THE ENERGY OF SIGNED MEASURES

KATHRYN E. HARE AND MARIA ROGINSKAYA

ABSTRACT. We generalize the concept of energy to complex measures of finite
variation. We show that although the energy dimension of a measure can ex-
ceed that of its total variation, it is always less than the Hausdorff dimension of
the measure. As an application we prove a variant of the uncertainty principle.

1. INTRODUCTION

The Riesz energy of a finite, positive measure on R? is defined as

L(y) = / / & — | du(y)dpu(z)

and is an important concept which has found many interesting applications (c.f. [1],
[10], [11] and [12]). The finiteness versus non-finiteness of the energy determines
the energy dimension of the measure:

dim,(p) = sup{t : I;(p) < oo}.

In this article we extend the definition of the energy dimension to complex measures
and give an application to a variation of the uncertainty principle.

The difficulty in the extension of the definition to complex measures is due to the
possible non-convergence of the integral in the definition of the energy. The most
natural way of extending the definition, based on the linearity of the integral and
the decomposition of the measure as a linear combination of (four) finite, positive
measures, can fail when these positive measures have infinite energy. Even if the
four positive measures have finite energy, so that the natural extension is well
defined, it is not obvious that the energy integral will be real, much less positive.
This case is studied in Doob [2], ch.XTIL.

We introduce a modification of the energy integral which is defined for all finite,
complex measures and is always positive. The exponent at which our modified
energy formula changes from finite to infinite coincides with the energy dimension
for positive measures and hence provides a natural generalization of the definition
of energy dimension. A different approach to this problem, valid for the one-
dimensional torus, can be found in [8].

Any finite measure and its total variation will have the same Hausdorff dimen-
sion; this is not true for their energy dimensions. In section three we present an
example of a signed measure on the one-dimensional torus which has energy dimen-
sion one, but whose total variation measure has energy dimension zero.
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However, as is the case for positive measures, the Hausdorff dimension of any
measure is at least as great as its energy dimension. This is established in section
four and is an improvement upon Theorem IIL.V of [8], even in the one-dimensional
case.

There is a Fourier transform formula for our energy integral (as is known for
positive measures) and this allows us to show that if two measures are concentrated
on sets of small Hausdorff dimension and the difference of their Fourier transforms
belongs to a (suitable) weighted I? space, then the two measures coincide. The
precise statement and proof of this variant of the uncertainty principle can also be
found in section 4. For further discussion and other illustrations of this principle
the reader is referred to [6].

The main results in the article are obtained by using harmonic analysis tech-
niques and are valid for both R? and the d-dimensional torus, T¢. In each case we
give the proof for only one of these cases; the extension to the other is an exercise
which can be done using the methods of [7].

2. DEFINITION OF GENERAL ENERGY

By a measure we mean a complex, regular, Borel measure of finite variation on
d y d ) b
R®* or T®.

2.1. Measures on R?. For a measure p on R? let us define
) I = [ [0 500 = 9)du(o)dn)

where @, (z) = 7-%p(z/7) is an approximation of the identity based on a positive,
C* function ¢, supported on the unit ball, with positive Fourier transform. As
|.|7* % ¢ is a continuous, bounded function the integrals I}, (u) are well defined.
Applying Parseval’s formula gives the identity

T (1) = e / €= A5 (E)de.

Since the integrand is positive and p; converges from below to 1, the limit of
I, (1) as T tends to zero exists and is independent of the choice of . Conse-
quently, we can make the following definitions.

Definition 2.1. Define the general energy of order t of a measure p on R? by

) = Y 1, () = cva [ 161 AP,

Notice the general energy of any non-zero measure is positive.
Definition 2.2. Define the energy dimension of a measure pn on R by

dim, (p) = sup{t < d: I () < oo} = sup{t < d: / €] (€)|2dé < oo}

As the t-energy of a positive measure satisfies the same Fourier transform for-
mula,

L) = coa / €t a(e) P

(c.f. [9], p-162), our definitions of the general energy and energy dimension coincide
with the classical definitions of the Riesz energy and energy dimension when the
measure is positive.
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We also remark that if g4 = v4 + ivy where v; and v» are real-valued measures,
then because 7(§) = v(—£) for any real-valued measure v it follows that

AN + [B(=O = 279 + 2l (&)

Thus
I (1)

cua [ 161 ROPE = cua [ 6145 (AP + A(-€))de
cua [ 16 (A©P + IB©P) dé = I} (Re(u)) + I; (m(u)

2.2. Measures on T¢. In [7] it was shown that for a positive measure g on the
d-dimensional torus the classical energy integral given by

1) = [ [ dista,y) tdua)auy)
Td JT4
(where dist(-,-) denotes the usual metric on the torus) is comparable to

> InfTEM)P + A
n€ZN\ {0}
This was done by establishing the existence of a function F; defined on the torus,
which is positive, integrable, satisfies ﬁt (n) ~ |n|t_d for n # 0, is comparable to
|x|7t near the origin and has the property that for positive measures u,

L) ~ / d / Fila — y)du(z)du(y).

Motivated by this, for a complex measure p on the d-dimensional torus we define

//Ftwfm— y)du(z)day)

where F} is the function found in [7] and ¢, is as in the previous section. Since
F; x ¢, is a continuous function, Parseval’s theorem implies that for all complex
measures [,

*

o~ > W™ @&mIEm)* + E0) |lul”.

neZN {0}
Since - (n) tends to 1 from below, the finiteness/non-finiteness of limsup, I, (u)
is independent of the choice of ¢ (and F}), and is determined, as in the classical
case for I;(u), by the finiteness/non-finiteness of

t—d |~ 70312
> InftEm).
neziN\ {0}
Thus we can similarly generalize the energy dimension to complex measures on
T¢ by defining

dime ()

sup{t < d:limsup I}, (n) < oo}

t—d |~ 70312
= sup{t<d: Z [n]" "% |E(n)]” < oo}
neziN{o0}
where ¢ can be any function as described in 2.1.
As with measures on R?, the energy dimension of a measure is the minimum of
the energy dimensions of its real and imaginary parts.
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It is shown in [7], section 3.3 that any positive measure on T? can be lifted to a
measure on R? with the same Hausdorff and energy dimensions. Similar arguments
apply to complex measures.

3. THE COUNTEREXAMPLE

Since Ij, (u) < If,_(|pl), the energy dimension of  is always at least as great
as the energy dimension of |p|. The next example shows that the energy dimension
of p can be strictly larger.

Although our example of a measure p with dim, x4 = 1 and dim, || = 0 is
on the torus T, the corresponding example on R can be easily obtained by the
lifting method mentioned above. By taking the product of our measure on T with
Lebesgue measure on T¢~! one can obtain a similar example on T¢.

The measure p we construct was motivated by an example given in [4] and will
be of the form

H= Z 27m(fm/v¢m - fm/\']l‘)
m=1

where f,, are positive, trigonometric polynomials, u,, are Riesz product measures
which are singular and mutually singular, and At is Lebesgue measure on the torus.
We begin by choosing a suitable Fejer kernel f,,, for each m = 1,2, ..., so that
— 2 —
2 om0 ‘fm(n)‘ In|™" > 8™. Assume suppfyn = {—Npm, --; Ni }.
Choose disjoint infinite subsets ®,, of {33}, such that for each m the mini-
mum element of ®,, exceeds 2N,,,. We let u,, be the Riesz product based on ®,,
and the constant sequence 1/(2N,,, + 1) i.e.,

2cosnz
HPm = H (1 + 7) .
neD 2N, +1
Such measures are known to be singular and mutually singular (c.f. [5], 7.2.1).
(a) Correctness. We start by checking that the sum defining the measure p is

convergent.
Given ® C N we let Q(®) denote the set of words
N
{ZEjnj :n; € ®,e; =0,£1 and N € N}

i=1

As &, C {3%"}22, and the minimal element of ®,, is more than 2N,,,

Q®m) () (U®m) + {—Nm, s 1,1, ..., N })
is empty.
This ensures that for each integer k and m there is at most one choice of j with
fm(k—=7) tm(j5) # 0. Thus if frum (k) # 0, then there is a unique choice of j with

Frtim(k) = > Fmlk = )i (i) = Fn(k = )it () # 0.

In particular, if k €suppfy, then Wn(k) = Fm(k)jim (0) = Fm (k).

Of course, this implies that the measure norm of the positive measure, fp, i, is
mn(O) = fr\n(O) = 1. Since the measure norm of f,, At is 1 as well (being the L'
norm of the Fejer kernel f,;,) = > 27" (fm(pm — Ar)) is a finite measure.
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(b) dim.(|g]) = 0. The singularity and mutual singularity of the measures un,
implies that |u| is equal to Y 27™(fm (tm + A1)).

Notice that if ¥ and v’ are positive measures, then I;(v + v') > I;(v). Thus for
any 0 < t <1 the Fourier transform formula for energy implies that

L) 2 L@ e 2 272 3 || nlt ™t > 2.
n#0
Hence the energy dimension of || is zero.
(¢) dim.(u) = 1. Fix ¢ > 0. We have already observed that if k¥ € suppﬁ\n,
mmn(k) = J/c,\n(k), and if k ¢ suppj/‘,\n, then there is a unique j = j; with
Frabtm (k) = Fon(k = ji) fim (ji)- Thus

@ S| (fnlp = 20)) 0 = Ik
k=0

k¢ suppfm

k= i) Ge)|

Since k — ji € suppﬁ\n and ji € Q(®,,) for any non-zero term in the sum above,
the definition of Q(®,,) ensures that |k| > |jx| /2. As any j € Q(®,,) can occur as

Jjr for at most ‘suppﬁ\n‘ = 2N, + 1 choices of k, it follows that (2) is bounded by
@Nn+1) > 27 )
F€Q(Pm )\ {0}

Assume @, = {ngm)}]‘?‘;l. The structure of the Riesz product shows that the ex-
pression above is majorized by

(m) |7 i-1
n: P 2 P 2
s ] e )
J k=1

Since ,Er\n(n,(cm)) = (2N, + 1)7" and ng-m) > 3% this is easily seen to be bounded
by a constant C(e) which is independent of m.
To complete the argument we use the elementary inequality |3 a; P <>y 2 la; 2.

Thus
2

Y KT RE = Y Ik

i: 27" (fm(ﬂm - )\T))A(k)

k=0 k=0
00 2
< SIS 22 (i = ) )
k#0 m=1

oo
< Z 27™C(e) < oo.
m=1
Since € > 0 was arbitrary, the energy dimension of y is one.

4. ENERGY AND HAUSDORFF DIMENSION
The Hausdorff dimension of a complex measure y, defined as
dimg(p) = inf{dimg(E) : u(E) # 0},

coincides with the Hausdorff dimension of its total variation. It is known that for
a non-zero, positive measure p, dimg p > dim, g ([3], 4.3). In this section we show
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that this relationship is true for complex measures as well. The proof is presented
for the R? case. The technique of 3.3 in [7] again allows us to obtain the same
result for measures on T¢.

One can compare our result with a classical result of Kahane and Salem (Theorem
ITL.V in [8]) which states that the (compact) support of a measure on the circle has
Hausdorff dimension not less than the energy dimension of the measure. Theorem
4.1 improves upon this classical result since the Hausdorff dimension of the support
of a measure is always at least as great as the Hausdorff dimension of the measure.

Theorem 4.1. Suppose ji is a non-zero measure on RY and I}y < oo. Then
dimp (p) > t.

For the proof we need the following lemmas. We use the notation B(£,7) to
denote the closed ball of radius 7, centred at €.
Lemma 4.2. Let py and ps be two finite, positive, mutually singular measures in
R?. For any constants C,c,e > 0 there exists a Borel set K = K(C,c,€) such that
p(R*\ K) < e and cun (B(E, 7)) > Cpz(B(€,7)) for all § € K and 7 < p = p(e).

Proof. As the measures are mutually singular we can choose two disjoint sets A;
and A, such that u;(R? \ A;) = 0 for j = 1,2. Choose two compact sets K; and
K, such that K; C A; and p;(R? \ K;) < c'e, where the constant ¢’ depends on
¢,C and d and will be specified later. Let p = Ldist(Ky, K»).

Let us denote by K’ the Borel set

K'={¢€ K1 :cu1(B(&7)) < Cuz(B(&,7)) for some 7 < p}.

We wish to estimate p; (K'). By definition, for each point z € K’ there exists a ball
B, centred at z, which does not intersect K» and for which cui(B;) < Cua(By).
By the Besicovitch covering theorem we can choose a covering {By,} of K' by such
balls, with the property that each point of K' belongs to at most b(d) balls. Then,

pa(K') <D (By) <Y e Cpa(B) < ¢ Cb(d)pa (UB).
Since the balls By are disjoint from K5 we obtain
1 (K') < 7 1Cb(d) e (R? \ K») < ¢~ Ob(d)ce.

If we choose ¢’ = min (1/2,¢/(2Cb(d))), then the set K = K; \ K' satisfies the
required conditions. i

Lemma 4.3. Let ¢ be a positive function supported by the unit ball B(0,1) and
having positive Fourier transform. There exist constants A, B > 0 such that the
functions 1, = |.|7t x @, satisfy the estimates

A, (2) < min{|z|~t, 77} < By, (z)
for all T.

Proof. First, we prove that the constants A and B exist for 7 = 1 (1 = ¢), i.e.,
we want to show
AlI7 % p(2) < min{|z|™, 1} < BJL[™ x p(2)

for all z € R™.
We consider two cases: |z| < 2 and |z| > 2. It is enough to find that suitable
constants exist for each case separately.
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Case |z|] < 2: Then 2% < min{|z|™% 1} < 1. The function |.|7% % p(z) is
continuous being a convolution of a test function and a locally summable one, and
is strictly positive being the convolution of two positive functions, one of which is
strictly positive. Hence on the compact set B(0,2), ||~ * ¢(z) is bounded above
and below from zero by, say, C' and c respectively. We can take A = C~127* and
B=c"'

Case |z| > 2: Here we will use the fact that min{|z|~%,1} = |z|~*. Since ¢ is
supported on the unit ball

L eo) = [lo—ul oty = [ le=sl o)
R™ B(0,1)
When |z| > 2, then 1|z| < |z — y| < 2|z| for any y € B(0,1), and since [¢ =1,
2tz < || x (o) < 2'fa] .

Thus we can choose A = 27t and B = 2¢.
The claim can be proved for arbitrary 7 by noting that

_ _ _ i
|7t % pr(z) =777 t*w(;)
and
min{|z| ¢, 7t} = 7 min{| 2|, 1}.
T
]

Proof of Theorem 4.1. First, observe that there is no loss of generality in assuming
that the measure p is real-valued.

It is enough to prove that under the given condition |u| can be approximated in
the strong sense by positive measures of finite t-energy (note that an approximation
in the weak sense is not enough). Let us decompose the measure as u, — pu_, where
4 and p_ are two positive, mutually singular measures. We can assume p,
are both non-zero measures for otherwise we can use the classical result. We will use
Lemma 4.2 to prove that an approximation exists for py. The approximation for
- can be constructed in the same way and together they give the approximation
for |p|.

Let v, = |.|7 x ¢, where ¢ is as in 2.1 and let K = K(C,¢,¢) be the set given
by Lemma 4.2 for ¢ = B71/2,C = 247! (A, B as in Lemma 4.3) and arbitrary
€ > 0. Let p = p(e). Denote p|x by p, and let pg = py — p1p.

Since I} (p) < 00, for some fixed number M we have

M o> / (& — y)dpu(z)dp(y)

= / Yr(z — y) (dps (2)dpg (y) + dp— (z)dp— (y) — 2dp (z)dp—(y))

v

/ e (& — ) (dap (@) (9) — 24y (2)dpi ()

4 / b (& — ) (dpsa (2)dpsa () + dp— (2)dps (y) — 20 (@)dp— (v)
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Observe that the final integral in the expression above is positive since by Parseval’s
formula it equals

cva [ 161 1Gns - 1) OP G ©) .
Thus
M o> / (@ — 1) (dps, (@) dpe () — 2dp, (2)dp_ (1))

Yr(z —y) (dpg (y) — 2dp—(y))dp,(z))

lz—y|>p

+ / (@ — ) (dpg (v) — 2dp—(y)) dps, ().

lz—yl<p
Lemma 4.3 implies that for 7 < p the integral over the region {(z,y) : |z — y| >
p} dominates

$r (& — y)dpy (y)dp, (z) — 247 ||l llp "

lz—y|>p
The integral over {(z,y) : |x —y| < p} can be estimated from below as follows:
Lemma 4.3 again shows

/ (& — ) (dpsy (9) — 2dp_(y)) > / B~V min{jz — y|~*, 7 }dpy (y)
lz—yl<p lz—yl<p
247" min{|z — y|~t, 7 }dp—(y),

lz—y|<p
which after passing to polar coordinates and integrating simplifies to

(3) B! (p_tqu(B(wm)) +t/w_t_1u+(B(w,w))dw>

T

2471 (p_t,u_(B(:c,p)) +t/w‘t_1u_(B(a:,w))dw) .

But the choice of K and p ensures that
371

—5#+(B(z,0)) 2 247 (B(z,w))

for any w < p and x € K. Thus for u, a.e. x expression (3) dominates

p
%B‘l (p‘tu+(3(w,p)) +t/w_t_1u+(3(w,w))dw)

J
1__ . P
= 387 / min{|z —y|™", 77 }dp (y)
|z—y|<p

%AB‘1 / Ur(z = y)dp+(y)

lz—y|<p

Y
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Consequently,

Yr(z —y) (dp (y) — 2dp—(y)) dp, ()

lz—y|<p

> 348 [ [ v - ydu @y ).
lz—yl<p

As all the estimates are independent of 7 and duy > dp,, these arguments imply
. 1 1\ _ _
M > min(1, SAB I (1) = 247 |l 1o~

and therefore I} (u1,) < 0o. To conclude, note that by construction p, — p14 in the
strong sense as € — 0. 1

The Fourier transform formula for the energy dimension and an application of
Holder’s inequality gives the following corollary which was previously obtained for
positive measures in [7].

Corollary 4.4. If j1 is a non-zero measure on T and Ji € IP(Z%) for some p > 2,
then dimpg p > 2d/p.

Remark 4.1. The capacity dimension of a Borel set A is defined as
dim.(A) = sup{t : Iu € M (A) such that I;() < oo}

and is known to equal the Hausdorff dimension of A ([10], 8.9 or [3], 4.3). In [8],
p-40 Kahane and Salem showed that for a compact subset of T to have capacity
dimension of order at least a it is sufficient for the set to support a distribution of
finite a-energy. Our result shows that, in fact, for any Borel set A we have

dim.(A) = sup{t: Ip € M(R"™) with |p|(A) # 0 and I;(p) < oo}.
Theorem 4.1 also allows us to prove the variant of the uncertainty principle
mentioned in the introduction.

Proposition 4.5. If two measures pu; and ug are concentrated on sets of Hausdorff
dimension less than t and

Yo e - m®) < oo
n€ZAN {0}

then the two measures coincide.

Proof. The assumption on the Fourier transforms implies that the energy dimension
of p1 — po is at least t. Hence if p; — po is non-zero, its Hausdorff dimension is at
least t. But as u; and py are concentrated on sets of Hausdorff dimension less than
t, so is their difference and this is clearly a contradiction. il

Remark 4.2. For measures on R¢ the corresponding result states:
If measures py and pe are concentrated on sets of Hausdorff dimension less than
t and

/ €1 () — B < oo,

then the two measures coincide.
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