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ABSTRACT. For fixed magnetic quantum number m results on
spectral properties and scattering theory are given for the three-
dimensional Schrédinger operator with a constant magnetic field
and an axisymmetrical electric potential V. Asymptotic expan-
sions for the resolvent of the Hamiltonian H,, = H,,, + V are de-
duced as the spectral parameter tends to the lowest Landau thresh-
old Ey. In particular it is shown that Ey can be an eigenvalue of
H,,,. Furthermore, asymptotic expansions of the scattering ma-
trix associated with the pair (H,,, H,y,,) are derived as the energy
parameter tends to Ey.

1. INTRODUCTION

Spectral and scattering theory for the three-dimensional Schrodinger
operator with a constant magnetic field

H(A)=Hy(A)+V(x) = (-iV—-A)>+V(z), A=(1/2)B x z,
(1.1)

has received substantial attention due to applications in astrophysics
and solid-state physics (see the survey in ref. [21] and references therein)
as well as mathematical interest. The basic mathematical aspects of
the scattering theory for the pair (H(A), Hy(A)) have been studied
in ref. [5] where the existence and completeness of the corresponding
wave operators were proven for a large class of potentials V' (see also
ref. [20] for a more recent extension of these results).

This work concerns problems arising in the context of near-threshold
scattering for the pair (H(A), Hy(A)), when the energy parameter ap-
proaches the lowest Landau threshold. A lot of work has been done
in this field for Schrodinger operators without external fields. Classic
results going back to the late forties and early fifties treat the radial
symmetric case. In the late seventies, Newton [26] was the first to give
detailed results on various threshold properties of three-dimensional
Schrédinger operators with local (noncentral) potentials. His work was
followed by the monumental work by Jensen and Kato [14]. Based on a
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detailed analysis of the zero-energy properties of the three-dimensional
Schrédinger operator —A + V(z) with V satisfying an abstract short-
range condition, Jensen and Kato deduce asymptotic expansions of the
full resolvent as the spectral parameter tends to zero (the so-called
low-energy limit). As an application they derive expansions of the
scattering matrix as the energy parameter goes to zero. The closely
related problem of coupling constant thresholds was studied by Klaus
and Simon [17]. Threshold scattering in the three-dimensional case was
then reconsidered in a very systematic way by Albeverio, Gesztesy and
various co-workers [3, 2, 4], and in the two-dimensional case by Ch-
eney [11] with a complete treatment provided later by Bollé, Gesztesy
and Danneels [7]. The case of nonlocal interactions in three dimen-
sions was first considered by Newton [27] and later completely resolved
by Bollé, Gesztesy, Nessmann and Streit [9]. An excellent survey of
threshold properties of Schrédinger operators in dimensions one, two
and three can be found in [6].

Despite its obvious importance much less is known on such problems
for the operator H(A) in Eq. (1.1), which is probably explained by the
additional complications that arise (see below).

We restrict ourselves to the case, where the electric potential is ax-
isymmetric, i.e. V(x) = V(p,2), p = (2% + y*)¥/2, and decays like
V(x) = O(|&|~%) as |x| — oo for some « > 2. Furthermore, we assume
that the magnetic field has constant strength 2 and is aligned in the 2
direction. For fixed magnetic quantum number m the resulting Hamil-
tonian H,, = H,,, + V on the Hilbert space H = L*(R; x R, pdpdz)
has the structure of an infinite-channel operator-valued matrix. With
respect to the projection Py onto the lowest Landau level we can rep-
resent H,, in a two-channel framework

_( Hy O 0 Vu
= (B 0)e(2 %) ay
~—_———

HI

om

on H = Hy® H;, where Hy = Ran Py and H; denotes its complement.
By construction, Hy and H; are self-adjoint operators in Hy and H;,
respectively. Moreover Vj; = Vio and Vi, € B(3Hy, Hy).

Due to the diagonal structure of the uncoupled Hamiltonian H, _ its
spectrum is the union of the spectra of Hy and Hy, respectively. We
have 0,.(Hg) = [Ep,o0) and 04 (H;) = [Ey,00), where E, = 2(|m| —
m+1+2n),n=0,1,2,..., are the Landau levels. There are several
possible, mostly fairly ’singular’ cases to treat, e.g. the one where we
assume that Ey is an isolated eigenvalue of Hy. Thus, H, has an
eigenvalue embedded at Fy; the bottom of its continuous spectrum.

In ref. [25] we have derived asymptotic expansions of the resolvent
R(¢) = (H,, — ¢)~! as the spectral parameter ¢ tends to the lowest
Landau threshold Ey. This is done in various, mostly fairly ’singular’
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situations, e.g. the afore-mentioned. As an application of these ex-
pansions we established scattering theory for the pair (H,,, Hyy) and
deduced asymptotic expansions of the scattering matrix as the energy
parameter tends to the lowest Landau threshold. Let us state one of
the main results (see ref. [25, Theorem 7.8]). Assume that o > 13,
13/2 < s < «—13/2 and that Ej is a regular point of Hy, i.e. Ej is nei-
ther an eigenvalue of Hy nor a half-bound state (we have a half-bound
state if there exists a solution to the equation Hyy = Eyy belong-
ing to a slightly larger space than #; the case, where there is such a
half-bound state of Hy, is also treated in ref. [25]). Under the latter
assumption we have in the norm topology of B(3§, H,°) the following
asymptotic expansion for the resolvent of Hy,

Ro(¢) = G +i(¢ — Eo)?GY) + - -- (1.3)

as ( = Fy, ¢ € C\[Ey,0), provided the potential V' decays suffi-
ciently rapidly at infinity and s is chosen appropiately. Here 3 denotes
the weighted space associated to Hy (see Eq. (5.6)). Assume, more-
over, that Ej is an isolated eigenvalue of H; with finite multiplicity.
We denote by P]g)) the eigenprojection onto the eigenspace associated
with the eigenvalue Ejy of H;. Assume, in addition, that the operator
PRVieGP Vor P is strictly positive and invertible in B(Pg 9(;). This
is a kind of effective interaction assumption. Then, generically, we have
in the norm of B(H{ & H3, Hy® @ H{®) the asymptotic expansion

R(C¢) = Ry +i(¢ — Eo)*Ry + O(¢ — Ey)) (1.4)

as |( — Ey| — 0, where the coefficients Ry and R; in Eq. (1.4) are given
explicitly. Despite the singular nature of the problem, Eq. (1.4) reveals
that, generically, the singularities cancel. In particular, the resolvent
has a well-defined limit Ry at the threshold point in the norm topol-
ogy of B(H§ & HS, H,* @ H°). Moreover, under the afore-mentioned
assumptions and via the expansion Eq. (1.4) we deduce that, in the
norm topology of B(C?), the scattering matrix S(\) has the following
leading order behaviour as the energy parameter A tends to FEy:

S(\) = ( O ) +o(1).

All the results in ref. [25] hold generically. Hence in all the various
cases, e.g. the above-mentioned, we use in the proofs that a certain
operator C (a different operator for each case) is compact and, conse-
quently, the operator I — C' is invertible generically, i.e. if g is a real
parameter g and we introduce the family I—¢gC' then I —gC is invertible
except for a discrete set of g’s.

The aim of the present work is to deepen the analysis of the most
simple case considered in ref. [25]. In the most simple case we assume
that Ej is a regular point of Hy and Ey € p(H;). Then the expansion
in Eq. (1.3) holds for the resolvent of Hy and, furthermore, we have in
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the norm of B(¥;) the usual Neumann expansion for the resolvent of
H,, viz.

o0

Ri(¢) =D (¢ — Eo)"Ry(Eo)™ (1.5)

n=0

for |¢ — Ey| sufficiently small. This is clearly the most simple case be-
cause we have no singular terms (negative powers in ({ — Ey)'/?) neither
in Eq. (1.3) nor in Eq. (1.5). In ref. [25] we derived an asymptotic ex-
pansion for R(() of the form in Eq. (1.4). As usual it holds generically.
Within the context of ref. [25] this situation is trivial to treat in the
generic case. (Of course the singular cases considered in ref. [25] are
by no means trivial to treat in the generic sense).

In the present work we go beyond the generic case. We propose
a new approach to the case, where Ej is a regular point of Hy and
Ey € p(H;). We introduce an auxiliary one-dimensional Schrédinger
operator A' = —d?/dz?> + Ey + W in L?(R) related to H, (see Eq.
(6.4) for the precise relation). We show that the operator A’ fits into
the general framework of ref. [23]. In particular we have a complete
classification of the Ey-energy properties of A’. A priori Fy can be
an eigenvalue of A’ or a half-bound state (see definition above). In
dimension one it is natural to assume that a half-bound state belongs
to L°(R). It turns out that essentially three cases may occur: Case
0) A" has no eigenvalue Ey and no half-bound state (Ey is a regular
point), Case 1) A’ has no eigenvalue E; but has a half-bound state
(Ey is an exceptional point of the 1st kind), Case 2) A’ has eigenvalue
Ey but has no half-bound state (Ey is an exceptional point of the 2nd
kind) and (the mixed) Case 3) A’ has both eigenvalue E, and half-
bound states (Fy is an exceptional point of the 3rd kind). Furthermore,
there are at most two half-bound states modulo L? functions. Due to
this circumstance, additional subcases arise in the exceptional cases
of 1st (three subcases) and 3rd kind (three subcases). In each case
asymptotic expansions of the resolvent R(A’,() were deduced in ref.
[23]. Generally, the expansions take the following form in the norm
topology of B(H~"*(R), H"*(R))

R(A Q) = —(C—Eo) ' FY —i(¢ — Ep)~V2FY)
+F +i(¢ — B)?FY 4. (1.6)

as | — Ey| — 0, provided W decays sufficiently rapidly at infinity and
s is chosen appropiately. Here H**(R) denotes the weighted Sobolev
space (see the definition in Sect. 2).

In each of the possible cases characterized by the Ey-energy proper-
ties of A" we deduce asymptotic expansions of the resolvent R(() as ¢
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tends to Ey. Generally, as |( — Ey| — 0 the expansions take the form

R(C) = —(¢C—Eo)'RY, —i(C — Eo)~'?RY,
+RY 1+i(¢c — E)2RY + - (1.7)

in the norm topology of B(H @ 3y, Hy* @ H,) provided V decays suf-
ficiently rapidly at infinity and s is chosen appropiately. We emphasize
that the expansions in Eq. (1.7) reveal that any of the above-mentioned
cases 0, 1 and 2 (and the mixtures in Case 3) may occur for the full
Hamiltonian H,,. (Consequently, we have introduced an upper index !

in the coefficients R,(cl) to differentiate between these cases). In partic-
ular, Ey can be an eigenvalue of H,,.

As an application of these expansions, we derive asymptotic expan-
sions of the scattering matrix associated with the pair (H,,, Hyy) as
the energy parameter tends to Fj.

The advantage of this work is that we are able to treat each of the
cases which arise, without limiting ourselves to the generic cases.

The paper is organized as follows. In Sect. 2 we fix the nota-
tion. In Sects. 3 and 4 the magnetic Hamiltonians H,,, and H,, are
introduced. We fit the infinite-channel Hamiltonians H,,, and H,,
into a two-channel framework in Sect. 5. Auxiliary results on one-
dimensional Schrédinger operators (with non-local potentials) are col-
lected in Sect. 6 and in Sect. 7 we obtain the main results on asymptotic
expansions for the resolvent of the Hamiltonian H,, as the spectral
parameter tends to the lowest Landau threshold. In Sect. 8 we give
applications to scattering theory.

We have decided to make the paper self-contained. Consequently,
the contents of Sects. 3, 4 and 5 are identical with the contents of
Sects. 3, 4 and 5 in ref. [25], wherein the Hamiltonians H,,, and H,,
are introduced and the two-channel model is constructed.

The present work and ref. [25] complement work by Kostrykin, Kvitsin-
sky and Merkuriev in ref. [18], who address the exact same problem.
The authors restrict themselves to the most simple case, where Fj is a
regular point of Hy and Ey € p(H;), which is precisely the assumption
we make throughout the present paper. However, they limit them-
selves to the generic case. Their method is a direct generalization of a
method developed by Bollé, Gesztesy and Wilk in ref. [10] in a study of
the one-dimensional Schrodinger operator. The authors write that in
order to incorporate the cases where some of the thresholds are excep-
tional points, one can adjust the technique of ref. [10]. In a sense, this
has been one of the aims of the work and ref. [25], although we think
that our methods go beyond what we understand as an adjustment.

In ref. [33] Tamura has recently studied low-energy scattering for
the Schrédinger operator in dimension two with a compactly supported
magnetic field. He is able to adapt the method developed by Jensen
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and Kato in ref. [14] to the problem. This is not possible in the present
work.

Finally, we mention that this work has its origin in the author’s Ph.D.
thesis, ref. [22], where a preliminary version can be found in Part IV.

2. PRELIMINARIES

Let T be a self-adjoint operator on a Hilbert space H with domain
D(T). The spectrum and resolvent set are denoted by o(7T") and p(T),
respectively. We use standard terminology for the various parts of the
spectrum, see for example ref. [13]. The resolvent is R(¢) = (T —¢)~".
The spectral family associated to 7" is denoted by Er(A), A € R.

For a complex number z € C\ [0, 00) we denote by z'/2 the branch
of the square root with positive imaginary part.

Let R? be the d-dimensional Euclidean space, denote points of R?
by € = (z1,...,74) and let || = (Zjﬂx?)l/? For 1 < p < oo let
L?(R?%) be the space of (equivalence classes of) complex-valued func-
tions ¢ which are measurable and satisfy [, [¢(2)[Pde < oo if p < 0o
and ||¢[|peo(rey = ess sup || < oo if p = co. The measure dx is the
Lebesgue measure. For any p the LP(R¢) space is a Banach space with
norm || || pogay = (fga |- [Pde)*/?. In the case p = 2, L*(R?) is a complex
and separable Hilbert space with scalar product (¢, ) 2md) = [za o

and corresponding norm |9 2rey = (¥, ¢)2/22(Rd)'

The space of infinite differentiable complex-valued functions with
compact support will be denoted by C°(R?) or D(R?), the space of
test functions. The adjoint space of D(R?), D'(R?), is the space of
distributions on D(R?). The Schwarz space of rapidly decreasing func-
tions and its adjoint space of tempered distributions are denoted by
S(R4) and &' (R?), respectively.

Let p denote the momentum operator —;V and let (p) = (1+p?)'/2.
We use the weighted Sobolev space H™*(R¢) given by

H™(R?) = {¢) € S'R)| 1¢]|m.s = [[{z)* ()" |2 < o0}

We use (-, -) to denote the inner product on L?(R?) and also the natural
duality between H™*(R%) and H~™~*(R%). B(H™*(R%), H™* (R%))
denotes the space of bounded operators from H™* to H™* with the
operator norm. The Fourier transform is given by

Fo)(©) = 0(6) = 2m) " [ (e de
R
and is a bounded map from H™*(R?) to H*™(R?).
A key ingredient in our approach is the Feshbach formula, which
gives a convenient explicit representation of the resolvent R(() of a
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two-channel Hamiltonian H on the form
H, Vg
H = R
( V;Ja Hb >
There are two variants. We give only one of them. The other version
is just an interchange of indices. Define

Ra(g) = (Ha - C)_lv (21)
Tb(C) = Hb - C - ‘/;JG,RG,(C)‘/;,I)'
Then for Im ¢ # 0 we have

R(()

(O BT TLRO —RQUTO™ Y o
~T(O) Ve Ra(€) T,(¢)~ '

3. THE FREE HAMILTONIAN H,,

In R® we consider a charged, spinless particle in a homogeneous
magnetic field with no other forces present. Assume that the mass of
the particle is 1/2 and its electric charge is 1, and that the magnetic
field B has constant strength 2 and is aligned in the z direction: B =
(0,0,2). The Hamiltonian of the particle is Hy(A) = (p — A)?, where
p = —iV is the momentum operator and A is the vector potential
associated with the field, viz. B = V x A, and defined up to a gauge
transformation. We choose the gauge in which A = %(B X r) and
denote the Hamiltonian by Hy(B) to emphasize that the magnetic
field is constant. The Hamiltonian Hy(B) is essentially self-adjoint
on C$°(R3) (see ref. [30]). For convenience, we use the same notation
Hy(B) for its closure. With an appropiate choice of the system of units,
Hy(B) may be written in cylindrical coordinates (p, ¢, z) in the form

.0 9
We rewrite Eq. (3.1) as
Hy(B) = p2 + Hyy. — 2L, (3.2)
where
10 0 1 02
H,=————»_p— ) - —— 2 .
.0

It is well-known (see ref. [5] for details), that H,s. and L, acting on
L*(R?) have a complete, joint set of eigenfunctions { fon }m=0 41,42, ;n—012,..:

szmn = mfmn; Hoscfmn = 2(|m‘ +1+ 2n)fmn
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The m and n are called the magnetic and radial quantum numbers,
respectively. If we denote H, = H,,.— 2L, then H, has eigenfunctions
fmn with corresponding eigenvalues

Epn =2(Im| —m+1) + 4n. (3.5)
The functions f,,, are known explicitly:
Frn(p, ) = (2m) 720U (), (3.6)

Ui (p) = 22 {nl(n + [m)1} /2o exp(—p?/2) LY (), (3.7)

/ U2 (p)pdp=1; m=0,%£1,%£2,...;n=0,1,2,... (3.8)
0

Here L{™ are the generalized Laguerre polynomials (see ref. [1]). It fol-
lows from the properties of Li™ that for any fixed m the set {Umn 152,
forms an orthonormal basis in L?((0,00), pdp). Often the eigenfunc-
tions f,, are referred to as Landau orbits, and the corresponding eigen-
values E,,, of H, are called the Landau energy levels. It is well-known
from ref. [5] that

i): inf spec(Hy(B)) = 2.

ii): 0(Ho(B)) = 0ess(Ho(B)) = 04c(Ho(B)) = [2, 00).
Let {Pun}, m € Z, n > 0 be the set of orthonormal one-dimensional
projections onto the corresponding eigenspaces of H,. Hence, H, =
> rin EmnPrn in L*(pdpd¢). Let H,,,, = Ran P, ® L*(R). Decom-
pose the space L?(R?) into the orthogonal sum of the subspaces H,,,
corresponding to fixed magnetic and radial quantum numbers. Then
we can express the free, magnetic Hamiltonian Hy(B) as

Ho(B)=1®p2+)  EmnPun® I (3.9)

in @,,, Hmn- One easily shows that 3{,, is a reducing subspace
of Hy(B) and, in addition, for fixed m the orthogonal sum 3, =
D,> s Hpn is a reducing subspace of Hy(B). Thus, the restriction of
Hy(B), denoted by H,yp,, to a fixed, magnetic quantum number m is a
self-adjoint operator in 3, with domain D(H,,,) = D(Hy(B)) N Hy,.

4. THE FuLL HAMILTONIAN H,,
We make the following assumption on the potential V.

Assumption 4.1. Let V = V(x) be a real-valued, measurable func-
tion on R3.
(i) Let V satisfy the estimate

V()| < C(1+z)™® (4.1)

for some constants C' > 0 and o > 1.
(ii) Let V be axisymmetric, i.e. V(z) = V(p, 2) with p* = 2% + 3°.
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We refer to a as the decay parameter. Note that under Assump-
tion 4.1 with & > 1 we have that V' is a compact map from H'O(R?)

to H-1e (R®) for all 1 < o' < o

Let us state here as a lemma the following consequences of the Kato-
Simon inequality \e_tHO(A)M < |e7*|¢)| and a result of Dodds-Fremlin
in ref. [12] and Pitt in ref. [29]:

Lemma 4.2. Let W be a multiplication operator and let A € L2, (R"™).
Then

(1) if W is A-bounded with relative bound a, W is Ho(A)-bounded with
relative bound at most a;

(i1) if W is A-compact, it is Ho(A)- compact.

We have the following lemma.

Lemma 4.3. In L?(R?) let V satisfy Assumption 4.1(i) with a chosen
as below.

(i) For o >0V is Hy(A)-compact.

(i1) For a > 1 |z|V is Ho(A)-compact.

(111) For o> 2 |z|*V is Hy(A)-compact.

Proof. The assertions are easy to show for Hy(A) replaced by A. Then
the assertions for Hy(A) follow by Lemma 4.2. O

Let V satisfy Assumption 4.1(i) with o > 0 and let B be defined
as in Sect. 3. It follows from Lemma 4.3 that the Schrédinger op-
erator H(B) = Hy(B) + V is self-adjoint in L*(R®) on the domain
D(Hy(B)) and, due to Weyl’s essential spectrum theorem, we have
that oess(H(B)) = 0ess(Ho(B)) = [2, 00).

In the sequel we assume that the electric potential V' is axisymmetric.
In particular the projection @), onto H,, commutes with V' and, con-
sequently, H,, reduces H(B). Therefore, if Assumption 4.1 holds with
« > 0 then the operator H,, = H(B)|s,, = Hom + V is a self-adjoint
operator in H,, with domain D(H,,) = D(H(B)) N H,,. Moreover,
Oess(Hm) = Oess(Hom) = [Ep, 0), where E,, :=2(|m| —m + 1+ 2n).

If Assumption 4.1 holds with o > 2 then the number of eigenvalues
of H,, below Ej is finite (see ref. [32]). In particular, the eigenvalues
of H,, below E, cannot accumulate at Fjy. In general, for the full
Hamiltonian H(B) this is not necessarily the case (see ref. [5]).

For later purpose, we introduce the spaces K% := Q,, H>*(R?). Then
it follows from the mapping properties of V' between weighted Sobolev
spaces that V' is a compact operator from H%* to 1 for all
l1<d <a.

We close this section by noting that the spaces H,, and H = L?(R, x
R, pdpdz) are isomorphic. Let U denote the isomorphism between 3,
and . We shall use the same notation for H,,, V and H,,, when we
regard them as operators in L?(R; xR, pdpdz). Furthermore, we shall
use the spaces H* := UHLS.
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5. Two-CHANNEL FRAMEWORK

The basic Hilbert space is H = L*(R, x R, pdpdz). To repre-
sent the magnetic Hamiltonians H,, and H,, as two-channel Hamil-
tonians we need two additional Hilbert spaces defined via the follow-
ing projections. For any ¢ € H define the projection (Pyo)(p,z) =
(&, Vo) 12k, pap) Yo(p), Where Wo(p) := Wp0(p) is defined in Sect. 3. Let
the complement of Py in H be denoted b}/f\ P;. Introduce the Hilbert
spaces Hy = Ran Py, H; = Ran P; and Hy = L?(R). Then we have
the basic decomposition H = HyPH;. As for the adjoints we have that
P; =Pj, g =0,1. We want to fit the magnetic Hamiltonian H,, into
a two-channel Hamiltonian via the decomposition H = Hy & H;. For
this purpose, we define the following matrix elements, where 7, 7 = 0, 1:

Hij = PiHom P} © H; — H;, Vij =P VP; : H; — H;. (5.1)

With respect to this decomposition the magnetic Hamiltonian H,,, is
represented as a 2 X 2 matrix given by

Hyp O Voo Vo
H,=H,,+V = . 5.2
* (0 HH>+<Vw V11> (5:2)

in Hy@®H,.The operators Py and P, are spectral projections and there-
fore they commute with H,,. Since Py and P; are orthogonal, the
elements Hy; and Hig vanish in the representation of H,,. We have
the following results.

Lemma 5.1. Let Assumption 4.1 be satisfied with o > 0. Then Vy,
and Vi, are Hj;-compact, j =0, 1.

Proof. We prove the assertions for j = 0. Under Assumption 4.1 with
a > 0, the potential V' is H,,,-compact, i.e. V/(H,,, +14)~" is compact in
H. Since Py commutes with Hy,y,, Po(Hopm + 1)~ Pg = (Hgo + %)~ " and
Py is bounded from H to Hy, it follows that Voo(Ho + i)' is compact
in Hy. Similarly, we prove that Vg is Hgo-compact from Hy to Hy. O

Formally, let Hy = Hyy + Vyo and H; = Hy; + Vi;. Under Assump-
tion 4.1 with o > 0 the operators Hy and H; are self-adjoint in Hy and
H, respectively. Moreover, we have that

O-ess(Hj) = Uess(Hjj) = [Ej,OO), ] = Oa 1. (53)

For later purpose we make the following decomposition of H,, in terms

of H() and Hli
_( Hy O 0 Vi
Hm—< 0 H1>+<V10 0 > (5.4)

We wish to give conditions, which quarantees that o4(Hy) consists of
finitely many eigenvalues below FE,. For this purpose we begin by
expressing Vpo in an explicit way. If f € H, then there exists g(z) €
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L*(R) such that f(z, p) = g(2)Wo(p). Tt is easily seen that Voo f (2, p) =
Vio(2) (2, p), where

Vule) = [ Vo)l dp (5.5)

The representation Hy = (p? + Ey + Vyo) ® P, implies that oq4(Hy) =
oa(p® + Ep + VOO), hence we need to put conditions on V such that
oq(p? + Ey + ‘700) consists of finitely many eigenvalues below E,. If
Assumption 4.1 holds with o > 2 then it follows from the estimate
Voo(2)| < C(1 + |z|)~® and ref. [28, Equation (5)] that the number
of eigenvalues below Ejy for the self-adjoint operator p? + Fy + Voo in
L*(R) is finite.

Define o¢(f(2)¥y) = f(2) for any element f(z)¥y € Hy. Then oy
is an isomorphism from H, onto H, and its adjoint acts as of f(z) =
f(2)%o(p) for any f(z) € Ho. Moreover, let H; = H; and oy = I. We
define the projections Py = 0Py and P, = o, P;.

We have the following result.

Lemma 5.2. Let Assumption 4.1 be iatisﬁed with o« > 1. Then the
operator PyH,,P§ = p? + Eo + Vio in Hy = L*(R) has no eigenvalues
larger than Fy.

Proof. Tt follows immediately from the estimate |Voo(2)| < C(1+|2])~®
and ref. [31, Theorem XIIL.56]. O

In the sequel we also need the following spaces
Hy® = Podbs, Y = Py3b. (5.6)
We use the short-hand notation }} = J-C?’s, j=0,1.

6. AUXILIARY ONE-DIMENSIONAL SCHRODINGER OPERATOR

In this section we introduce an auxiliary one-dimensional Schrodinger
operator A and collect some results on the spectral properties of A near
the bottom of its continuous spectrum, viz. the threshold 0. The main
results are asymptotic expansions for the resolvent R(A4,() = (A—()™*
as the parameter ( tends to 0. The results are crucial in Sect. 7, where
we return to the study of the magnetic Hamiltonian H,,. Through-
out this section we assume that Fy € p(H;), where the operator H;
was introduced in Sect. 5. The auxiliary one-dimensional Schrodinger
operator A is formally defined as A = hy + W in L?(R), where hy
denotes the self-adjoint realization of —d?/dz* in L*(R) with domain
D(ho) = H*(R) and spectrum o(hg) = 0ess(ho) = [0,00) and, further-
more, the perturbation W is given by W = Vyo— PV P! R, (Ey)P,V F§.
The definitions of the various operators in W can be found in Sect. 5.
In this section we first define A in a rigorous way via the Kato-Rellich
theorem and establish some mapping properties of W between weighted
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Sobolev spaces. Secondly we collect low-energy results for the resolvent
of A near the threshold 0.

Lemma 6.1. Let Assumption 4.1 with o > 0 hold. Then A is a self-
adjoint operator in L?(R).

Proof. 1t follows easily that W is a bounded self-adjoint operator in
L*(R) since the various operators in the definition of W are bounded,
V is real-valued, H; is a self-adjoint operator in H; (for > 0) and
Eo ¢ o(H,y) is real. Consequently, W is infinitesimally small with
respect to hg and the operator sum hy + W is self-adjoint according to
the Kato-Rellich theorem. O

Next we determine under which condition W is relatively compact with
respect to hg.

Lemma 6.2. Let Assumption 4.1 hold with o > 1. Then W is rela-
tively compact with respect to hy.

Proof. First we show that Vpo(ho + Fo)~' is compact in L*(R). If
Voo € L*(R), then X nnVoo(ho + Ep)~! is Hilbert-Schmidt (use the
explicit kernel of the resolvent), and moreover, this operator converges
in norm sense to Vo(ho + Fy)~" as n — co. This yields the compact-
ness of Voo(ho + Ep)~'. From the estimate |[Vpo(2)| < C(1 + |2|)~@
it follows immediately that Voo € L?(R) for a > 1/2. For the term
00Vo1R1(Eo)Vipo§ we rely entirely on mapping properties. Indeed, for
a > 1, it follows from the closing remarks of Sect. 4 that V;; is a com-
pact operator from 3{]2-’0 to J{?’a’ for all 1 < o' < . The latter property
in combination with the mapping properties of R;(FEp) and oy imply
that ooVo1 Ry (Eo)Vipod is a compact operator from the Sobolev space
H?(R) to L*(R) as desired. O

Remark 6.3. In Lemma 6.2 we do not aim at the optimal conditions
on a because we shall put much stronger conditions on « in the sequel.

Under Assumption 4.1 with @ > 1 we immediately obtain from
Lemma 6.2, the Kato-Rellich theorem and Weyl’s essential spectrum
theorem that A is a self-adjoint operator in L?(R) with domain D(A) =
H2(R) and 0eg5(A) = 0ess(ho) = [0, 00).

Next we establish mapping properties of W between weighted Sobolev
spaces.

Lemma 6.4. Let Assumption 4.1 hold with o > 1. Then the pertur-
bation W is a compact operator from H™*(R) to H “*(R), and W
extends to a compact operator from H>"%(R) to H '°(R).

Proof. Due to Assumption 4.1 Vpo satisfies the estimate |Vpo(z)| <
C(1+ |z|)~. Equipped with the latter estimate it is a standard result
that Vg is a compact map from H"~*(R) to H-1**(R) when a > 1
and s € R. Under Assumption 4.1 with a > 1 it follows from the
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closing remarks of Sect. 4 that V;; is a compact operator from H}’O to

H, l’a, and in addition V;; extends to a compact operator from J—C}’_O‘ to

I, 10 The latter properties in combination with the mapping proper-
ties of R1(Ep) and oy imply that the operator ooVy1 Ry (Ep)Vipo§ maps
as desired. 0

We have shown that A = hg + W is a self-adjoint (Schrédinger) op-
erator in L?(R) and, moreover, Lemma 6.4 asserts that the (non-local)
potential W satisfies the following abstract short-range condition.

Abstract short-range condition: Let W be a symmetric operator in
L*(R). Assume that W is a compact operator from H"(R) to H~"*(R)

for some a > 1, and W extends to a compact operator from H L=e(R)
to H (R).

Under this abstract condition a complete classification of the zero-
energy properties of A was established in ref. [23]. A priori zero can
be an eigenvalue of A or a half-bound state for A, or both. We have
a half-bound state (or zero resonance) if Ay = 0 has a solution ¥ in
a space slightly larger than L?(R). In dimension one it is natural to
assume that a half-bound state belongs to L*°. It turns out that es-
sentially three cases may occur: Case 0) A has no eigenvalue zero and
no half-bound state (zero is a regular point), Case 1) A has no eigen-
value zero but has a half-bound state (zero is an exceptional point of
1st kind), A has eigenvalue zero but has no half-bound state (zero is
an exceptional point of 2nd kind), or A has both eigenvalue zero and
a half-bound state (zero is an exceptional point of the 3rd kind). Fur-
thermore, there are at most two half-bound states modulo L?-functions.
Due to this circumstance, additional subcases arise in the exceptional
cases of 1st (three subcases) and 3rd kind (three subcases) (see ref. [23]
for details). In all cases asymptotic expansions of the resolvent R(A, ()
were deduced in ref. [23] as { tends to zero. Here we just state the
results for the most significant cases (ignoring the exceptional case of
3rd kind). We refer to ref. [23] for the rather lengthy proofs.

Theorem 6.5. Suppose zero is a reqular point of A. Assume a > 9
and let s satisfy 9/2 < s < a — 9/2. For some 6 > 0 we have in the
norm of B(H™"*(R), H"*(R)) the asymptotic expansion

R(A,¢) = B +i¢"*BY — (B + 0(¢*?) (6.1)

for |¢| < &, Im Y2 > 0, where (B”) = BO, k=0,1,2, as operators
k k
in B(H *(R), H*(R)).

Theorem 6.6. Suppose zero is an exceptional point of the 1st kind
for A (Type 1, 2 or 8). Assume o > 13 and let s satisfy 13/2 < s <
a—13/2. For some § > 0 we have in the norm of B(H *(R), H> *(R))



14 MICHAEL MELGAARD

the asymptotic expansion

(6.2)

for |¢] < 6, Im¢Y? > 0, where (B,(cl’j))* = B,(cl’j), k=-1,0,1,2, as
operators in B(H b*(R), HY"(R)). Here the upper index j indicates
the subcases 1, 2 or 3.

Theorem 6.7. Suppose zero is an exceptional point of the 2nd kind for
A. Assume o > 17 and let s satisfy 17/2 < s < a — 17/2. For some
§ > 0 we have in the norm of B(H™"*(R), H"*(R)) the asymptotic
eTpansion

R(A, Q) = —¢'BY) —i¢7?BY) + B +i¢?BY — (B + 0(¢*?)
(6.3)

for || < &, Im (Y2 > 0, where (B,(f))* = B,(f), k=-2,-1,0,1,2, as
operators in B(H™"*(R), H"*(R)).

Theorems 6.5, 6.6 and 6.7 are found in ref. [23] under the assumption
that (1,W1) # 0. This assumption is a natural solvability condition
but has no physical explanation. Expansions with a similar structure
can be derived if (1, W1) = 0 but in this case the coefficients are dif-
ferent (see ref. [24] for details). By stating the theorems as above, we
do not differentiate between the two situations. The first few coeffi-
cients in each of the expansions are computed explicitly in ref. [23]. In
principle the method allow us to compute terms to any order but in
practice the computations of higher order terms become very compli-
cated and tedious to perform. Similar expansions have been derived
by Bollé, Gesztesy, Wilk and Klaus in ref. [10, 8] for local potentials
(/multiplication operators) having exponential decay at infinity but
their methods do not work for non-local potentials satisfying, e.g., the
above-mentioned abstract short-range condition.

The results in Theorems 6.5, 6.6 and 6.7 are valid for the Schrodinger
operator A = hg + W in Hy = L*(R). If we introduce A’ := A + E,
and

A:= Hy — Vo1 R (Ey)Vip = P} A'P, (6.4)

then we obtain the following general expression for the asymptotic ex-
pansions of the resolvent of A:

R(A,¢) = —(C — Eo) 'GY) —i(¢ — Bo) 26U+
+GE) +i(C = Eo)?GY = (¢ = Eo)GY + O(I¢ = Eol?), (6.5)
in the norm of B(J§,Hy*) as ¢ = Ey, ¢ € C\[Ep,00), and Gl(cl) =

P;BY P, 1=0,1,k = —1,0,1,2. The expansions in Eq. (6.5) are used
explicitly in the following section.
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7. ASYMPTOTIC EXPANSIONS OF THE RESOLVENT AT THE
LOWEST LANDAU THRESHOLD

In this section we deduce asymptotic expansions of the resolvent
R((¢) as the spectral parameter ¢ tends to the threshold Ey. We take
into account explicitly the Ey-energy properties of A.

Assumption 7.1.
(i) Let Ey € p(Hy). )
(ii) Suppose that Ej is a regular point of A.

Lemma 7.2. Let Assumption 4.1 hold with o > 7 and let Assump-
tion 7.1 be fulfilled. Let s satisfy 7/2 < s < o — 7/2. Then we have in
the norm of B(H§, H,°) the expansion

To(Q) ™t =t +i(¢ — Eo) 2% + O(I¢ — Eol) (7.1)
as | — Ey| — 0, where
10 =gl {0 =g, (7.2)

Here G,(CO) = P(;‘B,(CO)PO, where the coefficients B,(CO) appeared in Theo-
rem 6.5.

Proof. The idea of the proof is to factor the operator Tp(¢) in order
to show that the inverse of Ty(() exists and admits an asymptotic
expansion in the norm topology of B(H§, H, °) for suitable s and [(—Ej|
small enough.

Under Assumption 7.1 it follows from Theorem 6.6 that we have in
the norm of B(H, M, °) the expansion

R(4,0) =Gy +i(¢ - Eo) "G + O~ Bol)  (73)
as [(—Ep] - 0, >7and 7/2 < s < a—7/2. We use the factorization

To(¢) = (A — Q[T — (¢ — Eo)R(A, Q)Vor Ri (O)Vaa, (7.4)

where, for | — Ey| small enough,

o0

Ri(¢) = ) (¢ — Eo)"Ri(Eo)™*. (7.5)

n=0
From Eq. (7.3) and Eq. (7.5) we have the following asymptotic expan-
sion in B(H,*).
I —({ = Eo)R(A, Q) Vo R () Vi
=1I- (C - EO)G(()O)V(an(Eo)QVio
~i(¢ = Eo)*/* G Vor R (Eo)?Vig + O(|¢ — Eol?).
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Via the Neumann series we invert the latter expression and find that
[ — (¢ — Eo)R(A, () Vor Ri(¢) Vo) ™!

= I — (¢ = Ey)GyVir R (Eo)*Vio

—i(¢ = Eo)**GVo1 Ri(Eo)?Vio + O(I¢ — Eol?).  (7.6)
Combining Eq. (7.3) and Eq. (7.6) we obtain the desired expansion in
Eq. (7.1). O
From Lemma 7.2 and the Feshbach formula (See Eq. (2.3)) we imme-
diately obtain the following result.

Theorem 7.3. Let the assumptions in Lemma 7.2 hold. Then we have
in the norm of B(H§ & Hi, Hy® @ Ha) the expansion

R(() - ty 1o Vou P (Ey)
-Ry (Eo)Vlotgo) Ry(Ey) + Ry (Eo)Vlot(()O)VblRl (Eop)
(0) (0)
) t —t1 " Vo1 R1(Ey)
+i(¢ — Ey)'/? 1 170
( 0) —R1(E0)V10tg0) R1(E0)V10tg0)V01R1(E0)

+0(/¢ — Eql).
as | — Eg| — 0, where the operators t,(co) are given tn Lemma 7.2.
Next we consider the following case.

Assumption 7.4.

(i) Let Ey € p(Hy). )

(ii) Suppose that Ej is an exceptional point of 1st kind for A (type 1,
2 or 3).

Lemma 7.5. Let Assumption 4.1 hold with o > 11 and let Assump-
tion 7.4 be fulfilled. Let s satisfy 11/2 < s < a — 11/2. Then we have
in the norm of B(Hj, Hy°) the expansion

)
To(Q)™" = =i(¢ = Eo) ™) + 17 +i(¢ = Bo)' /11 + O(¢ ‘(EO‘%
7.7

as |¢ — Ey| — 0, Im( > 0, where
49 = GU7 1) = GIY — GYVa Ry (Bo) VoG, (7.8)

tglyj) _ Ggl’j) o G(_lij)VmR1 (EO)QVIOGE)IJ)
—Ggl’])V(J1R1(E0)2‘/ioG(_1iJ) + (G(_lij)V(an (E0)2V10)2G(_11])- (7.9)

Here Gél’j) = P(;*B,(cl’j)Po, where the coefficients B,(cl’j) appeared in The-
orem 6.6.

Proof. The proof is similar to the proof of Lemma 7.2. O

From Lemma 7.5 and the Feshbach formula we obtain the following
result.
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Theorem 7.6. Let the assumptions in Lemma 7.5 hold. Then we have
in the norm of B(H§ @ Hi,Hy® ® Hi) the expansion

—i(¢ — Eo) 7' /?x

o t(_li]) _ ’j)V(an (Eo)
— Ry (Eo)Vipt? RI(EO)VM VoL Ry (Eo)

N t(l J) _t01] %lRl(EO)
—Ri(Eo)Viot$"™?  Ri(Ey) + Ru(Eo)Viets " Vig Ry (o)
+i(¢ — Ep)/? 1
° R, (E0)2V10t(_li])
Vo Ry (By)? |
—-Ry (EO)Q‘/iot(_lij)‘/()lRl(Eo) — R1(E0)V10t(_1i])V01R1 (Ey)?

+O(|¢ = Eol)
as |¢ — Eo| — 0, where the operators t,gl’j) are giwen in Lemma 7.5.
Finally we consider the following case.

Assumption 7.7.
(i) Let Ey € p(H,).
(ii) Suppose that Ej is an exceptional point of 2nd kind for A.
(iii) Suppose that Ej is a simple eigenvalue of A. We denote the asso-
ciated normalized eigenfunction .
We use the notation Pyg,) = (-, )1 for the projection along 1 and

note that G(_Q% = P(g,} according to Theorem 6.7. Suppose, in addition,
that

Qo = <V01R1(E0)2V10¢a¢> # 0.
Having introduced the constant oy we define the projections
J1 = 0451<V()1R1(E0)2V10‘7 V)Y, Jo=1-J.

Define also J = (14+apdy) ™t = Jo++——
result.

T +a Ji. Then we have the following

Lemma 7.8. Let Assumption 4.1 hold with o > 15 and let Assump-
tion 7.7 be fulfilled. Let s satisfy 15/2 < s < a — 15/2. Assume,
moreover, that oy # 0. Then we have in the norm of B(H, Hy*) the
exTpansion

o)™ = —(¢C - Ey) 't @ _ i(C — Ey)™ 1/215(2) +t(2)
+i(C — Bo)*? + 01 — Eo) (7.10)
as |¢ — Eo| — 0, where
%= jG(_Q%’ t(Q - JG(2 jGQ%lRﬂE’O)QijG(_Q%, (7.11)
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1 = JGP + JGP Vi Ry (Ey)*VioJG%) — JGVin By (Eo)*Vig JGP)
+J (G Vo1 Ry (Eo)?Vio)? TG — JGP)Vo Ry (Ey)*VieJGP) (7.12)

2 = JGY — JGAVy Ry (Ey)?Vig JGP
+JGP Vo Ry (E)*VigJGZ — TGOV Ry (Eo)*Vig JGE)
+J(G®Vo1 Ry (Eo)* Vi) 2 JG® + JGP Vo, Ry (Eo)*Vig JGY)

—JGBVi Ry (Ey)*Vig JGP) + J(GP)Vi Ry (Eo)*Vio)? T GY)
+JG<32V01R1(E0)2vmjc;§f%31(E0)21/10JG<2>

— JGAVo Ri (Ey)VigJGH Vi1 Ry (Ey)*Vig JGY)
+JG‘2>V01R1(EO)ZVmJG‘_%Rl(Eo) 0JG%)
—JGOVi Ry (Eo)*Vig JGA V1 Ry (Eo)? VmJG . (7.13)

Here G,(f) = P(;‘B,(f)Po, where the coefficients B,(f) appeared in Theo-
rem 6.7.

Proof. The proof follows the lines of the proof of Lemma 7.2 with some
additional manipulations.
Under Assumption 7.7 it follows from Theorem 6.7 that we have in
the norm of B(H§, H;°) the expansion
R(4,¢) = —(C - Eo) 'GY) —i(¢ - Ey) QY
+G) +i(¢ — Ep)2G? + O(|¢ — Ey) (7.14)
as [( — Eg| = 0, a > 15 and 15/2 < s < a — 15/2. Again we use the
factorization (7.4). From Eq. (7.14) and Eq. (7.5) we have the following
asymptotic expansion in B(H,,*).
— (¢ = E)R(A, OV R (()Vio = (I + agJ1)

(1+i(¢ = B) /2 TGO Vs Ry (Eo)*Viao — (C = Eo) JGE Vs Ry (Eo)*Vao
+(C = Eo)JGEVo1 Ry (Eo)*Vao — (¢ — Eo)*? JG Vo Ra (Ey)Vag
+1(¢ — Eo)?’/ZjG(_Q%%lRl(EO)?’VlO +0O(|¢ = Eof?).

Above we have rewritten the term G(f%%lRl (Eo)*Vyp via % = Pigoy =

(-,¥)9 and the operator J;. Furthermore we have used that the oper-

ator I + «pJ; has the inverse J = Jo+ o J1 Via the Neumann series

we invert the latter expression and in conJunctlon with Eq. (7.4) and
Eq. (7.14) we obtain the desired expansion in Eq. (7.10). O

Lemma 7.8 and the Feshbach formula yield the following result.
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Theorem 7.9. Let the assumptions in Lemma 7.8 hold. Then we have
in the norm of B(H§ @ Hi,Hy® ® Hi) the expansion

2 (2)
= — —_ - t— —t_ 01R1 (E())
R(() = —(¢C— Ey)™! 2 Al
(©) ( 0) ( _R1(E0)V1ot(_2% RI(EO)th(_Z%VmRI(EO)

. i ) —t%Vou R (Eo)
—i(C—A) @) ()
—Ri(Eo)Viot?  Ri(Eo)Viet 2 Vor Ry (Eo)

2)
tO
+
( — Ry (Eo)Vaoty” + Ry (Ep)*Viot?)
— Vo1 Ry (Ey) + 3 Vo1 Ry (Ey)?
R, (Eo)(th(()Z)Vm — Vlot(_Q%V(nRﬂEo) — Rl(Eo)Vlot(_Z%Vm)R1(Eo)
+i(¢ — Eo)/? e
’ Ry(Ey)*Viot®) — Ry (Eo) Vit
Vo1 Ry (Bo)? — 1 Voy Ry (Eo)
Ry (Eo) (Vort$" Veor — Ry (Eo)Vart*)Ver — Viut®) Vi Ry (Fo)) Ry (Eo)
+0(|¢ = Ey|) (7.15)

as | — Eg| — 0, where the operators t,(f) are given tn Lemma 7.8.

As a consequence of Theorem 7.9 we have the following result.

Corollary 7.10. Let the hypotheses of Lemma 7.8 hold. Then Ej is
an eigenvalue of H,,.

8. THE SCATTERING MATRIX NEAR THE LOWEST LANDAU
THRESHOLD

The scattering theory for the pair (H,,, H,y,) was established in ref.
[25] by means of the abstract short range scattering theory developed
by Jensen, Mourre and Perry in ref. [15] (See also ref. [16]). Here we
just recapitulate the main result. The essential spectrum of H,,, is
the union of infinitely many semilines starting at E,, n = 0,1,2,...,
respectively. The points F, constitute the threshold set T,, = {F, :
n=20,1,2,... } which underpins the definition of the intervals

Iy = (En, Eni1), n=0,1,2,....

We summarize the contents of ref. [25, Lemma 8.5 and Proposition 8.6]
in the following proposition.

Proposition 8.1. Let Assumption 4.1 hold with o« > 1. Then the
(local) wave operators Wi (Hp,, Hom; I,) exist and are strongly asymp-

totically complete. Furthermore, os(Hy,) N I, is discrete in I,, n =
0,1,2,....
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It follows from Proposition 8.1 that the local scattering operator S,
defined by

Sn = W_:(HmaHom; In)W—(Hma Hom; In)a n=0,12,...

is a unitary operator on Ey, (Hom)Pac(Hom)H. Let S, denote the uni-
tary representation of Sy in L?(Iy; C*). There is a general theorem as-
serting that Sy admits a diagonal representation (Sy1)(A) = So(A)1(N)
(see, e.g., [19, Theorem 6.2]). Here A denotes the energy parameter.
We restrict ourselves to Sy, since we are only interested in the lowest
Landau threshold Ej. In this section we give an explicit representation
of Sg(A) (in the sequel we suppress the tilde character and the lower
index) and derive asymptotic expansions of S(\) as A | Fy.

We need several definitions. For j = 0,1,2,..., we define k;()\) =
(A — E;)% and v;(A\) = (2k;(A))~L. In addition, define j()\) as the
largest integer satisfying 2(m+|m|+2j(A)) < A, i.e. j(A) is the number
of Landau thresholds open at the energy A. Introduce the layer J{(\)
as the direct sum of a finite number of two-dimensional linear spaces
C? with elements

() g(-+)
25=@uo o= (14 )
9;
Via the functions
_ e—i&z
F(5,&p,2) = —==VY,(p), 7=0,1,2,...,
(pr ) \/2_71' J(p) J

we can introduce the trace operator for any ¢ € Ey,, (Io)H = En,, (Lo)Ho
as
~ 1
// P01 02 (g )
R JR,

0,k 2) () ot 2)papa:

= 272\ = Ep)'/* @((A_EO)W) , Aelp, (81
( 0) (007)01/)(—()\_E0)1/2) € o, (8.1)

where the widehat symbol denotes the one-dimensional Fourier trans-
form with respect to the z variable. The trace operator maps from
HOs @ H®* to H(A) for s > 1/2.

Having introduced the necessary objects, we are ready to formulate
the result. We refer ref. [22] for the rather lengthy proof. The proof
imitates (but is more involved than) the proof of the representation
of the scattering operator associated with Schrédinger operators found
in, e.g. ref. [19].
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Proposition 8.2. Let Assumption 4.1 hold with o > 1. Then the
operator S is represented as

(SY)(A) = S(WY(N), a.e. A€ L\opy+(Hp), € L*(Iy;C?),
where

S(A) =1 —=21i(\) (1 = VRA +i0)VAA)*, A € Io\0pp+ (Hnm).-
(8.2)

The operator S(A) is unitary for all X € Io\oyp+(Hy). The operator
S(A) — 1 is compact for all X € Io\opp+ (Hp,).

Next we deduce asymptotic expansions of the scattering matrix S(A)
as the energy parameter A\ tends to the lowest Landau threshold Ej.
The scattering matrix has the diagonal representation in Eq. (8.2),
which can be rewritten as

S(\) =1 —7i(A— Eo) 2% (A\)(1 — R+ i0)V)Vy(N)*,  (8.3)

where the definition of v4(A) is obvious from Eq. (8.2) and Eq. (8.3). To
derive asymptotic expansions for So(\) as A | Ey we need expansions
for the operators vy(A) and vy(A)*. Formally, we have

")/0()\) = ZZ‘?()\ — Eo)j/sz, (84)

J=0
where

Iy c (m) 2 ( Cae) ) | (8.5)

This follows from a formal expansion of

. _172 [ exp(—i(A — E)Y22) ¥ (p)
()« ny s (C I ) ).

From ¥, € L?(R,, pdp) and Holder’s inequality we see that
I, € BEOYC), 5> j+1/2 (8.6)

Moreover, it follows from Taylor’s formula with remainder that the
expansion in Eq. (8.4) is valid as A | Ey in the sense that if ~y(\) is
approximated by a finite series up to j = k, k£ being the largest integer
satisfying s > k+1/2, then the remainder is o((A — Fy)*/2) in the norm
of B(H%s, C?).

We establish the following leading order behaviour of the scattering
matrix in the limit A | Fy. The results are based on Eq. (8.3) and the
asymptotic expansions of the resolvent R(() in Sect. 7.

Theorem 8.3. Let Assumption 4.1 hold with o > 7. Moreover, let
Assumption 7.1 be satisfied. Then we have in the norm of B(C?) the
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following leading order expansion

S() = ( o) ) +o(1). (8.7)

as A} Ey.

Proof. Let s satisfy 7/2 < s < a—7/2 and let R§0), j = 0,1, denote the
coefficients in Theorem 7.3. From Eq. (8.3), Eq. (8.4) and Theorem 7.3
we have the expansion S(\) = —i(A—=E,) /25% + 5% +0(1) in B(C?),
where

SO = aTo(V - VROV,
SO = 1, + a0 (V = VROV — 70V ROV,
—rlo(V — VRV
Using 1 = S(X)S(A)* and the simple fact that 72 = 0 implies that 7' =
0 for any self-adjoint operator 7', we obtain that FO(V—VR(()O)V)FS =0.
Thus S(,Ol) = 0. Asfor S(()O) we begin by rewriting the term WFOVRgO)VFg
via the expression for I'y in Eq. (8.5) and the expression for R” given
in Theorem 7.3. For any (21, 2;) € C?, the operator acts as

Oy [ 21 ) _ 11 21
where

1
c = §<V00t§0)V00\I’0 - Vootgo)Vle(Eo)Vio\I’o - V01R1(E0)V10tg0)V00\I’0

+Vo1 'y (Eo)Vlotgo)V(an (Eo)Vip¥o + Vootgo)vm\l’o
—Vo1t§0)V01R1(E0)V11‘1’0 — Vool (Eo)Vlotgo)Vm‘I’o
Vo Ry (Eo) Viott" Voy Ry (E) Vay Wo, o). (8.8)

The operator I'y (V' — VR(()O)V)F(’; can be written as a matrix with real
elements. Therefore, for some real number a we find that

{712 (v = VRV — aTo(V = VEPVIT; | = < o ) ,

since the terms on the left-hand side are each other adjoints. Hence,

) 1 0 B 11 0 —a
(o 1) (1) (0 7))

By the unitarity of S(()O), we infer that ¢ = 0 and either c =0 or ¢ = 1.
We show that ¢ = 1. First, we observe that ¢ depends continuously
on Voo, Vo1, Vig and Viq, hence it suffices to consider the case where
Vo1 = Vip = 0. Moreover, only the first term on the right-hand side of
Eq. (8.8) remains. In order to compute ¢ we need the expression for

BY (bear in mind that £” = G\¥ = PyB{” P)) which is given in [23,



A NEW APPROACH TO QUANTUM SCATTERING... 23

Theorem 4]. Using this expression we find that (Vootgo)Voo\Ilo, Uy) = 2.
Hence ¢ = 1 as desired. ]

In a similar way we obtain the following two theorems.

Theorem 8.4. Let Assumption 4.1 hold with o > 11. Moreover, let
Assumption 7.4 be satisfied. Then we have in the norm of B(C*) the
following leading order expansion

SED(A) =1 — aloVRI VI — 7lo(V — VRS DV}
T (V = VRV — 2T VRV
—alo VRV + 70, VRYIVT: + o(1), (5 =1,2,3),(8.9)
as Al Fy.

Theorem 8.5. Let Assumption 4.1 hold with o > 15 and let Assump-
tion 7.7 be satisfied. Assume moreover that oy # 0. Then we have in
the norm of B(C?) the following leading order expansion

SA(\) =1 —aloVRAVT: — alo(V — VRV
+al (V= VROV — 7l VRAVT, — 7T, VRAVTS
+aToVRAVTS: — a3 VRAVT: — al VRAVTS
47T,V RAVT: + 7T VRAVT? + o(1) (8.10)
as Al Ey.

In principle, the method allows us to derive an asymptotic expansion
of the scattering matrix as A | Ej in each of the cases we consider. In
practice, however, the computations become extremely complicated.
In Theorem 8.3 we derived an explicit expression for the leading term
and in particular we were able to simplify the leading coefficient (see
Eq. (8.7)). Similarly, we obtained explicit expressions for the leading
terms in Theorems 8.4 and 8.5. In the latter situations, however, we
are not able to simplify the expressions in Eq. (8.9) and Eq. (8.10)
since the expressions are quite complicated. For instance we observe
that in order to simplify the expression in Eq. (8.9) it is necessary

to determine the coefficient Ggl’j), since this coefficient appears in the

expression for tgl’j) (see Eq. (7.9)). In order to determine Ggl’j) we

need to compute explicitly the coefficient Bg’]) in the expansion in
Eq. (6.2) of the resolvent for the one-dimensional Schrédinger operator
A by means of the method in ref. [23]. This task turns out to be
extremely tedious and complicated to do and, as a consequence, we
have not succeeded in doing so.
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