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Abstract

Generalizing Matérn’s (1960) two hard-core processes, marked point pro-
cesses are considered as models for systems of varying-sized, non-overlapping
convex grains. A Poisson point process is generated and grains are placed at
the points. The grains are supposed to have varying sizes but the same shape
as a fixed convex grain — with spheres as an important special case. The
pattern is thinned so that no grains overlap. We consider the thinning prob-
ability of a “typical point” under various thinning procedures, the volume
fraction of the resulting system of grains, the relation between the intensity
of the point processes before and after thinning, and the corresponding size
distributions. The study is inspired by problems in material fatigue, where
cracks are supposed to be initiated by large defects.
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1 Introduction

In his seminal work Matérn (1960) introduced two point processes with a fixed
minimal distance between points. These processes are obtained in two steps.



First a stationary Poisson point process is generated. Then the point pattern
is thinned such that no points are closer than the fixed minimal distance D.
To obtain Matérn’s first model every point with its nearest neighbour closer
than D is excluded. In the second model weights are independently assigned
to the points according to a uniform distribution over (0,1). A point is then
kept if there is no other point with a higher weight within the distance D. By
regarding the remaining points of the point pattern as centres of spheres with
diameter equal to the minimal inter-point distance, we can interpret Matérn’s
two constructions as models for random patterns of non-overlapping spheres
with fixed radii.

Both these processes are in the present paper generalized from fixed-sized
spheres to convex grains of varying sizes. First we consider spheres, but
the treatment is structured so that items that need to be modified later on
for convex grains are easily identified. In this way we hope to facilitate the
exposition, which might have been rather technical if we had gone directly to
the patterns with convex grains. Furthermore, the first model is generalized
in the following manner: instead of removing both points if they are closer to
each other than the distance D, weights are assigned to the two points and
the one with the lower weight is removed (both if their weights are equal).
This is done for all “close pairs”, and hence one point might get different
weights in the “competition” with different points. This is called pairwise
assignment of weights below, while the assignment in the second model is
called global. Finally, in both models we allow the weights to have a more
general distribution, and possibly depend on the radii of the corresponding
spheres.

In Section 2 we define the processes of varying-sized spheres with either
pairwise or global assignment of weights, and we obtain the thinning prob-
abilities for a sphere of a given size for the two cases. These results are
used in Section 3 to compute the intensity of the point process of sphere
centres and the sphere radius distribution after thinning. It is shown that
under certain conditions the right tail of the “proposal” radius distribution is
asymptotically retained. Special cases for which explicit results are obtained
include the exponential distribution in dimension one, the truncated normal
distribution in dimension two, and mixture models with two sphere sizes.
An iterative inversion algorithm for the radius distribution is suggested and
found to perform satisfactorily in an example.

The models are generalized to processes of convex grains in Section 4.



We consider both grains with a fixed orientation and grains with a purely
random orientation. For fixed orientations and also fixed sizes we find in
Section 4.3 inequalities for the maximal volume fraction of the union of all
grains, in the case of a uniform weight distribution. The upper bound is
attained for centrally symmetric grains (e.g. rectangles and ellipses in R?),
while the lower bound is attained for simplexes (i.e. triangles in R?).

In the final Section 5, we briefly discuss some possible future directions
of research, including study of second order characteristics and asymptotic
properties of large grains, and the modelling of inclusion data.

The present study is inspired by problems of fatigue in steel and cast
iron, cf. Murakami and Beretta (1999), where it is discussed how fatigue
strength is related to the size of the maximum defects in specimens. Defects
of spherical shape are natural for some applications such as cast iron, but for
other applications it is more relevant to consider non-spherical defects. In
particular, for rolled steel it is quite natural to consider defects with a fixed
orientation, cf. Zoughi et al. (1997).

Figure 1 shows images from Beretta (2000) of two 2D-cuts in cast iron with
defects which are close to being disc-shaped. These images indicate that the
corresponding distribution of defects in 3D could to a good approximation
be described as a pattern of varying-sized spheres.

T T R S LT R R A
@ ‘e L e it tee ) A
¢ .® B ) 3 .o 4
o <l e® e : Oy, . ety
. & e . .... . . [ o ° ® '.'.-'
y e ‘ [ ] o s [ R
» q..: [ . co® 0%y, & e ; P )
LS R .' .'.' “ . @ .. :\,::._,;’-‘.0' Y
» :"‘, b & @ 3. ] : ® o e e
.. o ) ) ) . Ve /8,
L] .. .. - ’. . .' .. o .... e
‘ e 0 . e, - @ -V . .0g
e ’. eT. W™ o . P2 . ‘0. @ @ . )
®© @ o s . ‘ A Y] : e .oy ~t.'.'" “ o
S e CL ° . v e @Aty
AT 1 s " e 0
i 7 TR Y a T m B re . eg

Figure 1: Two cuts in cast iron showing approximately disc-shaped defects

There is a large literature on processes of non-overlapping grains in physics
and chemistry. One such application area is random sequential adsorption,
RSA, cf. the recent review paper by Talbot et al. (2000). In the statis-
tical literature this model is often called simple sequential inhibition, SSI.



For variable sized spheres, Meakin and Jullien (1992a, 1992b) study ran-
dom sequential adsorption in two and three dimensions. Another extensively
studied area consists of Gibbsian systems of spheres, see for instance Reiss,
Frisch and Lebowics (1959) and Torquato (1995). Possible size distributions
in Gibbs processes of discs are studied in Mase (1985).

Random patterns of non-overlapping spheres have been studied for several
decades in spatial statistics and stochastic geometry, cf. Stoyan, Kendall
and Mecke (1995) and Stoyan (1998). The Stienen model originating from
material science applications (Stienen, 1982) allows fairly detailed theoretical
analysis (Stoyan, 1990). This model gives a germ-grain process with germ
positions forming a Poisson process. Another such process is obtained from
the dynamic lily-pond model, see Higgstrom and Meester (1996) and Daley,
Stoyan and Stoyan (1999).

A model closely related both to random sequential adsorption and to
Matérn’s second model is Matheron’s dead leaves model, cf. Jeulin (1998)
and Stoyan and Schlater (2000). Here germ points are placed randomly ac-
cording to a Poisson process in time and space. In each germ point a grain
is placed, and if several grains cover a given position in space, only the most
recently placed grain is visible at that position.

2 Definition of the processes of varying-sized
spheres

A process of d-dimensional spheres in Euclidean d-space R? is regarded as
a marked point process with the radius of a sphere centred at a point of
the point process as the mark of that point. Let us regard marked point
processes constructed in two steps as follows.

In the first step we generate a Poisson point process with constant intensity
A in RY, and to each point in this point process we generate identically
distributed radii with a proposal distribution function F,,. The radii are
independent mutually and of the point process. This marked Poisson process
we denote by ¥. A point of a marked point process in R? is denoted [z;7],
where 2 € R? is the position of the point and r is the mark, in our case the
radius r € R*, corresponding to the point.



In the second step we thin the marked point process by letting all pairs
of points whose associated spheres intersect ’compete’. A point is kept if it
has higher weight in all pairwise comparisons, where the, possibly random,
weights are assigned to the points according to two different approaches:

1) Pairwise assignment of weights: For each comparison, weights are assigned
to the involved pair of points, and assignments are independent both within
and between pairs.

2) Global assignment of weights: Weights are assigned once and for all to all
points, and assignments to different points are independent. These weights
are then used in all comparisons.

In both cases the weight of a point may depend on the associated radius.
When the weights are constant or deterministic functions of the radii, the

two approaches coincide. Two such examples are given in Examples 2.1 and
2.2.

Some further notation is needed. Let By(z,7) = {z € R? : |z — z| < r}
denote the d-dimensional ball centred at z with radius r, and let k; denote
the volume of the unit ball in R?. Then 7%, is the volume of By(z,7). Let

o denote the origin. For an arbitrary distribution function F' of a random
variable X we further define F'(z) =1 — F(z — 0) = Pr(X > z).

2.1 Thinning probabilities

Consider a randomly chosen point, sometimes called a typical point (Stoyan
et al., 1995, p. 108) of the original marked point process ¥. Let r be the
associated radius of this point and let gp(r) denote the retaining probability
of the point, that is the probability that such a point is not deleted in the
second step, when the pairwise approach is used. Let gg(r) denote the cor-
responding probability in the global case. Thus 1 — gp(r) and 1 — gg(r) are
the thinning probabilities.

2.1.1 Pairwise assignment of weights

Given a pair of points with associated radii [z1;71], [z2;72] € ¥, we give the
points independent weights, Wi (r1) and Wy(r3), with distribution functions
Fwr, and Fy|,, respectively, which may depend on the radii. If their asso-
ciated spheres intersect, the point with the lower weight is removed, and if
their weights are equal both points are removed.



Theorem 2.1 Using the notation introduced above, the retaining probability
in case of pairwise thinning s

gp(r) = exp{=Akq /000 Pr(Wi(r) < Wa(y))(r + y)* Fy(dy) },

where W1 (r) and Wy (y) are independent and have distribution functions Fy,
and Fyyy, respectively.

Proof. Let gp(r,x) denote the probability that a randomly chosen point in
U, say [z;r], with associated radius r, is retained in the second step when ¥
is restricted to the ball By(z,x). Then gp(r,z) — gp(r) as x — oo for any
r > 0. Without loss of generality, it is enough to consider the case where z
is the origin.

Since ¥ is a marked Poisson process with intensity A, the number of points

of ¥ which lie in By(o, x), given that there is a point at the origin, is Poisson

distributed with parameter Axgzz¢. Let X have a uniform distribution in

By(o,z), let R have distribution function F,,, and note that Pr(Bg(o,7) N
By(X,y) #0) =1if r +y > 2. Then we find

Pr([o; r] removed by [X; R])
= /0 Pr([o; ] removed by [X; y]) Fp, (dy)
= /Ooo Pr([o; 7] removed by [X;y]) | By(o,7) N Ba(X,y) # 0)
Pr(Ba(o,7) N Bu(X, ) # 0)Fyr(dy) (2.1)
- /0 Pr(Wi(r) < Wa(y))Pr(X € By(o,7 +y))Fpr(dy)

- /Ooo Pr(Wi(r) < Wal(y)) min((r—;y)d, 1) Fpr (dy).

Since the points in By(o,z) remove [o;r] independently of each other, the
number of points with associated spheres which remove [o; r| is Poisson dis-
tributed with parameter

wart [PV (r) < W) m(( : y)d, 1) Fyn(dy) =

x

AKg /000 Pr(Wi(r) < Wa(y)) min((r + y)% 2) . (dy).
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The point [o; 7] is retained if the number of points which removes it is zero;
thus

gp(r,z) = exp{—)\/id/ Pr(Wi(r) < Wa(y)) min((r + y)* z%) F,.(dy)}.
0
Let x — oo in both sides of this equation to complete the proof. [

The following corollary follows immediately, since for any continuous weight
distribution Fyy,, which does not depend on 7, we have Pr(W;(r) < Wa(y)) =
1/2.

Corollary 2.2 For any continuous weight distribution Fyy ., which does not
depend on r,

on(r) = exp{=Nnay [ () Bl

In the following two examples the weights are constant or deterministic
functions of the radii. As mentioned previously, the pairwise and global
thinning procedures result in the same process in such cases.

Example 2.1. Intersecting spheres removed. A point and its associated d-
dimensional sphere are kept if and only if the sphere meets none of the other
spheres of the original marked point process. Thus if two or more spheres have
nonempty intersections in the first step those spheres are deleted in the second
step. This can be achieved by giving the same weight to all points; then no
point has a lower weight than another, so that Pr(W;(r) < Wy(y)) = 1 and
we get

gr(r) = exp{=Akqg /000(7“ + 1) Fpr (dy) }-

If the radii are all equal, the resulting thinned point process is one of the
processes suggested by Matérn (1960). O

Example 2.2. Large spheres kept. A point and its associated d-dimensional
sphere are kept if and only if the sphere meets no larger or equal sized sphere



of the original marked point process. This is achieved by letting the weights
equal the radius. Then Pr(W(r) < Wa(y)) = 1{r <y}, and

gp(r) = exp{~Hna / (4 9 E(dy)).

We note that if the radius R has finite moment of dth order, E(R?) < oo,
then

lim gP(T) = 1:

T—00

a result which will turn out to be quite useful in the sequel, see Corollary 3.3.
O

2.1.2 Global weights

In this section we assign weights to the points once, and these weights are
then used in all pairwise comparisons. As before, we let the weight have
distribution function Fy., for a point with associated radius r.

Theorem 2.3 Using the notation introduced above, the retaining probability
in case of global thinning is

sor) = [ exp{=Nea [ Fury w)(r + ) Fo(d)} v ()
0 0
= Elexp{-Arg / Fary (W) (r + 1) Eyn (A}
where Wy(r) has distribution function Fy,.

Proof. Let gg(r,x) denote the probability that a randomly chosen point in
U, say [z;7], with associated radius r is retained in the second step when W
is restricted to the ball By(z,x). As in the proof of Theorem 2.1 we assume
that z = 0 and we let X have a uniform distribution on By(o, ). Let R and
W (R) have distribution functions F}, and Fyy g, respectively.

In this proof we let the marks of the point process ¥ consist of two parts:
the associated radius and the weight. A point and its mark is denoted by



[2;7, w]. Similar arguments as in the proof of Theorem 2.1 give
Pr([o; 7, w]| removed by [X; R, W(R)]
= /00 Pr([o; r, w] removed by [X;y, W] | Ba(o,7) N By(X,y) # 0)
Pr(Balo.1) 1 Bu(X,) # 0)Fyr(dy) 22)

= /Ooo Fyyyy(w) min ( (r _; y>d, 1) Fyr (dy),

and we get

Pr([o; r, w] not removed) = eXp{—/\lid/ Fyy(w) min((r +y)% 2%) Fpr(dy)}.
0
To get gg(r,z) we integrate over the weights:

ge(r,z) = / eXp{—/\lid/ Fyy(w) min((r + y)% 2%) Fyr (dy)} Fw - (dw),
0 0
and the result follows by letting £ — oo in both sides of this equation. ]

If the weights are continuous random variables which are independent of
each other and of the radii, we get a point process which is similar to one
suggested by Stoyan and Stoyan (1985), called Model II in that article. As
in their model, the choice of distribution function for the weights does not
matter as long as it is continuous.

Corollary 2.4 If the weight distribution Fy, is continuous and does not
depend on r, then

1-— exp{—)\lﬁd fooo(T + y)der(dy)}
AKg fooo(r + y)der (dy) .

Example 2.3. Fized radius. For a fixed radius r and a weight distribution
that is continuous, we get

9a(r)

1 — exp{—MAkq(2r)¢}
9a(r) = Akg(2r)d

Note that this point process coincides with the second type of Matern’s
point processes with a minimal inter-point distance. O



2.1.3 Comparisons

Note that in the global approach gg(r) can be written as

ga(r) = Efexp{-Ary /Ooo Fywiy(Wi(r))(r +y) " For(dy)}],  (2.3)

where the expectation E operates on the random variable Wy (r) with distri-
bution Fyy|,. We can correspondingly write Pr(Wy(r) < Wy (y)) = E[Fw, (Wi (r))]
in the pairwise approach, and thus

gr(r) = eXP{—Md/ E[Fw,(Wi(r)I(r +y)"For (dy)}. - (24)
0
By Jensen’s inequality the following result follows from (2.3) and (2.4).

Corollary 2.5 The retaining probabilities in the pairwise and global ap-
proach are related as

gr(r) < ga(r),

when the same radii and weight distributions are used in both cases.

3 Characteristics of the thinned processes

In this section we will look at some characteristics of the sphere process after
thinning: the intensity of the points, the distribution of the sphere radii, and
the so-called volume fraction of the union of all spheres. Let l; denote the d-
dimensional Lebesgue measure. The volume fraction of a stationary random
closed set = in d dimensions is defined by p = E(I4(EN 0, 1]¢)) = Pr(o € E),
which for germ-grain models with non-overlapping spheres can be written
as p = AV, where ) is the intensity of the grains and V denotes the mean
volume for a typical grain.

In the sequel some formulae are equal in the pairwise and global case ex-
cept for which of the probabilities gp(r) and gg(r) that is used. For simplicity
we let ¢g(r) symbolize both gp(r) and gg(r) in such cases.
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3.1 The intensity of the point process after thinning

By the definition of g(r) it is clear that [~ g(r)F,(dr) is the retaining prob-
ability of a randomly chosen point of the original point process. Since the
original point process is Poissonian we get the following theorem.

Theorem 3.1 The intensity of the thinned point process is given by
Aip = /\/ g(r)F,.(dr). (3.1)
0

We see that Ay < A and thus Ay, — 0 when A — 0, whatever thinning
procedure is used. However, if A — 0o, then the pairwise and global thinning
procedures behave differently in some cases.

If the weights are random variables which are independent mutually and of
the radii, then in the pairwise case we have by Theorem 2.1 and Theorem 3.1

Ay = A / exp{—\egPr(Wy < Wy) / (r + 1)2F,. (dy)} Fy (dr),
0 0

where W, and W, are independent weights, and Ay, — 0 as A — oo. In
particular, if the weight distribution is continuous as in Corollary 2.2, then
PI‘(Wl S Wz) = 1/2 and

Ath = )\/Ooo eXp{_% /OOO(T +9) Fyr(dy)} Fpr(dr) — 0, (3.2)

as A — oo. For a given distribution F},, we see that there exists a finite
intensity for the original Poisson point process which gives a maximal rate
for the thinned point process provided that the appropriate moments of F,,
exist. Note further that if these moments do not exist, for instance if in
dimension 2 the second order moment of F,, is infinite, then gp(r) = 0 and
the thinned process vanishes for all \.

If the weights are continuous random variables which are independent of
each other and of the radii, we have in the global case by Corollary 2.4 and
(3.1)

Ny - /oo 1 — exp{—Akq fooo(r + y)deT(dy)}Fpr(dr)

B Ka [y (r+ )4 Fp (dy)
R / N L
o Kafy (r+y)iF,(dy)

11

F,.(dr), (3.3)



as A — oo if the dth moment of F), exists. Otherwise gg(r) = 0 and the
thinned process vanishes also in this case.

Hence, if the weights are continuous random variables which are indepen-
dent mutually and of the radii, then A\;, — 0 as A — oo in the pairwise case,
while )\;, tends to a constant as A — oo in the global case. The special case
of constant sphere radii ry is considered in the following examples.

Example 3.4. Fized radius, intersecting spheres removed. In this case,
which corresponds to fixed weights, gp(ro) = gg(ro) = exp{—Arq(2r9)%}
by Example 2.1. The intensity after thinning, Ay, = Agp(ro), is maximized if
the original Poisson rate is A = (k4(27¢)%) ™!, which gives Ay, = (kq(2r0)%) 71,
and the volume fraction Ay kqré = (2%) 1. O

Example 3.5. Fized radius, pairwise thinning, uniformly distributed weights.
By (3.2) the intensity after thinning is Ay, = X exp{—Aka(270)%/2}. It follows
that A = 2(k4(2r¢)%) ! maximises \y,. We then get Ay, = 2(kq(2r0)%) 1,
and the volume fraction is A\ypkqrd = (277 te) L. O

Example 3.6. Fized radius, global thinning , uniformly distributed weights.
In this case )y, increases with ), and, by (3.3), limy 0 Ain = (ka(270)%) 71,
and the volume fraction tends to 27¢ as A — oo. [l

3.2 The sphere radius distribution after thinning
Arguing in a similar fashion as for Theorem 3.1 gives the following theorem.

Theorem 3.2 Let F,, and Fy, denote the distribution function of the radii
before and after thinning. Then

F(r) =1—k / " 4(s) Fyn(ds),

with the constant k given by

k= [ gt Bt

12



Suppose in particular that the original sphere radius distribution is con-
tinuous with density f,.. Then the distribution of the radii after thinning is
also continuous with density given by

fth('r) = kg(T)fpr(r)- (34)

Let h(r) = F'(r)/(1 — F(r)) denote the hazard rate of a distribution with
distribution function F'(r). In the following corollary we see that the right tail
of the radius distribution is preserved if large spheres are kept. More precisely,
the hazard rates of the thinned and the proposal radius distributions are
asymptotically identical.

Corollary 3.3 Suppose that a point and its associated d-dimensional sphere
are kept if and only if the sphere meets no larger or equal sized sphere of the
original marked point process. Suppose also that the original sphere radius
distribution is continuous with hazard rate hy, with hy.(r) > 0 for r > rqy for
some 1o, and that the radius in the proposal distribution has finite moment

of dth order. Then

lim ¢(r) =1, (3.5)

T—00

and the hazard rate hy, of the thinned radius distribution is asymptotically
identical to hy, in the sense that

hth (’I")
r—00 Ry, ()

~1. (3.6)

Proof. Note that here pairwise and global assignment of weights coincide,
and (3.5) follows from Example 2.2. Further, from (3.4) we get

)
I 9() fr(5)ds”

and now (3.6) also follows. u

hth, (T)

3.2.1 Exponential distribution in one dimension

In one dimension it turns out that in some cases we get particularly simple
results if we start with an exponential distribution for the radii: when all

13



discs that intersect another disc are removed, or when we have a pairwise
thinning with a continuous weight function which is independent of the ra-
dius. Assume thus that the proposal radius distribution is exponential with
expectation p,,, that is Fp,(r) = 1 —exp(—r/ ). In the case where we have
a pairwise thinning with a continuous weight function which is independent
of the radii,

gr(r) = exp{-A / (4 9) E(dy)}

by Corollary 2.2. A simple calculation using Theorem 3.2 shows then that
after thinning the radius distribution is exponential with expectation u;, =
tpr/ (1 + Aptpr). Furthermore,

th —
1+ Atpr

Y

by (3.2), and the volume fraction is 2\ pen = 2 exp(—Aipr) phpr /(1 + Apipr) %

In the case where all discs that intersect another disc are removed, we sim-
ilarly get, under the above assumptions, an exponential radius distribution
after thinning with expectation pi, = fr /(1 + 2Ap,,), and the point process
intensity Ay, = Aexp(—2Appr) (14 2\, )

3.2.2 Truncated normal distribution in two dimensions

In two dimensions we similarly get simple results if the radius distribution is
normal truncated at zero. Assume thus that the radius density is

Jr(r) = (0% (/o) p(—F), >0,

where ® and ¢ are the distribution function and density of the standardized
normal distribution, respectively . The expectation of this distribution is

ppr = o+ op(p/o) [ ®(p/0).

A straightforward calculation using Theorem 3.2 shows then that after pair-
wise thinning with a continuous weight function which is independent of the
radius, the radius distribution is of the same type,

finlr) = (ow®(ptnfow) (=), 7> 0, (3.7)

14



with o2 = ¢%/(1 + mAo?) and

2
Pth = — TG Hpr-

_
14+ mAo?
If rather all discs that intersect each other are removed, then the radius
distribution is as in (3.7) but with o2, = 0%/(1 + 27Ao?) and g, = u(l +
2mAo?) ™t — 27N -

3.2.3 Mixture model with two sphere sizes

Now we consider a mixture model of spheres with two different radii, v, and
9, in RY. As in Sections 3.2.1 and 3.2.2 we let the weight distribution be
continuous and independent of the radii. Here, however, we consider global
thinning as A — oo, so that the maximal volume fraction is obtained. Let p;
denote the probability of radius 7; in the proposal distribution, and py,(r;)
the probability of radius r; after thinning. If ro = yr;, y > 0, we get by
Corollary 2.4 and Theorem 3.2

p1(2%; + (1 +y)ipy)~"
p1(2%1 + (1 +y)p2) 1 + p2((1 4+ y)p1 + (2y)%p2) !

pth(rl)

As an example, Figure 2 shows the probability after thinning, ps,(r1), as
a function of p; in the two-dimensional case when ry = 2ry.

As expected, we see that the probability of the smaller sphere is larger
after thinning than in the proposal distribution. The same phenomena was
found by simulation in Meakin and Jullien (1992a,b) and Stoyan and Schlater
(2000) for the RSA model.

3.2.4 Inversion of the radius distributions

In the previous sections we have seen that in some special cases it is possible
to calculate explicitly the radius distribution F, of the unthinned spheres
process from a desired distribution F}, of the thinned process. However, in
general it seems as one can only hope for an iterative method for computing
F,, from Fy,. Such a method will now be briefly sketched for the global
case when the weight distribution is continuous and does not depend on the
radius.

15
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Figure 2: Probability of smaller sphere after thinning as function of the
corresponding probability in the proposal distribution for a mixture model
with two sphere sizes. The identity function is shown as reference.

Consider dimension d = 2 and assume that the proposal and thinned
radius distributions have densities. For given thinned intensity )\, and radius
density f;, we wish to determine the corresponding proposal intensity A, =
A and radius density f,,. Based on Corollary 2.4, Theorems 3.1 and 3.2
and (3.4) the following iteration step is suggested for obtaining an improved
approximation (Aprn+1, fyrnt1) Of (Apr, fpr) from a previous approximation
()‘pr,na fpr,n):

B, = / T fprm(r)dr
0

C, = / r2fpr,n(r)dr
0

An(r) = Mprnka(r® +2rB, +C,)
gn(r) = (1—e ) /A,(r)

ki fulr) ;.
o gn(r)
)\pr,n—l—l = kn)\th
f th(T )
fPT,TH-l(T) kngn(r) .

In an example with an exponential thinned radius distribution this method

16



was empirically found to perform satisfactorily for \;, < Ag. With a unit ex-
pected thinned radius we found empirically g &~ 0.030. As an example with
Awn = 0.028 we found after 100 iterations A, = 0.0715 and the proposal den-
sity function shown in the right part of Figure 3 together with the exponential
thinned density. To start the iteration, we just put (Ap.o, foro) = (Ath, fin)-
From Figure 3 we see that the radius distribution is moved to the left in
going from the proposal to the thinned density, cf. the comments in the end
of Section 3.2.3.

0.08 )\pr,n

0.06

0.04

0.02

1 50 100

Figure 3: Left: proposal intensity approximations as a function of itera-
tion number n. Right: proposal radius density computed by iteration for
a unit-expectation exponential thinned density, which is also shown. The
expectation of the computed proposal density is 1.566.

3.3 Simulations

We have simulated a two-dimensional Poisson process with intensity A = 1000
in the unit square, and placed discs with exponentially distributed radii with
expectation 0.01 at the points, and then carried out three different kinds of
thinning. Figure 4 a) shows the process of discs before thinning, while all
intersecting discs are removed in b), the larger disc is kept in the competition
between two intersecting ones in c), and in d) we have carried out a global
thinning with uniformly distributed weights. Some features of the different
thinning procedures are illustrated in the figure. For instance, we showed
in Section 3.1 that for the type of thinning used in Figure 4 b) , Ay, first
increases and then tends to zero as A — oo. This is the case also in Figure 4
c¢) where large discs are kept and the radius distribution is exponential, in

17



contrast to the case of global thinning and uniform weights in Figure 4 d), for
which )y, increases to a constant . When carrying out a series of simulations
with increasing A this behaviour is easily seen. Here we have just chosen one
value of A\, which lies above the value which would give maximal Ay, in b),
and just below it in c).

An obvious observation is that there are more large discs retained in c)
than in b) and d). Moreover, the variation of disc sizes seems to be larger in
this case.

When the intensity is low it is clear that whatever thinning procedure
is used, the resulting point process is close to a Poisson process. As the
intensity increases we believe that the resulting process tends to result in
clusters of non-overlapping grains in some cases. In b), where all intersecting
discs are removed, which corresponds to constant weights, such a clustering
tendency can be seen.

One purpose of this simulation is to show that it might be reasonable to
model the defects in cast iron (Figure 1) with some process proposed in this
paper. A more careful study of data would suggest suitable \;, and radius
distribution after thinning, and based on this, the choice of proposal process
and thinning mechanism could be made.
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b) All intersecting discs removed
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Figure 4: Simulation of a disc process before and after three different thinning
procedures.

4 Non-spherical grains

4.1 Fixed orientations

In this section we derive expressions for the retaining probabilities gp(r) and
gc(7) in the case where the grains have varying sizes but the same shape and
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orientation as a convex set C' C R?, which is not necessarily spherical. The
only thing we need to do is to replace Pr(By(o,7) N Be(X,y) # 0) in (2.1)
and (2.2) by the corresponding probability for the set C. To describe the
size of a set, we use the diameter/2, where the diameter of a set A C R? is
defined to be the number

D(A) = sup |z —yl.

T,yeA

Let C? denote the family of compact, convex sets C with interior points
in R¢, such that o € C' and D(C)/2 = 1. Furthermore, let C(z,7) denote a
set with the same shape as C, translated by z and with diameter/2 = r > 0,
that is C(z,7) = {ry + 2z : y € C}, and [4(C(z,7)) = r%4(C). To calculate
Pr(C(o,7) N C(X,y) # 0), recall from the proof of Theorem 2.1 that X is
uniformly distributed in By(o, z). It follows that

Pr(C(o,r) N C(X,y) # 0)
= Pr(X € {z:C(o,r)NC(z,y) # 0})
= l4({z:C(o,7) N C(2,y) # 0} N By(o,z))/la(Ba(o, z)).

Without loss of generality we may assume that {z : C(o,7) N C(2,y) # 0} C
By(o, ), since gp(r) and gg(r) are achieved as x — oo; thus

Pr(Clo,r)NC(X,y) #0) = l({z:Clo,r) NC(z,y) # 0})/(2"ka).

In some cases, as in the following examples, it is easy to find I;({z : C(o,7)N

C(z,y) #0}).

Example 4.7. Disc. If C € C? is a disc, then [5(C) = 7, and the set
{z:C(o,r)NC(z,y) # 0} is a disc of radius  + y. Hence

Pr(Clo,r) NC(X,y) # 0) = (r+y)*1(C)/(m2®) = (r +y)*/2*.

In particular, with y = r we get Pr(C(o,7) NC(X,r) # 0) = 4r%l,(C)/(nz?).
U

Example 4.8. Triangle. Let C € C? be an isosceles triangle, in which the
sides perpendicular to each other have length /2 and I,(C) = 1. Figure 5
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N

Figure 5: The sets C(o,r) and {z : C(o,7) N C(z,y) # 0} when C is an
isosceles triangle, and y = r/2.

shows the shape and size of C(o,7) and of {z : C(o,7) N C(z,y) # 0}. As
seen by the figure this area is 72 + 2 + 4ry, and hence

Pr(C(o,7) NC(X,y) #0) = (2 + o> + 4ry)/(na?).

In particular, if r = y then Pr(C(o,7) N C(X,r) # 0) = 6r%,(C)/(7x?).

In fact, these formulae hold for any shape of the triangle C, see (4.6)
below.

O

In order to derive Pr(C(o,7) N C(X,y) # 0) for general convex C, we first
need to introduce some set theory. For A, B C R? and ¢ € R the Minkowski
sum and scalar multiple are defined as

A+B={z+y:z€ A,ye B} and cA={cx:2z¢€ A},

respectively. If ¢ = —1 we get A = {—z : 2 € A}, which we call the reflected
set of A. For z € R?, A+ {2} is the translate of A by x. If A= A+ {z} for
some z € R?, A is said to be centrally symmetric. An alternative, and for us
more useful, way of writing the Minkowski sum is

A+B={zcR: AN (B + {z}) # 0}. (4.1)

For the set zA + yB, where z,y € Rt and A, B C R? are non-empty
convex sets, the volume can be written as:

lo(zA+yB) = i( ) “iya-i(A, B), (4.2)

=0
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i d—i
——
where v;4_i(A,B) =v(A,... A, B,...,B) are the mized volumes (areas in
R?) of A and B, (see e.g. Bonnesen and Fenchel (1948) p. 40). Note the
special cases vq0(A, B) = l4(A) and vy 4(A, B) = l4(B).

It can be shown that if A is a convex set, then
I(A) < v(A, A) < 2l,(A), ACR, (4.3)
and
I3(A) < v(A, A, A) < 313(A), AcCR. (4.4)

The lower bounds are attained if and only if A is centrally symmetric while
the upper bounds are attained if and only if A is a triangle and a tetrahe-
dron, respectively. For a proof of these facts, see e.g. Bonnesen and Fenchel
(1948, p. 105), where inequalities corresponding to (4.3) and (4.4) in higher
dimensions also can be found. To derive mixed volumes for arbitrary convex
sets is not so easy. However, for centrally symmetric sets, such as discs and
rectangles, and for triangles v(A, A) is given in (4.3), and for arbitrary poly-
gons in R? and R? a simple formula can be found in Eggleston (1963, p. 85).
For polytopes in R¢, d > 2, a formula is given in Betke (1992).

Now we are ready to derive the thinning probabilitieg for convex C € C4.
Note that {z : C(o,r) N C(z,y) # 0} equals C(o,7) + C(0,y) by (4.1), and
thus

Pr(C(o,r)NC(X,y) #0) = 14(C(o,7) + C(0,y))/l4(Bq(o, z))
= ! Z d) riy"y,4.(C,C),  (4.5)

]

where the last equality follows from (4.2). What determines the probability is
hence the volumes and the mixed volumes of the set and its reflection, where
the mixed volumes are dependent on the shape of the set. In particular, in
R2
Pr(Clo,r)NC(X,y) #0) = ((* +y))(C) +2ryv(C, C)) / (n?).
By (4.3), we have for C € C?,
(r+9)’1(C)

T2

((r+y)*+ 2ry)l(C)

<Pr(Clo,r)NC(X,y) #0) <

, (4.6)

22



with equalities as in (4.3). Note that Examples 4.7 (circle) and 4.8 (triangle)
are hence extremal, since the probabilities in these cases equal the left-hand
and right-hand side in (4.6), respectively. In three dimensions, we get the
following inequalities when C € C3?

(r+9)°15(C)

K312

(r+u)*+6ry(r+y))is(C)

Y

< Pr(Clo,r) NC(X, y) #0) <

with equalities as in (4.4) and k3 = 47/3.

In the area of integral geometry, an expression for the volume l4({z :
AN (B+2z) # 0}), where A,B C R? are convex, was found already by
Blaschke (1937) in d = 2,3, and by Berwald and Varga (1937) in d = 3. In
an arbitrary dimension the volume is given by Weil (1990) as a special case
of a much more general formula. Hence the result (4.5) follows directly from
these references.

To conclude this section, we formulate the above achievements as a theo-
rem:

Theorem 4.1 Theorems 2.1, 2.3, 3.1 and 3.2 and Corollaries 2.2, 2.4 and
3.3, with radius interpreted as diameter/2, hold true for convex grains with

the same shape and orientation as C € C% if (r +y)* in gp(r) and gg(r) is
replaced by x¢Pr(C(o,7) N C(X,y) # 0), given by (4.5).

4.2 Random orientations

In the previous section all grains had the same shape and orientation; the
case of random orientations may be more useful in some applications. To get
a result corresponding to Theorem 4.1 in this case, we can use the so-called
principal kinematic formula for convex sets, which gives a measure of the
set of rotations and translations for one convex set such that it intersects
another fixed convex set. For simplicity we just consider dimensions 2 and 3
here.

Let S4_1(C) denote the (d — 1)-dimensional surface area and b(C) the so-
called mean width of the convex set C C R?. The mean width can be defined
as follows: For each line g through the origin, let g(C) denote the smallest
distance between two parallel hyperplanes perpendicular to g such that C'is
inbetween them. Then b(C) is the average value of g(C) over all lines g. A
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formula for the mean width of a general convex set can be found in Schneider
(1993) p. 42, while a formula for the mean width of a convex polytope C' in
R3 is given in Santal6 (1976) p. 226:

mc

BO) = - = il

=1

where m¢ is the number of edges of C, [; the lengths of the edges, and o;
the corresponding dihedral angles (i.e. the angles between adjacent sides).

A rotation about the origin is a map m : R — R?, which can be rep-
resented in the form mz = Az, + € R?, where A is an orthogonal matrix
with detA=1. By a uniformly distributed rotation we mean an element from
the group of rotations about the origin, chosen according to a so-called Haar
measure (see e.g. Miles (1965) for details). Let R; and R, be independently
and uniformly distributed rotations about the origin. From the principal
kinematic formula, which can be found in Schneider (1993), it follows that if
C € C?, then

_ LO)(® +y7) +1ySi(C)?/ (2m)

T2

Pr(Ry(C)(0,7) N R2(C)(X,y) # 0)

, (47)

and if C € C3, then

Pr(Ry(C)(0,7) N B2 (C) (X, y) # 0)

Arad/3
Hence we get the following result:

Theorem 4.2 Theorems 2.1, 2.3, 3.1 and 3.2 and Corollaries 2.2, 2.4 and
3.3, with radius interpreted as diameter/2, hold true for convex grains with
the same shape as C € C% and random orientations if (r +y)? in gp(r) and
ga(r) is replaced by z@Pr(R,(C)(o,7) N Ry(C)(X,y) # 0) given by (4.7) and
(4.8) if d = 2 and d = 3, respectively.

In Schneider (1993) the principal kinematic formula is given in an arbitrary
dimension, and by means of this, Theorem 4.2 is easily generalized to higher
dimensions.

We get lower bounds on the probabilities of nonempty intersections by
means of the so-called isoperimetric inequality and Urysohn’s theorem: for
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any convex set C C R?,

(ld,f)>dl = (Sd_l({xidiéj??xl=1}))d )

(@) (5(_C)>d (4.10)

Kq 2

and

where there are equalities if and only if C is a sphere in R?. These inequalities,
which can be found in e.g. Bonnesen and Fenchel (1948) p.75, yield

4@, if d =2,
mr

PR NN ROXN£NZY
a3 /3

8 if d = 3.

In contrary to the case with fixed orientations, the centrally symmetric sets do
not all behave the same now — here the disc and sphere are the only shapes
for which the lower bounds of the probability are attained. Furthermore,
all triangles (tetrahedra) of the same area (volume) do not give the same
probability now, and there is no shape which gives an upper bound. Think
for instance of a triangle of a fixed area which is stretched out in one direction
- the more it is stretched out the larger is the perimeter and the closer to 1
is the probability of a nonempty intersection.

Finally we give some examples of the involved geometrical quantities for
some common shapes of C' for which D(C)/2 = 1:

Dimension 2 Area Perimeter
12(C) $1(C)
Disc T 27
Square 2 4+/2
Equilateral triangle V3 6
Dimension 3 Volume Surface Mean width
I5(C) | area Sy(C) b(C)
Sphere 47/3 47 2
Cube 8/(3v/3) 8 V3
Regular tetrahedron | 2v/2/3 44/3 3 (m — arccos 371)
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4.3 Fixed orientations and fixed sizes

A set which is of interest in the case where all grains are of equal sizes is
C+C={zeR:C0nN(C+{z}) # 0}, which is called the difference set of
C C R If C € C4, it is well-known that
d - 2d
294(C) < (C+0) < d 1a(C), (4.11)
where the lower bound is attained if and only if C is centrally symmetric,

and the upper bound is attained if and only if C is a simplex (see p. 409
Schneider (1993)).

Recall that we have defined size of a set as its diameter/2. Assume that
all grains are of size ry. Then, by (4.5) and (4.2),

Pr(Clom) NCEXr) 2 0) = 3 (§)nai(C.0) )

if C € C%, and it follows that

T‘g?dld (C)

r6 (1) 1a(C)
2Ky ’

T%Kq

< Pr(C(o,m0) N C(X, o) # 0)

IN

with equalities as in (4.11).

In Section 3.1 we saw that in the case of spherical grains and global assign-
ment of continuous weights which are independent of the radii, the intensity
of the point process after thinning increases to a constant as the intensity
before thinning tends to infinity. Furthermore, if the spheres are all of equal
size, as in Example 3.6, the volume fraction tends to 27¢ as the intensity
before thinning tends to infinity. Now we show that, as expected, also in the
case of non-spherical grains of a fixed orientation, the intensity of the point
process after thinning and the volume fraction tend to constants. However,
these constants depend on the shape of the grains.

By Corollary 2.4, Theorems 3.1 and 4.1 we get a limit of the intensity after
thinning corresponding to (3.3), if C € C¢. When the size of all grains is ry,
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this limit is (r§le(C + CV’))fl, and then the asymptotic value of the volume
fraction, which we denote by v mas(C), is

_ (@) L(C)
UG,maw(C)_Tgld(C—}-é) L+ 0)

By (4.11) this asymptotic volume fraction has the following bounds:
1 ly(C 1
2d S d( )V S od’
() T (C+0) T 2

where the upper bound is attained if and only if C' is centrally symmetric,
and the lower bound is attained if and only if C' is a simplex.

If we consider the case of pairwise assignment, and weights and sizes as
above, then \;, = Aexp{—Ardly(C + C)/2}. This intensity, and hence also
the volume fraction, attains its maximal value if A = 2(rdl4(C +C))~'. That
value of \ yields Ay, = 2(rélq(C + C)e)™!, and the maximal volume fraction,
which we denote by vpma.(C), is

214(C)
VPmaz(C) = ——————=— = 20G.maz(C) /€.
Pymaz (C) L(C + O)e Gmaz(C)/
In the spherical case, this result agrees with Example 3.5.

Theorem 4.3 Assume that the weight distribution Fy, is continuous and
does not depend on the size r. With the notation introduced above,

14(C)

mamcziv d m(13561:2 mamc .
tue(0) = 8D ol 01,00(C) = 206,10 )
Furthermore,

1 1

oaN S UG,maw(C) S a1’

(%) 2

where the upper bound is attained if and only if C s centrally symmetric,
and the lower bound is attained if and only if C' is a simplex.
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4.4 Random orientations and fixed sizes

Now we consider random rather then fixed orientations of the grains. We
assume that the grains are uniformly rotated independently of each other
and of everything else.

In the global case, in two dimensions, we get by Corollary 2.4, Theo-
rems 3.1 and 4.2
1

M = (2r2(C) + 125:(C)?/(2m)) T,

as A — oo if the 2nd moment of F), exists and C' € C?. Then the volume
fraction vg mes (C) tends to

1:(C)
UG,maw(C) 12(0)2 + 51(0)2/(27T)

with equality if and only if C is a disc, by (4.9).

< 1/4,

In three dimensions, we get
1

M = (2r815(0) +r3S52(C)b(C))

as A — oo if the 3rd moment of F,, exists and C € C3, and the volume
fraction tends to

53 (C) _ < 1/8,
I5(C)2 + S2(C)b(C)
with equality if and only if C is a sphere, by (4.9) and (4.10).
In the pairwise case it follows, in a similar fashion as when the orientations
are fixed, that

VG, maz (C) -

UP,maw(C) - 2UG,ma:zv (C)/e,
in both two and three dimensions.
Theorem 4.4 Assume that the weight distribution Fy, is continuous and

does not depend on r. If the grains are independently and uniformly rotated,
then

L(C) o
vomal(C) = { 22T (Sclgc)Z/(zw) <1/4, ifd=2,
13(C)2 + S5(C)b(C) <1/8, ifd=3,

with equalities if and only if C' is a disc and a sphere, respectively, and

UP,maw(C) = QUG,m‘w (C)/e
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5 Concluding remarks

In this paper we have discussed models for non-overlapping spheres. One ad-
vantage with some of our models is that they allow more explicit analytical
results than many other models in the literature on non-overlapping spheres.
Furthermore, our results for patterns of spheres generalize to patterns of con-
vex grains. We have concentrated here on results on the intensity, the volume
fraction and the size distribution after thinning. The results illustrate, for
instance, that it is possible to obtain a rather large class of size distributions
after thinning.

The simulations, see Figure 4, indicate that by proper choice of the thin-
ning mechanism it should be possible to obtain a rather flexible class of
patterns for the grain locations, e.g. exhibiting clustering. This could be
investigated further by simulation. One could estimate, say, Ripley’s K-
function or the pair-correlation function to study deviations from a Poisson
process. Furthermore, some measure for the dependence between grain sizes
would be of interest to study, for instance the mark correlation function.

The inspiration to this paper came from problems to model inclusions in
materials, such as cast iron. Some of the patterns simulated in Section 3.3
look similar to the real data in Figure 1. It would be interesting to choose
the radius distribution, the intensity and the thinning method in more detail,
to see if it is possible to obtain a good model for the data.

In connection with fatigue, large spheres are of particular interest since
they are assumed to cause cracks. It seems therefore of interest to see if
asymptotic properties can be derived for suitable extreme-value distributions
of grain sizes, cf. Embrechts et al. (1997).

In Corollary 3.3 we saw that under some conditions the hazard rate before
and after thinning are asymptotically equal, when large spheres are kept in
the thinning step. It would be of interest to consider the convergence rate.
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