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Abstract

A new approach to the construction of index formulas for elliptic
operators on singular manifolds is suggested on the basis of K-theory
of algebras and cyclic cohomology. The equivalence of Toeplitz and
pseudodifferential quantizations, well known in the case of smooth
compact manifolds, is extended to the singular case. An analog of
the Toeplitz quantization for general symbol algebras arising in the
analysis on singular manifolds is introduced and, as the first example,
such a representation is constructed for the case of manifolds with
conical singularities.

1 Introduction

1. In the last decade, the problem of finding index formulas for elliptic
pseudodifferential operators on singular manifolds has been the subject of
active research (e.g., see [6, 10, 12, 13, 16, 20| and other papers). Despite
the numerous results obtained in this direction, the situation is far from
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being clear. Indeed, some of the formulas obtained earlier fail to express
the index via the principal symbol (= an element of an appropriate Calkin
algebra) alone (e.g., [10]), in other formulas, separate terms lack homotopy
invariance (e.g., see [6]), and finally, the few formulas that combine both
desirable properties (e.g., see [12, 20]) are valid only for the important but
rather narrow class of operators satisfying certain symmetry conditions.

This situation is primarily caused by the complicated symbol structure
for pseudodifferential operators on singular manifolds. It is well known that
the appropriate notion of the symbol in the singular case involves many
levels associated with various strata of the manifold. The components cor-
responding to adjacent strata satisfy certain matching conditions [18]. In a
number of existing results, the index of the operator is expressed as a sum of
contributions from these symbol components. These contributions are usu-
ally noninteger, and in view of the fact that there are matching conditions,
it is not at all surprising that they lack homotopy invariance and have no
straightforward topological or algebraic meaning. In particular, the usual
relation between the index and characteristic classes of some vector bundle
constructed from the symbol fails. The homotopy invariance can be ensured,
but only by imposing some additional conditions (like the symmetry condi-
tion), which prevents one from writing out a meaningful index formula for
all elliptic pseudodifferential operators. A detailed analysis of the symmetry
type conditions and their role in obtaining invariant index formulas can be
found in [12, 17], and we do not dwell on the topic here.

In the present paper, we propose another approach to the construction
of index formulas in the singular case. This approach is based on K-theory
of algebras and cyclic cohomology. In the framework of this approach, one
has to take a slightly different viewpoint as to what a “good” index formula
must be.

Instead of trying to use topological invariants of separate components of
the symbol, we consider the symbol as a whole, that is, as an element of an
appropriate symbol algebra. Thus, instead of topological objects, one deals
with algebraic objects like the Chern character viewed as an element of the
cyclic cohomology group of the symbol algebra. In the abstract framework,
the scheme is well known. The pseudodifferential quantization (the term
“extension” is also used), that is, the mapping taking symbols to pseudodif-
ferential operators is a unital linear mapping

7: A — End($)



of the symbol algebra A into the algebra of operators in a Hilbert space! §
such that

7(a)7(b) — 7(ab) = p(a, b) (1)

is a compact operator for any a,b € A.

The quantization 7 over A extends, in a natural way, to the matrix algebra
M(A) (the mapping is applied to each entry of a matrix); if an element
a = [a;x] € M(A) is elliptic (i.e., invertible), then 7(a) is Fredholm.

There exist standard algebraical procedures for constructing index for-
mulas for a given quantization; see, e.g., [3]. There are, however, two re-
quirements for these procedures to be actually applicable. The first, formal
one requires the quantization to be of finite order, i.e., to have the opera-
tor p(a,b) in (1) not only compact but belonging to some Schatten class.
Another, informal condition requires the quantization 7 to be expressed in
sufficiently simple terms, presumably as a Fredholm module.

The standard pseudodifferential quantization does not fit into this frame-
work. Therefore, the need arises to find a nicer equivalent representation.

Let us recall the notion of equivalence of quantizations. A quantization
is said to be trivial if the corresponding mapping 7 is a homomorphism. One
says that two quantizations of A defined by almost homomorphisms

Tj ! A— End(fjj), j = 1, 2,

are equivalent if, possibly after adding trivial direct summands, there exists
an (almost) unitary operator

U:91 — 9D
such that
mi(a) = Uty (a)U

modulo compact operators for every a € A, where U~! is an arbitrary almost
inverse of U. This definition is in particular justified by the fact that in this
case, obviously,

ind 71 (a) = ind 72(a)

for every invertible a € M(.A).

'We consider only bounded operators corresponding to zero-order symbols.



Now we can describe what kind of quantizations we would like to have.
A Fredholm module is a quantization

7: A — End($)

of the form
7(a) = Pu(a), a€ A,

where
p: A — End(20)

is a representation of .4 by bounded operators in 20 = $H @ U (L is an
auxiliary Hilbert space) and

P:20—9

is the orthogonal projection on ) in 20. Moreover, the commutator [P, u(a)]
is required to be compact for every a € A. Furthermore, to apply the non-
commutative geometry machinery, one has to assume that these commutators
not only are compact, but also belong to some Neumann-Schatten class G,
whenever a belongs to some dense local subalgebra A, C A (see [2]; in this
case, one says that the Fredholm module is p-summable).

Although in the abstract setting every quantization is equivalent to some
Fredholm module (see, e.g.,[2]), the general construction, being fairly com-
plicated, is unsuitable for concrete index calculations; moreover, it does not
guarantee the Schatten class property. To obtain a nicer Fredholm mod-
ule representation, we recall the Toeplitz-pseudodifferential connection found
in [8]. Given a closed n-dimensional manifold M (which we assume to be
real-analytic), one can equip the co-ball bundle B*M with a structure of
a complex-analytic manifold with boundary S*M, so that B*M is strictly
pseudoconvex. In this environment, the following Fredholm module over the
algebra of continuous functions C'(S*M) is considered. The Hilbert space
00 is Ly(S* M), the representation p: C(S*M) — End(20) is defined as the
multiplication by the function in C'(S*M), and P is the orthogonal projection
on the subspace $ consisting of boundary values of functions analytic in the
interior of B*M. This means that Py describes a Toeplitz quantization of
the algebra C(S*M). The main result in [8], saying that this latter Fredholm
module is equivalent to the pseudodifferential quantization, is also expressed
as “pseudodifferential operators are Toeplitz operators in disguise.” This



equivalence played an important part in finding new proofs of the Atiyah—
Singer formula as well as in understanding the algebraic structure of the
pseudodifferential quantization.

The aim of this paper is to introduce an analog of the Toeplitz quanti-
zation for general symbol algebras arising in analysis on singular manifolds
and, as the first example, construct such a representation for the case of
manifolds with conical singularities.

2. To give a general definition of a Toeplitz quantization, one must have
a deeper insight into the structure of symbol algebras on singular manifolds.
Usually, this structure is as follows. Let M be a singular manifold. To each
stratum Y of M, one associates a topological space Y (which is usually the
cospheric bundle S*Y or the cotangent bundle 7" * Y'), and an element of
the Calkin algebra of symbols of pseudodifferential operators is a collection
a = {ay }yey, where ) is the set of all strata of M and each ay is a continuous
function on Y ranging in the space of bounded operators in a Hilbert space
Hy. For adjacent strata Y,Y’, the components ay and ays must satisfy
certain matching conditions. Another way to describe this structure is in the
terms of solvable algebras. The algebra A is said to be solvable if it admits
a composition series of closed ideals

0O=FhCchcC--CT=A

such that each factor Js41/Js is isomorphic to the algebra of continuous,

tending to zero at infinity functions on some locally compact space, with

values being compact operators in some Hilbert space. It is shown in [14]

that for a rather general class of manifolds with singularities, the Calkin

algebra is solvable, with structure governed by the geometry of singularities.
Here examples are in order.

Example 1. Let M be a smooth manifold. Then there is only one stra-
tum Y = M, the symbol algebra is C(S*M), and there are no matching
conditions.

Example 2. Let M be an n-dimensional manifold with conical singulari-
ties aq,...,ay (we recall the definition in the next section). Then M con-

sists of the n-dimensional stratum Yy = M = M \ {a4,...,any} and the
0-dimensional strata Y; = {¢;}, j = 1,...,N. The symbol algebra A con-
sists of elements of the form a = (Ay, A4,...,Ay), where Ay € C(S*Y)) is
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the interior symbol, which must be extendable by continuity to the cospheric
bundle S* M" of the stretched manifold M" obtained from M by blowing up
the conical points (cf. [18]), and the Aj,j =1,..., N, known as the conormal
symbol, is a dilation-invariant operator in the space LQ(K ), where K is the
cone at the point «; (see below). It suffices to state the matching Condltlon
on the dense subset of A formed by elements a = (Ag, Ay,...,Ay) such
that Ag € C*(S*M") and A;, j =1,..., N, is a pseudodifferential operator
in Ly(K;) (or, equivalently, a pseudodifferential operator with parameter on
the base €, of the cone K;). The matching condition then says that the
principal symbol of the conormal symbol must coincide with the restriction
of the interior symbol to 0S* M".

Example 3. Let M be an n-dimensional manifold with edge X of dimension
m. Thus, near X the manifold M locally has the structure M ~ R™ xQ xR,
where () is a smooth compact manifold of dimension n — m — 1. The symbol
algebra consists of pairs a = (Ao, A), where Ay € C(S*(M \ X)) is the
interior symbol and A € C(S*X,End(Ly(Kg))) is the edge symbol. Here
Kgq is the cone with base 2. Again, there is a matching condition saying (in
terms of a dense subset of the symbol algebra) that the principal symbol of
the edge symbol must be consistent with the values of the interior symbol
when approaching the edge.

Analytic expressions of matching conditions in various cases may be dif-
ferent, but all of them have the same meaning. If in some small region in M
the operator can be defined via symbols associated with two adjacent strata,
then the two definitions must differ by a compact operator. The structure
of the spaces Y is actually determined by irreducible representations of the
symbol algebra. These representations are studied in detail in [14, 15]. Asso-
c1ated with each stratum is a series of representations. For the main stratum

M they are labelled by points of S *M and are one-dimensional. For the sin-
gular strata, one usually has infinite-dimensional representations (or finite-
dimensional but nonscalar representations, in the case of one-dimensional
M). The topology of the space of representations is very complicated and
reflects the matching conditions in a nontrivial way.

By passing to the direct integral over each stratum, we obtain a repre-
sentation u of the symbol algebra A in the Hilbert space

Wy = @ LQ(}A}a ﬁY)a (2)

Yey



where an element a = {ay }yey € A acts in each component Ly(Y, $y) by
pointwise multiplication (on the left) by the corresponding scalar or operator
function ay. In view of this, we shall omit p and write a instead of u(a).

Definition 4. Suppose that A is a C*-algebra realized as a subalgebra in
ByeyC(Y,End($y)). A Toeplitz quantization of A is a mapping 7 : A —
End($), 7(a) = Pa, where $) is a subspace in (2), P is the orthogonal
projection P : $) — 20 and [P, a] is a compact operator in 20 for any a € A.
If, moreover, the operator [P, a] belongs to the Schatten class &, for all @ in
a dense local subalgebra A, in A for some p € (0, 00), then we say that 7 is
a p-summable Toeplitz quantization.

Once we succeed in constructing this representation, we can apply the
general index formula in terms of cyclic cohomology. Specifically, suppose
that this Toeplitz representation is p-summable on a dense local subalgebra
A C A. Then for an arbitrary elliptic element a € M(.A,,) one has [3]

ind(7(a)) = by (ch[T] ® tr) (E‘_lv a,a ta,...,at, E)’ (3)

~~
N + 1 arguments

where N > p~! is an odd integer, tr is the matrix trace, the Chern character
ch[7] of 7 is the cyclic homology class of A, given by the formula

chir](ag, a1, ... ,an) = ey Tr{ao[P, a1|[P, as] - - - [P, an]} (4)

(note that the operator trace Tr on the right-hand side is well defined in view
of the p-summability and the condition imposed on N), and the normalising
constants by and cy have the form

by = (20) Y22 NHD(N/2+1), ey = (20)Y3(=1)NVV2D(N/2 4+ 1).

This normalization of constants was proposed by Connes [3] in order to satisfy
the functoriality and S-periodicity conditions.
This algebraic index formula has several advantages:

e first, it expresses the index via the principal symbol alone and is ho-
motopy invariant;

e second, it is valid for arbitrary invertible symbols, not just for some
subclass singled out by certain homotopic conditions;
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e third, most importantly, it is expressed in terms of the cyclic homology
class ch[r] of the algebra A.,. It is the cyclic (co)homology of the
symbol algebra that replaces the (co)homology of a manifold as one
passes from the algebra of functions on a smooth manifold to more
general symbol algebras.

In what follows we construct a Toeplitz representation for the simplest
species of singular manifolds, namely, for manifolds with isolated singularities
(Example 2). (As far as the index theory is concerned, the type of isolated
singularities makes no difference, and we can always assume that they are
conical; e.g., see [19].)

2 Manifolds with Isolated Singularities and
Function Spaces

Manifolds with isolated singularities. We consider pseudodifferential

operators on a compact manifold M with isolated (e.g., conical) singularities

{aq,...,an}. Let us recall the definition of a manifold with singularities for
the case of conical points (details can be found, e.g., in [19].)

Definition 5. A manifold M with conical singularities o, ... ,ay is a com-
pact Hausdorff topological space M with distinguished points aq,...,ay
such that

1) the set M = M \ {ay,...,a,} is equipped with the structure of a C*
manifold compatible with the topology;

2) for each point «j, a homeomorphism

of a neighborhood U; C M of ; on the cone Ko, with smooth compact
base €, is given;

3) the neighborhoods U; are disjoint;

4) the mapping ¢; takes «; to the vertex a; of the cone Kq;, and the

restriction of ¢; to U; = U; \ ¢ is a diffeomorphism of U; onto Kq, =



The coordinate on the interval [0,1) in the representation of the cone
will be denoted by r and referred to as the conical coordinate. It is often
convenient to deal with the infinite cone, where r € [0, 00).

The definitions for other types of singular points can be found in [19].

To simplify the exposition, we assume that N = 1 and hence there is only
one singular point, which will be denoted by a. However, all our considera-
tions can readily be generalized to the case in which N > 1. Moreover, one
can glue together all vertices, so that there is just one conical point, with the
base of the cone being the disjoint union of €2;.

Cylindrical representation. We shall use the cylindrical representation,
which is actually the same for all types of isolated singularities (see [11]). In

this representation, the smooth open n-dimensional manifold M = M \ {a}
looks like a manifold with a cylindrical end; more specifically, the punctured

neighborhood U of the conical point is represented as the direct product

ZPJ:QXR+,

where 2 is a smooth compact manifold without boundary (the base of the
singularity) and R, is the positive real half-line with coordinate ¢. It is
assumed that ¢ — oo corresponds to approaching the singular point. The
generic point of 2 will be denoted by w.

Remark 6. The function ¢t : U — R, defined on U by virtue of the direct

product structure, extends to a smooth function ¢ : M — R nonpositive

outside U, so that U = {x eEM | t(z) > 0}. In the sequel, we assume
that some choice of the extension has been made. We adopt the convention
that this function is defined on the entire M (respectively, on the stretched

manifold M”, see below) and is equal to +o0o at « (respectively, on the
boundary 0M").

o

Sobolev spaces. We use the direct product structure on U to introduce a

Riemannian metric dz2 on M such that in U it has the form

dz? = dt* + dw?,



where dw? is some Riemannian metric on 2. Accordingly, the Beltrami—
Laplace operator Ay, on M has in (O] the form

52
T o

where Aq is the Beltrami-Laplace operator on €2 corresponding to the chosen

AM + AQa

metric and the measure dy on M associated with the metric has in U the
form

dp = dt A (dw)™ 1,
where (dw)™ ! is the measure on  associated with the metric dw?. The

operator Ay is essentially self-adjoint in Lo(M, dp) on C§° (]\ol )-
The Sobolev spaces H*(M) = H*(M,du), s € R, are the completions of

Cg° (M) with respect to the norms

1/2
Jull, = { [ 10 durf du}

(see [18, 19]). One also considers the weighted spaces H*?(M) with the norm

lulls,, = ||€"ul|s, where the function ¢ is assumed to be continued from U
to the entire M as a smooth nonvanishing function. This more general case
can be reduced to the one considered here with the use of the isomorphism
e . H® — H*%"; c¢f. [19]. The case v = 0 is convenient in that the
covariable p (dual to t) in symbols of pseudodifferential operators varies on
the real axis rather than on the weight line £ = {Im P = ~}.

Since we mostly deal with pseudodifferential operators of degree 0, the
space Ly(M) = Lo(M,dp) = H®(M) will be of primary importance to us.
Occasionally, we use other spaces from this Sobolev scale.

Relationship with the usual representation. The original representa-
tion (5) of a neighborhood of a singular point is reduced to the cylindrical
representation by a change of variables » = f(t), where r is the radial vari-
able (essentially, the distance from the singular point). The specific form of
the function f(¢) depends on the type of the singular point. For example, for
the case of a conical point the change of variables has the form r = e*. We
point out that regardless of the type of the singular point, the corresponding
change of variables reduces everything to the cylindrical representation; in

10



particular, the weighted Sobolev spaces (with weight exponent v = 0) natu-
rally associated [19] with any type of the singular point are transformed by
this change of variables into H*(M). (Accordingly, for v # 0 they are taken
to H*7(M).)

The cospheric bundle. In the cylindrical representation, one can define
the cospheric bundle of M in the most convenient way without resorting to
the (very important and highly geometric) intrinsic constructions like the
“compressed cotangent bundle” (see [9]). Namely, we consider the cospheric

bundle S *J\of and compactify it by attaching the manifold

(T2 x B) \ {0}]/R.
(where {0} is the zero section of the vector bundle 7*Q x R — Q) at t = 0o

as follows. In view of the direct product structure on U, for each point

(w,t) € U we have the canonical isomorphism

StonyM = [(T30 x R) \ {0}]/R,.

Now we say that a sequence (zy,&) € S*M, where z, = (wg, t;) and & €
(T @ xR)\{0}] /R, tends to (w,&) € [(T*QxR)\{0}] /Ry if t;, — oo,
wp — w, and & — £. The compactified space S*M thus obtained is a C°
manifold with boundary

05" M = [(T"Q x R) \ {0}] /R (6)

Both the boundary and the interior S*M of this manifold carry a smooth
structure compatible with the C° structure of the entire manifold. Needless
to say, if we specify the type of the singular point (i.e., the mapping t = f(r)),
then S*M becomes a C'*° manifold; however, this C* structure depends on
the type of the singular point. For brevity, we say that a function F on the
cospheric bundle S*M is C'*° if it is continuous, its restrictions to 0S* M and

S*M are both C'*°, and in the cylindrical coordinates all derivatives of F' are
bounded. The cospheric bundle is a (real) vector bundle over the stretched

manifold M", which is obtained from M by a similar compactification pro-
cedure. Using the projection, we can lift the function ¢ (see Remark 6) to

S*M; the resulting function is smooth on S*M and infinite on the boundary.
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The double. In the subsequent argument, it is now and then convenient
to interpret operators on M whose integral kernels are compactly supported

in M x M as operators on some closed manifold. To obtain this closed
manifold, we must essentially cut away a small “cap” near the conical point
(which gives a manifold with boundary) and patch the “hole” with something
smooth. There is a very old recipe for doing this: one simply attaches a sec-
ond copy of the manifold with boundary along the boundary, thus obtaining
what is called the double. We point out that this is a purely technical tool in
our considerations, and all operators we treat this way will essentially van-
ish on the attached second part; in fact, one can attach anything that fits.
(This is in contrast with the papers [12, 20], dealing with index problems
for operators with symmetry conditions, where the passage to the double
has a topological meaning and is restricted by topological obstructions.) To
make things certain, let us assume that we work in cylindrical coordinates
and cut away the cylindrical end along ¢ = 10. The smooth structure on the
double after attaching the second copy is then obtained automatically, since
a direct product structure is given in a neighborhood of the cut (we leave
details to the reader). The double will be denoted by M. We can perform
a similar cut-and-paste procedure with S*M, which results in S*M. (Note,
however, that the fibres of the cospheric bundle must be glued together via
the involution p — —p rather than identically, where p is the dual variable
of t. This is because the directions of the t-axis on the first and second copies
are opposite.)

3 Pseudodifferential Operators

Pseudodifferential operators and symbols. For details concerning the
definition of pseudodifferential operators on singular manifolds, we refer the
reader to the book [19] and references therein. Further specification of this
construction in the cylindrical representation can be found in [11]. We
start by considering scalar pseudodifferential operators, for constructing the
Toeplitz quantization. As was explained in the introduction, this quanti-
zation leads to index formulas for operators with matrix symbols as well.
Moreover, we deal only with classical pseudodifferential operators of order 0.
The algebra of such operators will be denoted by W(M). It is well known
that every pseudodifferential operator @ : Lo(M) — Lo(M) is determined
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modulo compact operators by its principal symbol, which is a pair

o(@) = (A(z,£), A(p))

consisting of an interior symbol A(z,&) that is a C* function on S*M and
an order zero conormal symbol A(p) that is a family of classical pseudodif-
ferential operators with parameter p € R on the manifold €2 in the sense of
Agranovich—Vishik. Recall that by saying that a pseudodifferential operator
is classical we mean that its complete symbol in any local coordinates admits
an asymptotic expansion in homogeneous functions with step 1; for operators
with parameter, the variable p, as well as all covariables, is included in the
definition of homogeneity. In particular, in our case the requirement that
A(p) is a family of classical pseudodifferential operators with parameter is
equivalent to the following: the operator

A (—i%) : Ly(Cq) — Ly(Ca)

on the cylinder Co = 2 X R is a translation-invariant zero-order pseudod-
ifferential operator. Note also that A(p) is defined and smooth in p for all
p € R (including p = 0) and that for every £ > 0 the derivative A®*)(p)
satisfies the estimates

< (L + [
) <C4, s€eR

| A®)(p) HLg(Q)—)Lg(Q
1AM )]

Hs(Q)— Hsk(Q

The elements of this pair must satisfy the matching condition

o(A(p)) = A(2,€)] 550 s>

where o (A (p)) is the principal symbol of A (p) as an operator with parameter.
(Note that the principal symbol o(A(p)) of the conormal symbol is defined
on (T*Q x R) \ {0}, which is identified with 0S* M by (6).)

The Calkin algebra. Ellipticity. The principal symbols o(@) thus de-
fined are just elements of the Calkin algebra

Ase = ‘I’(M)/{/c N O (M)}
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of the algebra of zero-order classical pseudodifferential operators in Lo(M).
(Here I is the ideal of compact operators in Ls(M).) The algebra A, is
a dense local subalgebra of the symbol algebra A described in Example 2.
The multiplication law in A is defined separately on each component; it is
given by pointwise multiplication of functions on the first component (interior
symbols) and by multiplication of operator families on the second component.
There exists a linear mapping

Ty : Age — V(M)

such that co7y = id. The construction of this mapping, which uses partitions
of unity, can be found in numerous places; we refer the reader to [18]. This
mapping (unique and homomorphic modulo compact operators) will be called
the pseudodifferential quantization on M.

The invertibility of the principal symbol (that is, the nonvanishing of
A(z,€) and the invertibility of A(p) for each p € R) is a sufficient (and
in fact necessary) condition for the operator @ to be Fredholm. Invertible
elements in A (and in M(.A) are also said to be elliptic.

Remark 7. We nowhere require that A(p) be analytic. This requirement is
only needed if one wishes to pass from one weight exponent v to another
(which necessitates considering complex values of p) or prove that the sin-
gularities of A~!(p) are isolated, whereby the ellipticity condition can be
achieved by an arbitrarily small shift in the weight exponent. Here we are
interested in neither of the topics. The Toeplitz representation constructed
in this paper is valid for arbitrary conormal symbols, and accordingly, so are
the K-theoretic algebraic index formulas.

Toeplitz quantizations. Statement of the problem. Our aim is to
find an index formula for elliptic pseudodifferential operators with symbols
in M(Ay) by explicitly constructing some Toeplitz quantization of A, equiv-
alent to the pseudodifferential quantization.

It will be convenient to us (and pretty sufficient) to solve the problem of
constructing an equivalent Toeplitz representation not for the entire algebra
Ao but rather for a subalgebra A, such that each elliptic element of M(.Ay)

is homotopic via elliptic elements to an element elliptic in M(Ax). (In fact,
it will turn out that ellipticity in M(As) and M(As) is the same). This
will provide index formulas for elliptic elements of M(.A,,) and hence (by

homotopy) for all elements of M(A).
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4 Construction of the Toeplitz quantization
for the algebra A

The representation space 2J. As was already mentioned, irreducible
representations of A fall into two series [14, 15]. One series consists of one-

dimensional representations numbered by points (z,&) € S*M and given by
the formula

,u(m)(a) = A(xaf)a a = (A(xaf),A(p)) e A.

It corresponds to the first component of a. The other series consists of the
infinite-dimensional representations

mp(a) = A(p), peR,

in the Hilbert space Ly(2). It corresponds to the second component of a.

This suggests that the representation p occurring in the definition of Toeplitz

quantization can be obtained as a direct integral of these representations.
More precisely, we take

W = Ly(S* M) & La(Co),

where the measure on S*M is smooth, translation invariant on the cylindrical
end, and otherwise arbitrary; the representation u is given by the formula

p(a)(u@®v) = <A(x, €)u, A (—i%) v) .

Remark 8. The components of a are not independent: they are related by
the matching condition. Hence it might be possible to obtain a narrower
representation space by passing to a suitable subspace of the direct integral.
However, this is by no means necessary: all we need is essentially to ensure
that all irreducible representations of A be present in pu. Moreover, the
consideration of irreducible representations only gives some motivation and
serves no other purpose.

In the following, we often omit y and write a instead of u(a). This is
harmless, since p is faithful.
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The subalgebra A. Tt is convenient not to construct a Toeplitz quanti-
zation for the entire algebra A using the above representation. Instead, we
pass to the subalgebra A C A consisting of elements a = (A(z, &), A(p)) such
that A(z,¢&) = A(w,t,€) is independent of ¢ for t > 0 (where the notation
z = (w,t) is well defined). Thus, actually A(z,&) = A(w,&) for t > 0. The
subalgebra A obviously has the following properties:

e an element is invertible in M(.A) if and only if it is invertible in M(.A);

e cach elliptic element a € M(.A) is homotopic in M(.A) via elliptic ele-
ments with the same conormal symbol to an element of M(.A).

The homotopy “sweeps” all the variation of A(w,t,&) in ¢ on the cylindrical
end into a small half-neighborhood (—¢ < ¢t < 0) of the section {t = 0} of
M.

The subspace ) and the pseudo-Guillemin transform. The Toeplitz
representation and the main theorem. In this subsection we shall de-
fine a subspace ) C 20 and an almost isomorphism

i Ly(M) — 20

of Ly(M) on $). This mapping will be called the pseudo-Guillemin transform
(or the Guillemin transform for manifolds with singularities), since, as we
shall see shortly, it is an analog of the ordinary Guillemin transform [4, 5, 8]
for smooth compact manifolds. The orthogonal projection on $), together
with the representation p, will define the desired Toeplitz quantization of
A, and the mapping I' itself will be an equivalence (an almost intertwin-
ing operator) between this Toeplitz quantization and the pseudodifferential
quantization.

We start from the description of I', while $) will be defined merely as the
range of ['. On the real line R, we consider a partition of unity

1= (x,0))" + (x, @)

such that the x;, (t) are smooth real-valued functions and



Next, let ¢(¢) be a real-valued function such that suppy C {¢t < 4} and
Y(t)x,(t) = x,(t). All these functions can be viewed as functions on M and
Cq. Moreover, we can also treat them as functions on the double M if we
extend them as continuous functions beyond the cut ¢ = 10 by constant values
on the newly attached second copy of M. Using the natural projections, we
also lift these functions to S*M, S*Cq, and S* M.
Let
T : Ly(M) — Ly(S* M)

be the Guillemin transform [8] for the compact closed C'*° manifold M.
This is a Fourier integral operator associated with a certain positive complex
canonical relation in Ty M x T (S*M). However, we do not need the explicit
structure of T, but are only interested in the following properties of this
operator.

Proposition 9 ([8]). The following assertions hold:

(1) T is an operator of order 0 in Sobolev scales, that is, T : H*(M) —
H*(S* M) is bounded for all s;

(2) the range R(T) of T is closed;
(3) T*T =id, and Il = TT* is the projection on R(T);

(4) for every smooth function b on S* M, the commutator [I1, b] is an opera-
tor of order —1 in the Sobolev scale on S* M (here and in the following,
b is interpreted as the operator of point-wise multiplication by b);

(5) for every smooth function b on S*M, one has
TT =b + K,

where b is an arbitrary pseudodifferential operator of order zero on M
with principal symbol b and K is an operator (actually, pseudodiffer-
ential) of order —1 in the Sobolev scale on M;

(6) the preceding assertion can be equivalently restated as
Tb—bT = K,

where K1 is an operator of order —1 between Sobolev scales on M and

S*M.
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Remark 10. The operators of order —1 arising in assertions 4-6 of this propo-
sition are actually compact in Lo (since both M and S* M are compact man-
ifolds) and belong to the respective Neumann-Schatten classes Gy, where
k>mnork>2n—1on M and S*M, respectively. Thus, the preceding the-
orem gives a Toeplitz representation of pseudodifferential operators on M
(which, in fact, was used in [4, 5]). In the following, we adopt the convention
that, when writing B € G, we imply that k£ is an arbitrary number greater
than the dimension of the manifold where the functions on which B acts are
defined.

We define a mapping
by setting

T =yTx, o ® x, ¢, ¢ € Lo(M). (7)

This is well defined. Indeed, the function x,¢ is supported in {¢t < 3} and
hence can be treated as a function on M, whereby we can apply the Guillemin
transform T. Next, the multiplication by ¢ permits us to understand Ty, ¢
as a function on S*M (supported in {¢ < 4}) rather than S*M. Likewise,
X, % can be viewed as a function on the cylinder Cq.

Now we can state our main theorem.

Theorem 11. The following assertions hold.
1. The range $ = R(T") of the mapping I is closed.

2. The mapping T : Ly(M) — $) is Fredholm and almost unitary. (The
latter assertion means that

F*F = ldLQ(M) +K1, FF* = ldyJ +K2,
where Ky and Ky are compact operators.)

3. The orthogonal projection P on $) in 2 salisfies the condition that
[P, a] € &, k > n, for arbitrary a € A. Thus, P determines a Toeplitz
quantization of A.
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4. One has
Ial' = 1y (a)

modulo compact operators (in fact, modulo operators belonging to the
Neumann-—Schatten class &), so that I' determines an equivalence be-
tween this Toeplitz quantization and the pseudodifferential quantization.

Thus, for the pseudodifferential quantization on a manifold with isolated
singularities I defines a representation as a Toeplitz Fredholm module of
order k > n.

Proof. One has
T = x, T Tx, + X} =1+ Ki,

where K; is a self-adjoint pseudodifferential operator of order —1 on M
with integral kernel supported in the compact set {t < 3} x {t < 3}. It
follows that I'*I" is Fredholm and Ker ['*I' = Ker I is finite-dimensional and
consists of functions supported in {t < 3}. By standard argument, we find
that R(T") is closed. Let @ be the orthogonal projection on KerI'. Then
the operator B = I['*I" + @) is an invertible pseudodifferential operator of
order 0 and the inverse B~! has the form B~! = 1 + K, with K, a self-
adjoint pseudodifferential operator of order —1 on M whose integral kernel
is supported in the compact set {t < 3} x {t < 3}. (Hence both K; and K>
belong to &.) Now the projection on R(T") has the form

_ Tx, B 'x., T* 4Ty, B 'y )
P=TB"1* = (8 2 2* 2™ 1.
( X, B 1X2T (0 x, B 1X1

Next,

{rT"}s = {TB7'T"TT"}g
={IB~'(1+ K"}
= (14 K)ls,

where K = I'B~'K I'* is compact, and we have proved assertions 1 and 2.
Since B! differs from the identity operator by an operator of the Neumann—
Schatten class &, in the proof of assertion 3 we can safely replace the oper-
ator P by

BT = (waﬁT*w wa2x1)

* 2
XX 1" xg
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and estimate the commutator [ﬁ, a]. Moreover, owing to the presence of the
cutoff function ¢ we can assume that the interior symbol A vanishes for ¢ > 9
and hence P can be treated as an operator acting in Ly (S* M) @ Lo (Cq) when
we proceed with the estimates. We have

> _ [Q/JTX?T*% A] wTX2X1:& - AQ/)TX2X1
[Pa a] - * 2 A % 2 A 3
X X, TFA = Ax x, T (X2, Al

where we for brevity write

~ 0
A=Al-i—|.
(=5)
Now, by the properties of T,
WTXET", A] = [I1, 4] = 0.

(here and in the following = stands for equality modulo operators of the
Neumann-Schatten class &;). Next, we shall estimate [Xf,:&] (Similar
estimates of commutators of pseudodifferential operators and cutoff functions
on the infinite cylinder can be found in [13].) To this end, we introduce a
smooth partition of unity

po(t) + @1(t) + pa(t) = 1
on the real line such that the following properties hold:
o X2p1 = pu;
o X}py =0;

® supp ¢y is contained in the interval [0, 10] and ¢y =1 on supp X} ).

Now we represent A in the form

A= Z Soj:&SDk
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and compute the commutator as follows:

A= ) B A

j,k=0,1,2
=[x}, voAwo] = X5, poAw1] + X2, poAws]

— Gy 0180l + [, p2Ap]l + Y (11 piAp].
Jk=1,2

Here we have used the fact that xf + X; =1

Now the first term can be interpreted as a pseudodifferential operator
of order —1 on M (the support of its Schwartz kernel with respect to the
variable ¢ is contained in the square [0, 10] x [0, 10]) and hence belongs to the
desired Neumann—Schatten class G;. All other terms have the form a:&b,
where a = a(t) and b = b(¢t) are smooth functions constant at infinity with
disjoint supports. For example,

[, oAp1] = X2poApr — poApixXs = X poAps;

here we have a = x2¢y and b = ¢1.
The integral kernel of such an operator has the form

K(z,z") = a(t)b(t") Ko(w, ', t, 1),

where Ky(w,w',t,t') is the integral kernel of A. The kernel Koy(w,u', t,t') is
smooth outside the diagonal ¢t = ¢’ and decays more rapidly than an arbitrary
power of |t —#'|7'. With regard for the arrangement of supports of a(t) and
b(t), we have

L+ [t + [t <Ot -1

with some constant C' on
supp K (z,z") C suppa(t) x supp b(t') x Q x Q.
It follows that K(z,z') is everywhere smooth and satisfies the estimates
K (z,2")] < Cy(1+ [t + [t')~Y

for all N; similar estimates are valid for the derivatives of K(x,z'). We
conclude that the operator aAb belongs to all Neumann—Schatten classes.
Thus, we have obtained the desired estimate for the commutator [Xf, Al.
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Consider the operator T/JTXQXI:& — AYTx,x,- We have

WTX, X, A — APTx,x, = ¥Tx, X, A — YT Ax, X,

where A is some pseudodifferential operator with symbol A, and the desired
assertion follows (since o(A) = A on supp X, X;) by an argument similar to
the preceding. The estimate for the lower left entry of the commutator is
similar.

It remains to prove assertion 4. We have
I*al = x, T AYTx, + x, Ax, = X;A + XTA = 7y(a)

with regard for our conditions on the symbols in A. The proof is complete.
O

5 Conclusion

Let us summarise our results and discuss possible further directions of re-
search. The main results are contained in the last theorem, where we con-
struct a generalisation

i Ly(M) — Ly(S*M) & Ly(Cq)

of the Guillemin transform for manifolds with isolated singularities and es-
tablish the equivalence of the Toeplitz quantization related to this transform
with the usual pseudodifferential quantization. It follows that

[T‘Il] = [TToeplitz] S Kl (A), (8)

where A is the Calkin algebra of the algebra of pseudodifferential operators
and K'(A) is the K-group of the operator algebra K-theory.

With this theorem at hand, we can readily write out the index formula
for elliptic pseudodifferential operators on M. It has the form (3), where the
order N of the Chern character (4) of our Toeplitz representation satisfies
N > 1/n.

Although the index formulas provided by this equivalence may prove com-
plicated in specific examples, they are undoubtedly of theoretical importance,
since they express the index in an appropriate way via the principal sym-
bol. We would also like to mention possible further directions of research in
connection with this new transform.
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First, one can try to generalize it to manifolds with nonisolated singu-
larities. In this topical field, the situation with index formulas and, more
generally, with topological invariants seems to be considerably more com-
plicated, which, in particular, reflects itself in the absence of more or less
general results.

Second, one can try to construct an analog of Toeplitz quantization on an
arbitrary contact space with isolated singularities rather than on S*M (for
a smooth closed phase space, this was done by Boutet de Monvel [4] as early
as in 1988).

Third, the following question is of interest. On a closed manifold, Eq. (8)
can be continued as follows (e.g., see [1, 7]):

[7' \p] = [T Toeplitz] = [7' Dirac]a (9)

where [Tpirac] is the Toeplitz quantization on S*M corresponding to the pro-
jection on the positive spectral subspace of the (self-adjoint) Dirac operator
naturally defined on S*M. This quantization is advantageous in that the
Dirac operator is a first-order differential operator, and hence, after some
manipulations, one can manage to obtain a purely local index formula con-
taining only the symbol and its first-order derivatives. Thus, the question is
whether one can obtain a reduction similar to (9) for a manifold with singu-
larities and what kind of Dirac operator occurs in this case. If one manages
to obtain the answers and the Dirac operator proves not to be too weird
(in the sense that an analog of the Atiyah—Patodi-Singer formula still will
be valid for this operator), then for the index of an elliptic operator @ on a
manifold with isolated singularities one will obtain a relation of the form

indd = / AS(A) + f(A),
M
where the integrand AS(A) is determined (in contrast, say, with the Melrose—

Nistor formulas [10]) by the principal symbol alone. (Needless to say, neither
term in this formula will be homotopy invariant.)
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