is proved to be a maxwellian, the limit boundary condition selects (via
Green’s identity or directly) the precise limit maxwellian. This leads to the fol-
lowing convergence result.
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Theorem 2.2 ([5]) Let f be a solution of the initial boundary value problem
(2.1-8) with nowhere vanishing collision kernel. When t tends to infinity, f(t,.,.)
converges strongly in L*(Q2 x IR®) to the global mazwellian cM.

In the theorem M comes from the boundary condition (2.3), and ¢ gives the

_ M)_

conservation of mass (¢ = T

Remark 2.1. Here the maxwellian is uniquely determined by the initial value

and the boundary condition. No uniqueness has so far been found in the cases of
periodic, specular, or direct reflection boundary conditions.
Specific for the kinetic case, and not generally correct in fluid dynamics situa-
tions, the natural restrictions on the domain are few, only that the boundary
has finite (n-1)-dimensional Hausdorff measure - for reasonable traces to exist -
and obeys a certain cone condition - to ensure that a molecule which falls on
the surface has a strictly positive probability to be reflected to some body angle
of size (uniformly over the surface) bounded from below. Theorem 2.2 can be
generalized to that natural type of boundary [4].

For the linear Boltzmann equation, this convergence result has also been gen-
eralized to the case of a space dependent diffuse reflection boundary condition
[32]. An entropy inequality of type (2.4) holds with analogous convergence con-
sequences. Namely, let f(t, z,v) denote a timedependent and F(x,v) a stationary
solution to the linear Boltzmann equation with diffuse reflection boundary con-
dition e.g. (2.3). Let ¢ denote a convex real-valued C*-function defined on the
positive real numbers. Then a relative entropy Hj. can be defined,

f(t.,z,v

HE(f)(¢ :// ft,z0) F(z,v)dzdv.
FN0= | | e rEy
The linear Boltzmann equation can be written as

f i

fat )y Dy@n + o) - Lon@nt.e +w..

Lp( + v, 0).0( Fla +tv, v)

dt

Integrating this, using Green’s identity and a change of variables, gives

7O - [ [ ven@)Pe(G)rdsdo+ [ eI < HE ),

with

PR(f)(@) = /(')me3><133><52 drdvdv,dwY (z,v.)F(z, UI)'[SD(fF(’t(’Z’UQj))

ft,z,v) _f(t,x,v) [t z,v)
( F(z,v") F(z,v) )9l F(z,v) )

f(t,z,v)
F(z,v)

) = o ( ) -

(2.5)
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Here P (f)(t) > 0, since by convexity

©(b) — @(a) > (b — a)¢'(a).

The boundary integral in the left hand side is negative by the Darrozes & Guiraud
inequality.

However, we are not aware of any suitable generalization of (2.5) to the case of
x-dependent reflexion on the boundary for the nonlinear Boltzmann equation. In
fact, it is an important unresolved question, whether a time dependent solution
really converges to a stationary one with time, when the temperature and pres-
sure are varying over the boundary. Such convergence is strongly suggested from
close to global equilibrium situations, from the linear case, and from a wealth
of numerical evidence by the Kyoto school and others. On the other hand, the
stationary solutions are sometimes not unique in the nonlinear case, and unstable
periodic solutions to (2.1-3) may exist.

Stationary solutions are also of importance in rarefied gas dynamics, which
deals with gas phenomena where Navier Stokes type equations are not valid in
some significant region of the flow field. Here one tool is the Chapman Enskog
theory relating the Navier Stokes equation to the Boltzmann equation of kinetic
theory via small parameter asymptotics. A typical parameter is the Knudsen
number Kn, the ratio of the molecular mean free path (in ordinary air 10~° cm)
to a typical length scale for the flow. This length scale could be based on the
gradients occuring in the flows. Often the regions are very thin, where deviation
from the Navier Stokes behaviour is expected, and the non Navier Stokes terms
become important. The broad picture that emerges from such formal arguments
and from related experiments, is one of normal regions where the gas flow follows
the macroscopic fluid equations, plus thin shock layers, boundary layers, and ini-
tial layers, where matching conditions are sought between fluid regions on each
side of the shock, or between outside initial or boundary control and interior fluid
behaviour.

From that picture, I will focus on boundary layers. In the form of half-space
problems they come up on the microscopic scale when the macroscopic hydrody-
namic limits cannot match all boundary conditions on the kinetic side which are
naturally present. Such boundary layer problems have been extensively studied
by functional analytic tools and energy methods in the case of linear asymp-
totics; from Grad ([22]) in the 1960ies, via Guiraud ([25]) in the 1970ies, to a.o.
Bardos-Caflish-Nicolaenko ([11]), Golse-Poupaud ([21]), and Cercignani ([14]) in
the 1980ies.

When it comes to fully nonlinear asymptotics, the work by the Kyoto group is
prominent on asymptotic analysis and numerical studies of a wide range of half
space problems. As a complement to their work, we shall here discuss some rig-
orous mathematical results for the fully nonlinear Kn-asymptotics in a particular
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case of the half-space Milne problem ([9]).

An integrable cylindrically symmetric maxwellian

P _ w4’ 4 3
M(v) = ———e 2T , v=1(£n,(C) e R,
0= ot (€m.0)

(with p > 0 and T > 0), is uniquely determined by its three moments

- / M)dv, pu= / EM(v)dv, p(u? +T) = / o2 M (v)dv.

However, it is well known that for nonzero bulk velocity, there can be zero, one
or two maxwellians with given fluxes

/ €M (v)dv, / £2M (v)dv, / €0 M (v)dv

as stated in the following lemma.

Lemma 2.3 Let (¢;)1<i<s, with ¢ 75 0, be given.
(i) If co < 0 or ciez < 0 or cic3 > 22¢3, there is no mazwellian with flures
(ci)1<i<s-
(i) If c1c5 = 1602, there zs a unique mazwellian with flures (¢;)1<i<s-
(i3) If 0 < ¢} < cics < 22¢3, there are two mazwellians with fluzes (¢;)1<i<s.
(iv) If ¢ > cic3 > 0, there is a unique mazwellian with fluzes (¢;)1<i<s-

16

For convenience, we recall a short proof.
Proof of Lemma 2.3 The unknown p, u, T defining an integrable maxwellian M,
are solutions to the system

p>0,T>0, pu=cy, pu*+T) = cy, pu(u®+5T) = cs.

Since ¢; # 0, there are no positive solutions p and 7" when ¢, < 0 or ¢ic3 < 0.
Since ¢; # 0,

c c
p= _1: T = _QU - UQ,
u (&)
where u is a solution to
4eiu? — begu + 3 = 0, (2.6)
c
qu>0, 0<u<—=. (2.7)
1]
For cic3 > 22¢2, there is no real solution u to equation (2 6). For 0103 = 1203,

the solution %Cf to equation (2.6) satisfies (2.7). For 0 < ¢ < cic3 < 22c3, both
solutions to equation (2.6),

5¢y + €4/25¢5 — 16¢,c
= 22TV OAB L ee {4}, (2.8)

861 ’

€
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—/ 2_
satisfy (2.7). For ¢3 > c¢ic3 > 0, only u = Pem VG09S catisfies (2.7).

8¢y

Remark 2.2. We note for ¢; > 0, that 0 < v < u,, T < % < T_. The
Mach number is defined by M2 = 2% Then

5T °

2 CgM? 3(33

= BT p__ 98
Ye = o3+ M)’ B (3 + M2)

With
16¢;c T
) 163
0= 0<60< =
o %3 =Y
we get
3 3
M2 (0 = M2 (0 =
- () 4ctg23—1 +(0) 4tg23—1

where M_(#) is subsonic and M () is supersonic.

Define for 0 < pp < A
Vii={veR%|v|<A, Vi={veVyu<|El}

By a perturbative argument there are Ay < oo and 0 < pg, so that for A >
Ao, 0 < 1 < g, (iii-iv) of Lemma 2.3 hold for the maxwellian fluxes, also when
the integrals are truncated with respect to V. (More precisely the following holds.

Lemma 2.4 Let (¢;)1<i<s, with 0 < cics < 22¢3 and cic3 # 3 be given. There
are Ao < 0o and pg > 0, such that for X > Ay, 0 < u < po, (ii-iv) of Lemma 2.3
hold for the truncated mazwellian fluzes

(cr,e0,c3) = (| EMv)dv, [ E€M(w)dv, [ &v*M(v)dv). (2.9)

A A A

In the case cic3 = c3, let (p_,u_,T_) be the values of (p,u,T) for A\ = oo, =0
when € = — in (2.8), and correspondingly (py,uy,Ty) with T, = 0 for e = +.
Given any neighbourhoods O_ and Oy of (p_,u_,T ) and (py,us,Ty) respec-
tively, then (p(\, 1), u(\, p), T (A, 1)) is either in O_ or in O, for A\, u~* large
enough. Moreover, (p(A\, 1), u(N, ), T (A, 1)) is uniquely determined in the O_-
case.)

By Theorem 1.1 there are solutions to the stationary Boltzmann equation in
a slab with given indata on the boundary. For the sequel we shall also need to
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relate the distance of density functions from the set of maxwellians, to the mag-
nitude of the collision integrand.

Lemma 2.5 Consider a set of non-negative functions f that is weakly compact
in L'(IR?). Given e,m > 0, there is § > 0, such that if

‘ff*_f,fi ‘<6

in V{ x Vi x S? outside of some subset of measure smaller than &, then for some
mazwellian My (depending on f),

/ f =M, | dv<e
V’

A=n

Lemma 2.5 was proved in the IR? case in [2] and [29]. Those proofs also imply
the present local version.

Denote by (£,7,() the three components of v € IR* and set ¢ = /n? + (2.
The hydrodynamic limit is considered for subsequences of f€, solutions to

g%{: = %Q(ff,ff), r€]l-1,1, veR?, (2.10)
fi(=1,v) = M(v), £>0, f(1,v)=M,(v), £<0, (2.11)

when the mean free path € tends to zero. Here

Pi —2 Pr w2
M;,(v) i = ———e 2Tl’ MTU = e 2T
= Gy W
and
QLN = [ WO ) [0 P (7L v
IR3x 52
Moreover,

X(v,v,w) =0 if  |v|>Aor|v, |[> Aor|v|>Aor|v [> A

or |&[<por|& |<por < por| &< p,

x(v,v,w) =1 else, B€[0,2], beLl(0,7), bl)>c>0, ae.

For ) finite, the factor |[v — v,|? only introduces minor changes in the argu-
ments, so we shall only discuss the case § = 0. Under the boundary conditions

(2.11), there are cylindrically symmetric (with respect to the variables (,0))
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functions f¢ solutions to (2.10-11). Only such solutions are considered in the
following. In particular,

/fnfe(x,v)dv = /&Cfe(x, v)dv =0

under the cylindrical symmetry. By Green’s formula the fluxes
(c§)1<i§3 = (/ 6(]—7 §7 ’U2)f€(.’£, U)dU)
[€1>p, || <A

are constant in x with e-independent bounds determined by M; and M,. Denote
by (C:j)lsisg a converging subsequence with limit (¢;(A, pt))1<i<3, when ¢; — 0.
Either ¢;(A, ) = 0 or ¢;1(A, ) # 0. We only discuss such sequences of solu-
tions with ¢; (A, u) # 0, and then - possibly after a change of z-direction - take
c1(\, ) > 0, also requiring ¢’ > 0 for all j. Such systems can be considered to
model an evaporation-condensation situation with evaporation at + = —1 and
condensation at z = 1. We shall further assume (for a subfamily in A, ) the
existence of lim) -1, ¢;(A, ) = ¢;, for ¢ = 1,2,3, with ¢; > 0. The quan-
tities A9 and po as defined in Lemma 2.4, may be taken locally constant with
respect to (cy, co, c3) satisfying the conditions of the lemma, and with Ag, 1, !
so large that negative T’s are excluded. From here on we only consider such
A> X, 0 < < g, and 0 < cie3 < %cg.

For the fully non-linear Boltzmann equation in the present model setup, the
following results have been proved about the half-space problem.

Theorem 2.6 ([9]) Denote by
z+1

) = fé(z,v), a.a z€l—-1,1, velR

g(

Then there is a sequence (€;) with lim;_, €; = 0, such that (¢%) converges weakly
in L'([-1,1] x IR?) to a function g, which is a weak solution to the half-space
problem,

dg 3

— = >
fax R(g,9), >0, velR’,
g(0,v) = My(v), &>0,

in the sense that for any xo > 0, for any test function @ with support in [0, zo[xX Vy

EMi(p(0, o+ [ [ (€95 +Qla.g)p)dadv =0

£>0
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Remark 2.3. Test functions are here L*°-functions, differentiable in the z-
variable for a.e. v € V) with ¢(0,v) = 0 for £ < 0.

An analogous result holds for A¢(1=%, v) := f.(x,v) and M,.

€

Theorem 2.7 ([9]) Denote by Ss the union of {v € Vi;u <| & |< p+6d,0 <
4p+ 6} and {v € Vi;u <| € |<3u+ 0,0 < 6} If cres = c3, then include in Ss
also a d-neighbourhood in Vy of (,0,0). Either for all 6 >0

lim g(z,v)dv =0,
or
lim / | g(z,v) — M_(v) | dv =0,
T—>00
or

lim / | g(z,v) — My (v) | dv=0

T—00

in the case cics # 3, respectively

lim inf/ lg(z,v) — My, (v)|dv =0
T—>00

in the case cic3 = ca. Here M_, M, are those defined in Lemma 2.4, and in the
notations of that lemma the infimum is taken over M), corresponding to O and
satisfying (2.9).

Remark 2.4. The solution g of the half-space problem in Theorem 2.6 satis-
fies the Milne problem in the sense of Theorem 2.7. The M, -alternative is only
possible in the case (iii) of Lemma 2.3.

Theorem 2.8 ([9]) Suppose cic3 # c5. There is a sequence (€;) such that
lim; s €; = 0, and (f%) converges in weak® measure sense to a non-negative
element f of L'((—1,1); M(VY)) that satisfies

- 5(15 55 UZ)f(ma U)dU = (Cl (Aa /,L), 62()‘5 N): 03()‘5 N’))

Moreover, there are measurable non-negative functions 0 (z),0,(r) with 0 <
0 (z) +0.(x) <1,-1 <z <1, such that for test functions ¢ with support in
Vi\ Ss for some 6 >0,

18



/¢f(x, v)dv = /(HM + 0. M, )¢dv.

Here we have written f(x,v)dv for the measure in the v—variable defined by

f(z, ).

Remark 2.5. There is a (more involved) version in the case c;c3 = ¢ for this
very weak hydrodynamic type of behaviour in the interior of the slab.
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