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ABSTRACT. Let S be a symmetric operator with gap J. Suppose in addition
that the deficiency indices of S are infinite, the Hamiltonian H is a self —
adjoint extension of S and the support of the spectral measure uys, 7 of
the initial state fo is a compact subset of J. Then there exist other self —
adjoint extensions H,, of S and finite sums f,, of eigenvectors of H,, such
that
e"Hnp e #H L a5 n— 00,

locally uniformly in time. Upper estimates for the rate of convergence will
be given.

1. Introduction

Obviously f(t) = e™*f, is the solution of the Schrodinger equation

.d
i) = HI),

) = fo,

provided H fy = Afy. Such solutions are called stationary. More generally it is
trivial to solve the Schrodinger equation if the initial vector fy is a superpo-
sition of eigenvectors of H. Note that fy is a superposition of eigenvectors of
the self — adjoint operator H if and only if f; belongs to the space HPP(H) of
vectors whose spectral measure (with respect to H) is a pure point measure.

Now let f, be any initial vector. Due to the continuous dependence on
the initial conditions one might try to apply the following strategy in order
to find the solution of the Schrodinger equation: One approximates fy by a
sequence (f,) in the space HPP(H). Then the solutions e*¥ f, corresponding
to the initial vectors f,, converge locally uniformly in ¢ to the solution e~ f,
corresponding to the initial vector fj.
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As it is well known this strategy fails since the space HPP(H) is closed and
for fo ¢ HPP(H) the mentioned approximation is not possible.
While the above strategy to solve the Schrédinger equation fails a mod-

ification of it might be successful. One chooses self — adjoint operators H,,
n €N, and f,, € HPP(H,) such that

e_”H"fn — e_’tHfo, as n — oo,

locally uniformly in ¢.

We shall prove that this modified approach works if H is a self — adjoint
extension of a densely defined symmetric operator S, the support of the spec-
tral measure ps g of fo with respect to H is a compact subset of a spectral
gap J of S and for one and therefore every A in J the dimension of the space
of solutions of the eigenequation

S f=Af

is infinite dimensional. Since J is a gap of S this last condition is equivalent
to the fact that S has infinite deficiency indices.
More precisely we shall give a sequence (f,) such that

e”tnf 5 e £ as n — o0,

locally uniformly in ¢ and for every n € N the vector f, is the sum of finitely
many, say N(n), eigenvectors of another self — adjoint extension H, of S.

We shall give upper estimates for the rate of convergence in terms of the
numbers N(n). Roughly speaking these estimates will depend on “how fast the
spectral measure g, i can be approximated by linear combinations of finitely
many Dirac measures”. Thus we are especially interested in the case when
the measure py, z is concentrated on a set with small Hausdorff — dimension.
We refer to [6] and references therein for other results on the solution of the
Schrodinger equation if the initial state has a continuous spectral measure
concentrated on a set with small Hausdorff — dimension. We refer to [5] for
the description of an important class of self — adjoint operators with continuous
but zero — dimensional spectral measures and a discussion of the relation to
the Anderson model.

Note that both H and H,,, n € N, are restrictions of the adjoint S* of S. If
S is a differential operator then this implies that both H and the H,, are de-
scribed via the same differential expression but correspond to different choices
of boundary conditions. Thus in many applications it is possible to approx-
imate solutions of the Schrodinger equation by superpositions of stationary
solutions via suitable variations of boundary conditions.

There is an intimate relationship between the mentioned result on the
solution of the Schrodinger equation and a problem in spectral theory. K.O.
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Friedrichs and M. Stone resp. M.G. Krein have shown that the open interval
J = (a,b) is a gap of the symmetric operator S, i.e. there exists at least one
self — adjoint extension H, of S without spectrum in J, if and only if

(Sf, f) > bl fI>% if —oco=a<b< oo,

[ (s-“;b>f|| > b2“||f||, if —oco<a<b<oo.
In addition to the self — adjoint extensions of S preserving the gap J there
might exist other self — adjoint extensions with some spectrum inside J and
one might ask about which kinds of spectra inside J these other self — adjoint
extensions can have. In 1947 M.G. Krein has given the complete answer to
this question in the special case when the deficiency indices of S are finite. In
2000 I have given the complete answer in the general case [3].

A key in the prove has been the surprising observation that even certain
vectors f in the domain D(S*) of S* which can not be represented as

[e o]
=Y anen
n=1

for some orthonormal family of eigenvectors e, of S* can be approximated
by finite sums of eigenvectors of S*. This observation will also play a key
role in the mentioned result on the approximative solution of the Schrédinger
equation.

2. Approximate solution of the Schrodinger equation

In what follows let S be a symmetric operator in a complex Hilbert space
H. Suppose that the open interval J is a gap of S and for one and therefore
every A in J the space of solutions of the eigenequation

ST f=Af

is infinite dimensional. Let H be a self — adjoint extension of S and f; a vector
such that the support of the spectral measure pis, g of f; with respect to H is
a compact subset of J. Here Eg(-) denotes the projection — operator — valued
measure associated to H and

pra() =l Ea() f I

The following lemma will play a key role in our proof of the mentioned
result on the approximative solution of the Schrédinger equation.

LEMMA 1. Let A € J and let P be the orthogonal projection onto the kernel
Ny of S* — X. Then for every h in the domain of the self — adjoint extension
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H of S

I h = Ph[< sup A=XTIA]

di t()\ 0J)
where C, denotes the support of the spectml measure [p. g of h with respect to
H.

Proof: We may assume that the operator S is closed. Then the range of S— A
is a closed subspace of H and we have

(ran P)* = Ny =ran (S — \).
We choose normalized vectors e; € (ran P)* and e, € ran P such that
h = (e1,h)es + (e, h) es.
We have
I(S*=Nh|* = [ (H=A\)h]|

= [ = AP a(ax)
< sup =X [a P
NeEC

since pp, g is supported by Cj.
We choose g € D(S) such that

er=(S—A)g.
We have
L 1<l 5= s 1< o g
Thus
k)] = [(S—Ng.h)
=l (s =)
. “on

dlst()\ aJ) IS

— A=XN||l h
Since h — Ph = (e, h) e; the assertion is proved.
We shall use the following result from [1]:

LEMMA 2. ([1], Lemma 2.2)

Let S be a symmetric operator in the Hilbert space H. Suppose that the
open interval J is a gap of S. Let Hy be a closed subspace of H and M a
self-adjoint operator in the Hilbert space Hy. Suppose that M is a restriction
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of the adjoint S* of S and the spectrum of M is a subset of the gap J. Then
the operator

Su = S|*D(S)+D(M)a (1)
i. e. the restriction Sy of S* to the space
D(S)+D(M) :={f+g: fe€D(S),g€ DM)},
can be represented in the form

for a unique symmetric operator Gy in the Hilbert space Hy. Moreover the
gap J of S is also a gap of Gy.

By the following theorem, solutions of the Schrédinger equation

. d
i fl) = HI@),

f(O) = an
can be approximated by superpositions of stationary solutions corresponding
to other self — adjoint extensions of S provided the support of the measure
s, is a compact subset of a gap of S. The theorem gives an upper bound for
the rate of convergence and the proof of the theorem a method to construct
such approximate solutions.

THEOREM 3. Suppose that the support of the spectral measure ps g of fo
with respect to H is a compact subset of the gap J of S. Let By,..., By be
pairwise disjoint Borel sets which cover the support of piry m. Let Ai,..., An
be points in J such that

sup [\ = N|<d, j=1,2,...,N,
N EeB;

for some constant d. Let D be the distance of the set {\i,...,An} to the
boundary of J. Then there exist an orthonormal family (ej)j-V:1 and a self —

adjoint extension H of S such that
(Z) Hej:/\j€j7 j:1,2,...,N, and
(i) for

N
f=Y e, a;i=1\/ppu(By), =1,2,...,N, (3)
j=1

the following estimate holds for all t € R:

ety — ey | < VR | foll (4] ) @)
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Proof: We may assume that Ey(B;)fo # 0 for all j. Then the vectors
s . _Eu(B)fo
TN Eu(By)fo |

form an orthonormal system and

N
fo= ;& ()
j=1

We shall apply Lemma 2 several times. First set
J'C() = ran EH(B2 U...u BN)

Without loss of generality we may assume that B; U... U By is a relatively
compact subset of J. Then the space H; is contained in the domain D(H) of
H,
M = H| Ho

is a self — adjoint operator in Hy, M C S* and the spectrum of M is contained
in J. By Lemma 2,

SC MGy
for some symmetric operator G in Hz and the gap J of S is also a gap of Gj.

Apparently

H=MaoG
for some self — adjoint extension G of Gy. It follows that é; € D(G) and
Per.G = Mey m- Let P : Hg — ker(G§ — A1) be the orthogonal projection onto
the kernel of G§ — A;. By Lemma 1,

B B d
| €1 — Pé; ||< D

Thus there exists a normalized vector e; € ker(G§ — A1) such that

5 d
|l er —é1 ||< \/55

Note that G C S*. Thus S*e; = Aje;. Moreover, by construction, e; is
orthogonal to the space ranEy(Bs U ... U By).
Now we change the notation. We set

Ho :=span{e; } + ranEy (B; U...U By).

Obviously Hy € D(S*) and M := ST, 1s a self — adjoint operator in Hy,
M C S* and the spectrum of M is contained in J. By Lemma 2,

SC MGy

for some symmetric operator Gy in Hi and J is also a gap of Gj.
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Apparently Gy has a self — adjoint extension G such that ranEy(By) C
D(G) and Gh = Hh for all h eranEy(B;). In particular, yz, ¢ = pe, n- By
applying Lemma 1 in the same way as before, we can show that there exists a
normalized vector e; in the kernel of S* — Ay such that

5 d
| €2 — & ||< \/55

and e, is orthogonal to span{e; }+ran Ey (B3 U...U By).
Proceeding in this way, we get an orthonormal system {ej} * , such that

Sej:)\jej, ]:1,...,N,

and
8 d .
lei=&l<V2p, j=1....N (©)

Since S*e; = A jej and the e; are pairwise orthogonal, there exists a self —
adjoint extension H of S such that He; = )je; for all j, cf., e.g., [1]. Since the
measure fig; m 1S concentrated on B;

” efitHéj_ zt)\Je /|e 2 zt)\] |2/J'ej (d/\) < d2t2. (7)

By (6) and (7),
V2

|| efitHéj - e*it)\jej || S d(i -+ ‘t|) (8)

By (3), (5) and (8),

N N
|| e—z’tHfO _ e—z’tHf ||2 < (Z an) Z v + ‘ ¢ |)2
j=1

and, by (3), the theorem is proved.

REMARK 4. Generalizing the construction of the Cantor measure one gets
for arbitrarily small ¢ > 0 examples of continuous measures . such that for
each n € N one can choose N = 2" and d = ¢” in the above theorem (with
Wfo.r = Me). For c sufficiently small one gets a good appoximation of the
solution of the Schrédinger equation by superpositions of stationary solutions.
Obviously, the smaller ¢ is, the smaller is the Hausdorff dimensionality of the
measure .. Recently a lot of work has been done in order to investigate
Hamiltonians which have continuous spectral measures concentrated on sets
of small Hausdorff dimension (often even Hausdorff dimension 0), cf. [5], [6],[8]
and references given therein.
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REMARK 5. In the above proof we have used the fact that the support of
the spectral measure iy, g is contained in a gap of the symmetric operator
S. It might be possible to weaken this hypothesis but one cannot completely
omit it. E.g. let H = L*(R?), d > 1. Let T be a closed subset of R such that
I’ has Lebesgue measure zero and its complement R? \ T" is connected. Define
the symmetric operator S in L?(R?) as follows:

D(S) :=CPR\T), Sf:=-Af, feD(S).

It is a well known consequence of Kato’s inequality that the adjoint S$* of
S does not have nonnegative eigenvalues. Thus the method described in the
proof of the above theorem cannot be applied if the support of the spectral
measure [, g contains positive real numbers. Note that the operator S has
infinite deficiency indices if the set I' is sufficiently big, e.g. if I' has infinitely
many points and its Hausdorff dimension is larger than d — 4.

3. A result in Inverse Spectral Theory

Let A be a self — adjoint operator in a Hilbert space H. It easily follows
from the spectral theorem, that for every Borel set B C R we have

H =ran E4(B) @ran E4(R\ B)

and there exist unique self — adjoint operators Ap in ran (E4(B)) and Ag\g in
ran (E4(R\ B)) such that

A= Ap ® Ag\s.

Inside B the operators A and Ap have the same eigenvalues and for every
eigenvalue A € B of A the multiplicity mult (), A) of A as an eigenvalue of A
equals mult (A, Ap).

For open sets J we have in addition that

pga(B) = piga,(B)
for every Borel set B C J and every f € H. In particular, we have
oc(A)NJT =0(A;)NJ, 04c(A)NJ =04 (A7) N T, 05(A)NJ = 05.(As) N J,
and for every a € [0, 1]
oa(A)NJ =0,(As) N J.

Here o, 04, 0s. and o, denote the spectrum, the absolutely continuous spec-
trum, the singular continuous spectrum and the a — dimensional spectrum (cf.
[5]), respectively.
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Let S be a symmetric operator with deficiency indices (n,n). Suppose
that the open interval J is a gap of S. It easily follows from von Neumann’s
extension theory that

dimran E4(J) <n

for every self — adjoint extension A of S; “dim” means dimension in the sense
of Hilbert space theory, i.e. the cardinality of any orthonormal base. Up to
unitary equivalence this is the only restriction for the operators A;, A being
a self — adjoint extension of S:

THEOREM 6. ([3], Theorem 1) Let S be a symmetric operator in the Hilbert
space . Suppose that the open interval J is a gap of S and the deficiency
indices of S equal (n,n). Let A** be any self — adjoint operator such that

dimran E jaus (J) < n.
Then there exists a self — adjoint extension A of S such that
Ay~ AP
i.e. Ay =U"1A%U for some unitary operator U.

REMARK 7. In particular, A and A®” have the same eigenvalues inside J
and for every eigenvalue A € J of A we have

mult (A, A) = mult (A, A**).
Moreover
o(A)NJ = (A" )N J, 0uc(A)NT = 04(A™)N T, 05.(A)NT = 0 (A™*) N,
and for every « € [0, 1]
0a(A)NJ = 0, (AY") N J.
REMARK 8. The theorem had been formulated as a conjecture in [1].

REMARK 9. In the special case when the deficiency index n is finite the
theorem has already been proved by M.G.Krein ([7]).

Let S be a symmetric operator with infinite deficiency indices and J a gap
of S. Let u be a finite measure with compact support inside J. Let A*®
be the operator of multiplication by the independent variable in the Hilbert
space L2(R, ). Then A%® = A®® and, by the above theorem, there exist
a self — adjoint extension A of S and a unitary transformation U such that
Ay =U 1A%y,

Let f := U~'1, 1 being (the p — equivalence class of) the function which
equals 1 everywhere. Since the support of u is compact and A a restriction of
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S*, the vector f belongs to the domain of S** for every k and

(S** £, S f) =/)\k“u(d)\), k,7=0,1,2,... (9)

One of the key problems in the proof of the above theorem has been to
show the existence of a vector f satisfying these equations (9). This could be
done by a construction which is similar to the one in the proof of Theorem 3
but more complicated. Once this problem was solved the proof of the theorem
could be completed by applying ideas and results from [1], [2] and [4], cf. [3]
for the details.
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