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Abstract

Motivated by the question of the age in a branching population we
are trying to recreate the past by looking back from the observed now
population size. We define a new backward Galton-Watson (GW) pro-
cess and study the case of geometric offspring distribution with param-
eter p in details. The backward process is then the Galton-Watson
process with immigration (GWI) again with a geometric offspring dis-
tribution but with parameter 1—p, and it is also the dual to the original
GW process. We give the asymptotic distribution of the age when the
initial population size is large in supercritical and critical cases. To this
end we give new asymptotic results on the GWI processes stopped at

Zero.
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1 Introduction

Here we address the question (amongst other questions) “how can one deter-
mine the age 7" = T(N) of a branching population when only the current
population size N is observed?” We know that in the Galton-Watson (GW)
branching process the observed size is a result of the sum of the i.i.d. integer
valued random variables. By “looking back” we reconstruct the process, and
define the age as the first time the backward process attains the value 1 (see
Section 4 for exact definitions).

The forward (direct) GW process can be seen as a result of the iteration
of the summation of i.i.d. random variables, Z,,.1 = Sz, , where S,, stands for
the sum of of i.i.d. r.v.s. (each time n a new process S is taken, but we
prefer to suppress double indexing). The inverse process to summation is the
renewal process conditioned on visiting a certain level, and the backward (time-
reversed) GW process can be defined by the successive iterations of the renewal
process. Unfortunately, such iterations are much less tractable than the direct
branching process. For example, unlike in the direct process, the moments in
general are known only asymptotically (by use of renewal theorems).

However, the case of the geometric offspring distribution turns out to be
particularly nice and allows for more detailed analysis, as the backward process
in this case is a GW branching process with Immigration (GWI) again with
geometric offspring distribution but with the complimentary parameter. This
implies, in particular, that the backward version of a supercritical GW process
is a subcritical GWI process stopped at one.

This setup provides a motivation to study time to extinction in GWI pro-
cesses stopped at zero. In Section 5 we give results on the tail of the time
to extinction when the initial population size is large, for the subcritical and
critical GWI processes stopped at zero with general offspring distributions.
These general results are applied to our backward GW process in Section 4.

The main results of this paper, Theorem 4.1 and Theorem 4.2, should be
compared to Levikson (1977), Pakes (1978) and Stigler (1970), Koteeswaran
(1989), who considered similar questions. Levikson (1977) has introduced the
age of a Markov chain with a single absorbing state 0 by using a reflecting
barrier at 0. Under the assumption that the time to absorption has a finite
mean, the new chain is constructed by an instantaneous return to 1 each
time the original chain gets absorbed. Pakes (1978) modified the definition by



considering return to 1 at the next step rather than instantly. The limiting
age is the weak limit of the time min{m : Xpem = 0} given that X, = as
n — 0o0. Our approach to the question of age via construction of the backward
process is different to the approaches considered so far.

A different approach by Stigler (1970) (also applied in Koteeswaran (1989))
is based on the maximum likelihood method. Both approaches produced the
population age estimates of order log N in the supercritical case and of order
N in the critical case but with different limit distributions.

Our results regarding the age given in Section 4 can be described as fol-
lows. In the supercritical case when the average offspring size m is larger
than 1, T(N) is of order In(/V) (see Theorem 4.1), which is expected since the
population grows exponentially.

In the critical reproduction case when m = 1 an unexpected population age
is obtained. One would expect the population age to be of order N, since the
size of a critical branching process Z,,, conditioned on nonextinction at time n,
is of order n. But according to Theorem 4.2 for large N, T(N) ~ NV where
the random variable W > 1 with P(W > z) = 1/z, x > 1. In particular,
T(N)/N — oo in probability. Thus according to our model, the age of a
critical GW population is much larger than the current population size, unlike
the other two approaches Pakes (1978) and Stigler (1970), which gave the
scaling N for the asymptotics of T'(N).

2 The backward GW process

The GW process Z,, is a simple population model assuming that individuals

reproduce independently following the same distribution

so that
Zn+1:€1+---+§Zn7 (1)

where ¢; are ii.d. random variables having the offspring distribution {p,}.
Here and elsewhere indices 1, j, k, n are assumed to take interger values only.
The Markov chain Z,, describes the dynamics of the generation size of a
GW population where n is the generation number. This dynamics is mostly
determined by the average offspring size m = F(£). Three different types of



population dynamics are predicted by the model (see [1] Athreya and Ney,
1972):

subcritical case, m < 1. quick extinction due to a negative drift,

critical case, m = 1: slower extinction and linear growth if conditioned on
non-extinction,

supercritical case, m > 1: either a quick extinction or exponential growth.

To construct a backward GW process X,, we start with the current popu-
lation size Xy = N as the initial state of the Markov chain under construction.
The previous generation size X is a natural valued random variable such that
(see (1))

&i+...+&, =N,

In a similar way the random variable X, is related to Xj;.
To make the definition precise let S, = > ;& and 7, = inf{n : S, = k}
be the first time the random walk hits value k. If the upward random walk S,

misses the level k£ we put 7, = oc.

Definition 2.1 The backward GWP X,, is a Markov chain with the one step
transition probabilities

Theorem 2.1 If the reproduction law is geometric G(p) with probabilities

pi=pg, >0, 0<p<l, g=1-np, (2)

then the backward GW process {X,} is a GWI process with the offspring dis-
tribution G(q), ¢ = 1 — p, and unit immigration. Moreover, the shifted process
Y, := X, —1 is a GWI process with offspring distribution G(q) and immigration
distribution G(q).

PROOF:

The geometric distribution (2) models the number of failures before the
first success in a sequence of independent Bernoulli trials with probability of
success p. Therefore, S, corresponds to the number of failures before the n-th
success in Bernoulli trials. As an illustration consider a sequence of successes

and failures

51f18283f2f3f484f5853657f6f788 e
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In this case
S1=0,5=5=1,5,=4,5,=5=5:=5,5%=17,...

and

TN=2,T9=T73=00,T4 =4,75 =0, = 00,77, =8, ...

Observe now that
P(r; =j) = (j ;_1_1 2>qui =pP(R;=j—1),
where R; is distributed as the number of successes before the k-th failure
(Negative Binomial distribution)
P(R; = j) = (j T 1)p"qi.
Hence P(1, < 00) = p and P(7; = j|mp, < 00) = P(Ry, + 1 = j).

We conclude that given the current state X,, = 7 of the backward GW
process, the next state X, is distributed as R; + 1. We interpret this as
an immigrant counted together with the offspring of ¢ individuals constitut-
ing the previous generation. The resulting GWI process has the offspring size
distribution p; = ¢p’, the same as the number of successes before the first
failure. The immigration process is deterministic: exactly one immigrant joins
every generation of the population. In the framework of the forward GW pro-
cess this immigrant might be treated as a guaranteed ancestor in the previous
generation.

The shifted process Y,, which ignores the immigrant counted in X, can
again be vewed as a GWI process. The trick is to consider the daughters of
the immigrant counted in X,,_; as the immigrants counted in Y,. Obviously,
the reproduction law of the new GWI process remains to be G(¢) while the im-
migration law ceases to be deterministic and becomes the same as the offspring
size distribution G(q).

O
Remark. A different definition of a reverse GW process X, is presented in

Esty (1975) in terms of the joint probability functions:

P(Xp, = i1y, Xp, =i/ Xo = 4o)
= lim P(Zn*nl = 7:1’ .- -aannk = ZIc|Zn = io,Zn,l > 0)

n—oo
In the critical case this model predicts a linear growth of the population size
when traced back in time.



3 Duality

In this section we establish the following property of duality (see Ligget, 1985)
between a GW process with the geometric reproduction law and its backward

counterpart.

Theorem 3.1 If Z, is the GW process with the geometric reproduction law
(2) and X, is its backward counterpart, then for all 5 > 1 and i > 0

P(Z, < jlZy = 1) = P(Xy, > i]Xo = j). (3)

Furthermore, if p < 1/2, the backward GW process has a stationary geometric
distribution
mp= 1= > 1,

where r = p/q is the extinction probability
r= lim P(Z, =0|Z, =1).

Remark. In terms of the shifted process Y,, = X, — 1 relation (3) can be

rewritten as
P(Z,<jlZy=1)=P(Y,>iYo=3), i>0, 7 >0.

A similar duality relationship is known for two random walks on {0,1,2,...}.
The forward random walk makes either a unit step upward with probability
p or a unit step downward with probability ¢ and gets absorbed at 0 with
probability one. The backward random walk goes up and down with the
complimentary probabilities ¢ and p and is reflected at 0 with probability g.
The duality property indicates that one random walk is a proper time-reversal

of the other random walk.

PrROOF: of Theorem 3.1.
Using the Bernoulli trial description of the backward GWP process we can
claim that
P(Zy < j|Zy =1) = P(X1 > 1| Xy = j)

because both sides of the relation are equal to the probability of having the
1-th success before the j-th failure. In terms of one-step transition matrices
of the Markov chains 7, and X, the previous equality might be written as

6



PH = HQ)', where H is a matrix with elements H;; = I(i < j), >0, j > 0,
and @' stands for the transpose of ). Therefore,

P"H = P"'PH =P 'HQ' = ... = H(Q")

which is equivalent to (3).

To show that in the case p < 1/2 the backward GW process has a stationary
geometric distribution we use the following asymptotic property of supercritical
GW process [1, Ch. 1]:

P(Z, < jlZy=1) = 1" asn — o0
valid for any j > 1 and ¢ > 0. In view of (3) it follows that
lim P(X,, > i|X, = j) =1,

with the RHS giving the tail of a stationary geometric distribution.
O
To retain the duality property (3) in the general case, when the offspring
distribution is not necessarily geometric, one can relax the Definition 2.1 by

removing the requirement of the random walk S,, visiting a certain level.

Definition 3.1 Let V (k) = inf{n : S, > k} be the first time the random walk
S, exceeds the value k. Define the relazed backward GW process X, by the
recursion X, = V(X,), Xo = N.

Now, since obviously
P(Zyy1 < j|Zy =1) = P(S; < j) = P(V(j) > 1) = P(Xpp1 > i| X0 = 7)

we conclude that the duality property (3) always holds for the relaxed backward
GW process X,. Note that in the case of geometric offspring distribution
the backward process X,, and the relaxed backward process X,, are equal in
distribution.

We comment on the way of analysis of the general backward process X,
but do not give details. Conditions for transience and recurrence are obtained
by using results of Kersting (1986) and renewal theorems, but only in the

non-critical case.



An alternative approach is possible by representing X, as a controlled GW
process

n+1 Z gj,

with the following geometric offspring dlstrlbutlon

P(€=1i)=P'(E=0)P(>0),
and the control function ¢(k) giving the number of positive jumps before the
random walk S,, exceeds the value k. The theory of controlled GW processes
was initiated in [12], [17] and developed for random control functions ¢(k) in
[15]. However, this representation also does not seem to handle the critical
case in our model. Therefore we concentrate on studying processes with a

geometric offspring distribution, where explicit results are possible to obtain.

4 The age of a GW population

Definition 4.1 Given the current population size Xo = N the age of a GW
population T = T(N) is defined as a stopping time

=inf{n: X, =1} =inf{n: Y, = 0}.

This definition neglects the possibility of the forward GW process revisiting
the state 1. Strictly speaking our 7" underestimates the true age of the GW
population.

The next two theorems present the main results of the paper concerning
the asymptotic distribution of the population age T'(N) as N — oo. Theorem
4.1 treats the supercritical case when the offspring mean m > 1, and Theorem
4.2 the critical case m = 1.

Theorem 4.1 Let p < 3, so that m = g 18 larger than 1. If N ~ ym", as

n — 00, then for any interger k

lim P(T(N)<n+k)=—— Z w; exp(—y(m — 1)m**71),

N—oo

with a decreasing sequence w; of positive numbers satisfying the recurrence
relation (9) with coefficients

(4)



Theorem 4.2 Ifp= %, then for all z > 1

lim P(T'(N) > N*) =1/x.

N—oo

We prove these theorems by using the fact that 7" is the extinction time of
a certain GWI process stopped at zero, which follows by duality (Theorem 2.1)
and by using general results on the extinction time of GWI processes stopped
at zero. These results are given in the next section. Here and apply the results
to the shifted backward GW process process Y,,.

ProOOF: of Theorem 4.1 and Theorem 4.2.

According to Theorem 2.1 the shifted backward GW process Y,, is a GWI
process with the reproduction probability generating function (p.g.f.), average
offspring size, and the immigration p.g.f. given by

9 =L B(s)=F(s).

F =
()= n=",

In the geometric reproduction case the p.g.f. iterations
Fu(s) = F(s), Fua(s) = F(Fu(s)), n > 1 (5)
are calculated explicitly [1, p. 7]:

pr(p—1) (RS

Fals) = 1- IEULESTE
Mn—H -1 1- (Nli+1,11),us 2
and
n—(n-1)s .
F(s)= —— /7 =1
() n+l-ns P72
It follows that ) "
_/11 X
F,(0) = n+1,1fp<%,

and
n .
Ifp< %, then p < 1 and we can apply Theorem 5.1. To see that it implies

Theorem 4.1 observe that = L

m?
nl_
1—Fn(0)=M~cu”, as n — 00
—



with ¢ =1 — p = =1 Furthermore, the sequence defined by (6) equals

P.(0) = [T Fi(0) = T it
i=1 H

and converges toa =1—pu = mT_l as n — o0. It remains to check that formula
(4) gives the sequence (8) appearing in (9).
If p= 1, then

p=1,B=B1)=1,vy=F'(1)/2=1, 0 =6/y=1

and we use Theorem 5.3. It suffices to notice that

1
n+1

P,(0) = and Y _ P;(0) ~Inn, as n — oc.
i=1

5 GWI process stopped at zero

First results on the GWI processes stopped at zero were obtained in [16] and
[14]. We introduce a GWI process stopped at zero following [11] and [5]. Let
{ni}, be a sequence of i.i.d. integer valued nonnegative random variables with
p.gf. F(s), {I,} is a sequence of i.i.d. integer valued nonnegative random
variables with p.g.f. B(s), and define the GWI process by taking Y; = N to
be a positive integer, and provided Y,, > 0,

Yn
Yn—|—1 = Z ;i + In—|—1-
i=1
The process stops first time Y,, = 0. Let T be the time to extinction, i.e.
T = inf{n : Y,, = 0}. For each n a different iid sequence of 7;’s is taken, so
that we avoid double indices.
Let u, = P(T(N) > n) and put

w=F(1-), =B(1-), y=F"(1-)/2, o = B/~.

The purpose of this section is to give some results on the tail of 7', or asymptotic
behaviour of u, for large N and n = n(N) assuming that P(T" < co) = 1. The
latter obviously holds in the subcritical case © < 1 and is violated in the
superctitical case g > 1. The true threshold lies in the critical domain p =1

10



with P(T < oo) =1 being valid iff 0 < 1 (see [5, p.224]). If uy =1 and 0 > 1,
the immigration inflow at rate § = E(I,,) might overcome the extinction trend
due to the reproduction uncertanty v = Var(n;).

An important quantity in the analysis of the GWI process is the probability

of hitting zero by a GWI process with stationary immigration

P, (0) = H B(F(0)), (6)

where p.g.f. are defined by (5). The sequence of interest u, satisfies the

following renewal equation (see [11, p.13])
n

Un = Cp + Y Qilin—i, (7)
i=1

where
an = Py_1(0) — P,(0), ¢, = P,(0)(1 — F,(0)™). (8)
The corresponding renewal function is given by the recursion
Wy =Y ajwp_;, wo = 1. (9)
i=1

It is known that in the subcritical case, u < 1, (see [11, p. 14])
P,(0) > a€(0,1), n— o0 (10)
and (see [4])
1 —F,(0) ~ cu™, for some 0 < ¢ <1, n— oo. (11)

Theorem 5.1 If p <1, and N ~ ym™ as n — oo, then for all integer k

lim P(T(N)<n+k)=« iwi exp(—cym” ), (12)

N—-oo i—0
with o, ¢, and w; given by (10), (11), and (9).

Theorem 5.2 If y =1 and 0 < 1, then
1

77(33 ) ))dve.

lim P(T(N) > zN) = /0””(3, — ) o(1 — exp(—

N—oo

Theorem 5.3 If u=1 and o0 =1 then for any z > 1

Jim P(U(T(N)) > @l(N)) = 1/,

where l(n) = Y1, P;(0) is known (see [5, p. 225]) to be a slowly varying at

infinity function.
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5.1 Proofs of stopped GWI results

We prove first that the sequence w, defined by (9) is decreasing. We have

Wy = 01Wp—1+ AQWp2+ ...+ Qp1W1 + Gy
= Wp-1— Pl(O)wn,1 + Pl(O)wn,Q — PQ(O)UJ,,L,Q =+ ...
+Pn_2(0)w1 - Pn_l((])wl + Pn—l((]) — Pn(O)

It follows that the difference A, = w,_1 — w,, satisfies the recurrence
Ap+ Pi(0)An_1 + P (0)Ap2 + ...+ P1(0) Ay = Py (0).
Write the same for n — 1,
Ap i +P(0)A, 2+ ...+ P, 2(0)A; = P,1(0),

and use P]:’ii% = B(F,_1(0)) to obtain

A, + Pi(0)A,_1+ P(0)Ap o+ ...+ Py_1(0)A
= B(Fn_l(O))(An_l + Pl(O)An_Q + ...+ Pn_Q(O)Al)
£(0) F(0)P1(0)

= —2_ A, 1+
P_(0)"" T Pa(0)

It now follows that A, > 0, since

Apg+....

B(Fn-1(0))

B(Fn1(0DF0) = =50

Pi41(0) = Piy1(0)

for all 0 <7 < n — 1. Thus the sequence w, is monotone, the fact we use in
the proof of Theorem 5.3.

PROOF: of Theorem 5.1.

Expressing the solution to the renewal equation (7) in terms of the renewal
function (9)

Up = Y Wy (13)
=1

we obtain
n+k—1

P(T>n+k): Z WiCnik—i, k=10,%1,...
1=0

It follows by (8), (10), and (11) that under the conditions of the theorem,

ki — (1 — exp(—cym”*™")).

12



Hence the result.

O
PRrROOF: of Theorem 5.2.
Writing (13) in the integral form
Un, :/ cnodU(v), Uln) :=> w;
0 =0
and performing substitution, we get
1
Up, = / Cn(1—v) AU (nw). (14)
0
Now, it is well-known (see [1, p. 19]), that in the critical case, u = 1,
1
1—-F,(0) ~ —, n— o0. (15)
yn
On the other hand if o < 1, then (see [16])
P,(0) ~n~"L(n), n— oo, (16)

where L(t) is a slowly varying at infinity function. So by (8) for any fixed
0<t<L1

ot~ (nt) L(nt)(1 —e )
~ t7°(1—e 7)n""L(n), as n — oc. (17)

Finally, according to the renewal theory (see [3], p. 471) conditions (16)
and o < 1 imply

U(nv) ~v'n’/L(n), asn — oo, v >0,

hence from (14) and (17) it follows

1

m))dv“, z > 0.

lim wu,ny = / (x —v)77(1 — exp(—
N—o0 0

PROOF: of Theorem 5.3.

Assume that m =1 and ¢ = 1 and fix some z > 1. In view of
P((T) > zl(N)) = P(T > l_1(zl(N))) = u.,
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we have to verify that
ur = 1/z, N — oo, (18)

where 7 := [_y(zl(N)) is such that 7/N — co. Our proof of (18) hinges upon
the asymptotic relation
wy ~ 1/l(n), n — oo (19)

which follows from the relation between different p.g.f.

o 1 1
w;s = s - = P =
; 1=3% a5t (1—5)X2, Pi(0)st

monotonicity of w,, and a Tauberian Theorem 5 from [3, p. 447].
To arrive at (18) split the sum from (13) in three parts

ur =Y PO)1-FY0)w—i= Y + > + >, (20)
i=1 i<eN eN<i<KN i>KN

where € and K are a small and a large constant respectively. Since F;(0) is

monotone increasing,
1-FNX(0)<1-FN0) <1, i<eN
so that we obtain for the first sum in (20)

(1= EXO) N w,—on € 3 PO)(1 = FN(0)w,—i < I(eN)u,.

1<eN

Thus we obtain the main contribution in u, in (20) by taking limits as N — oo
and using (15) together with (19)

_a 1 . N 1
(=), < m ¥ RO0-E Opis D
Since € is arbitrary small, we conclude that
1
li P(0)(1 = EN(0)w,—; = —. 22
Ngr;oi;v()( i (0))w . (22)

It is easy to see that the contribution of the other two sums in (20) is nil.
Indeed,
I(KN) —I(eN)

lim su Py(0)(1 — EN(0))w, ; < limsu =0, (23
mowp 3 R0)(— B O)wr < limewp =y (23)

14



by the property of slow variation of /. For the third sum in (20) we write

limsup > P(0)(1 — FY(0)w, < Jim (1 - Fy(0)) =1 — ¢ 3.
— 00

N—=oo gN<i<r

Now, since K is arbitrary large, we conclude that the third sum in (20) also

gives zero contribution to u,.
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