APPROACH REGIONS FOR I POTENTIALS WITH
RESPECT TO THE SQUARE ROOT OF THE POISSON
KERNEL - A NEW PROOF.

MARTIN BRUNDIN

ABSTRACT. If one replaces the Poisson kernel of the unit disc by its square
root, then normalised Poisson integrals of L? boundary functions converge
along approach regions wider than the ordinary nontangential cones, as
proved by Ronning. In this paper we present a new proof, characterising
these regions.

1. INTRODUCTION

Let P(z, ) be the standard Poisson kernel in the unit disc U,

1 1—12?
P(Z,ﬁ)zg'm

where z € U and € OU =T = (—m, 7.
Let

PI) = | P.0)1(6)db,
the Poisson integral of f € L!(T).

For any function h : Ry — Ry let
(1) An(0) ={z €U :|argz—0| < h(l —|z|)}.

We refer to Ap(0) as the (natural) approach region determined by h at 6 € T.
Note that, even though we use the word “region”, we have not imposed any
openness assumptions on Ay (0).

Let

Pof(z) = /T VP& B () db.
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and denote the normalised operator by Py, i.e.

Pof(z) = IP;(;J;((;)

We now state some known convergence results for the operators P and Py. For
more results about Py, see e.g. [MB].

Theorem (Schwarz, [HAS]). Let f € C(T). Then Pf(z) — f(0) as z — €%,
zeU.

Theorem (Fatou, [F]). Let f € LY(T). Then, for a.e. & € T, one has that
Pf(z) = f(0) as z — €% and z € Ap(0), if h(t) ~ t.

The theorem of Fatou was proved to be best possible, in the following sense:

Theorem (Littlewood, [L]). Let yo C UU{1} be a simple closed Jordan curve,
having a common tangent with the circle at the point 1. Let 9 be the rotation
of v by the angle 0. Then there exists a bounded harmonic function f in U
with the property that, for a.e. 0 € T, the limit of f along vy does not exist.

Littlewood’s result has been generalised in several directions. For instance,
with the same assumptions as in Littlewood’s theorem, Aikawa, [HA], disproves
convergence at all points 6 € T.

Theorem (Sjogren, [PS1]). Let f € L*(T). Then, for a.e. § € T, one has that
Pof(z) = f(0) as z — € and z € Ap(0), if h(t) ~ tlog1/t.

Theorem (Ronning, [JOR]). Let 1 < p < oo be given and let f € LP(T).
Then, for a.e. § € T, one has that Pof(z) = f(0) as z — € and z € Ap(9), if
(and only if if h is assumed to be monotone) h(t) ~ t(log1/t)P.

The results by Sjogren and Rénning were proved via weak type estimates for
the corresponding maximal operators, and approximation with continuous func-
tions.

Theorem (Sjogren, [PS2]). The following conditions are equivalent for any in-
creasing function h : Ry — R, :

(7) For any f € L*®(T) one has for almost all @ € T that
Pof(z) = f(0) as z — € and z € A(6).
(i1) h(t) = O(t'¢) ast — 0 for any € > 0.

In his proof, Sjogren never uses the assumption that h should be increasing.
Thus, it remains valid for an even larger class of functions h. The proof of
this result differs much from the LP-case, since the continuous functions are
not dense in L*®. Sjogren instead used a result by Bellow and Jones, [B-J],
“A Banach principle for L°°”. Following the same lines, the author proved the
following (LP*° denotes weak LP):
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Theorem (Brundin, [MB]). Let 1 < p < oo be given. Then the following
conditions are equivalent for any function h: Ry — Ry :

(1) For any f € LP*°(T) one has for almost all 6 € T that

Pof(z) = f(0) as z — € and z € Ay(6).

h(s)

.. o0 _
(i1) Ek:o o < 00, where oy, = SUP,_ 2k o—2k=1 3(Tog 1/5)7 "

In this paper we prove the following theorem, with a method different from
Ronning’s:

Theorem 1. Let 1 < p < oo be given and let h : Ry — Ry be any function.
Then the following conditions are equivalent:

(i) For any f € LP(T) one has for almost all 0 € T that Pof(z) — f(6) as
z — e and z € Ap(9).

Cn 1. h(t)
77) imsup ————— < @
(1) T s hog 1/2)7

2. THE PROOF OF THEOREM 1

We shall prove the implication (i) = (i) in Theorem 1 via Proposition 1
below. The implication (i) = (7¢) is proved by via contraposition. We begin
by introducing a convenient notation.
Let t=1—|z| and z = (1 —t)e?’. Then
Pof(z) = Ry f(6),
where the convolution is taken in T and
1 12— 1) 1
CV2r (L —t)et? — 1| Po1(1—1t)

Ry(0)

If f and g are positive functions we say that f < g provided that there exists
some positive constant C such that f(z) < Cg(x). We write f ~ g if f < g and

g5 f-

Since we are interested only in small values of ¢, we might as well from now on
assume that ¢ < 1/2. Since Py1(1 —t) ~ v/tlog1/t, the order of magnitude of
R; is given by

Ri0) ~ Qu0) = -

t BT log1/t t+ 6]
Now let 7,, denote the translation 7,,f(0) = f(8 —n). Then the convergence
condition (i) in Theorem 1 above means
lim 7, Ry, * f(6) = f(6).

t—0
[n|<h(t)



4

The relevant maximal operator for our problem is

Mof(6) = sup |Pof(2)]-
|arg z—0|<h(1—|z])
|z|>1/2

Notice that My f(0) is dominated by a constant times

(2) Mf(0) = sup 7;Q*|f[(6).

n[<h(t)

t<1/2
Proposition 1. Assume that condition (ii) in Theorem 1 holds. Then M f <
C(MHpr)l/p, where My, denotes the classical Hardy-Littlewood mazimal op-
erator.

Note that this result in particular shows that M is of weak type (p,p). Con-
vergence follows immediately with a standard approximation argument with
continuous functions.

Proof. (Proposition 1) We may assume that f > 0, without loss of generality.
We also assume that 1 < p < oo is fixed and that ¢ = p/(p — 1) (where ¢ = o0
ifp=1).

Note, first of all, that

1
B
(3) 1Qella = Cagizy log 1/t
We also have that
@ Qi < c,

for all t € (0,1/2). By (4) it follows, as is well known, that

(5) Qi+ f(0) < CMyrLf(0),

independently of ¢.
Now, let t € (0,1/2) be fixed and let f(p) = fi(p) + f2(p), where

fi(0) = f(0)X{1p—0<2n(t)}-
Then, by (3) and by assumption, we have



Qi * f1(0) < [Qillqll fillp

c 1/p
< - Pd
— t/rlog 1/t </<p0<2h(t) 1) (,0)

1/p
~ aht) 1 ,
- C(t(logl/t)p ol AR d*”)

< C(MgLfr©O)"?.

Furthermore, by (5) and since || < h(t), we have

Qe * f2(0) < C-Mprfa(0 —n)
1

- oswpy | fale) dip
r>0 2T J]p—(0—n)|<r

1
C sup o flp)dy
r>h(t) 2T J|p—0|<2r

C - Myrf(6)
C(MyrfP(6))'/P.

AN

<
<

Hence, for all ¢t € (0,1/2) and || < h(t) we have

Qi % £(8) < C(MuLfP(6)"/7,
and the proposition is established.

O

Proof. (Proof of the implication (i) = (4i)) Assume that condition (i7) in The-
orem 1 is false. We show that this implies that (7) is false also. We assume that

p > 1, since the result for p = 1 is already established by Sjogren.

Assume that

| (1)
] __
(6) TSP og 1707

Pick any decreasing sequence {t;}$°, converging to 0, such that

h(t:)

(™) S Llog 1/t)7

T o0,

as 1 — 0o. Let

. L\
file) =t/ " Vog1/t; - (ti - \w\) “X{lp|<h(ts)}




Now,

p /(=1 P " 1 ve=y
i = Cpt; “(log1/t; / ( ) d
I £l P (log 1/t;) i s ©

/(p—1) 1-p/(p—1)

< o/ (log 1 /2yt PO
C;,tz' (log 1/ti)p

It follows that

h(t:) h(t;)

>C —
1 = P Geg 1/t

By (7) the right hand side tends to oo as 4 — co. Thus, by standard techniques,
we can pick a subsequence of {¢;}, with possible repetitions, for simplicity de-
noted {¢;} also, such that

1

and

(9) D Ifillh < oo
1

Let Ay = h(t1), and for n > 2 let A, = h(tn) + Y 7—] 2h(t;). By (8) one has
that lim,,_,, A, = oo.

Define (on T) Fj(¢) = 7a, fj(¢), and let

FN) () = sup Fj(yp).
Jj>N

It is clear by construction that any given ¢ € T lies in the support of infinitely
many Fj:s.

Since [FN) (o)) = sup;> n [F ()P < 3255 n[Fj(9)]P, it follows that

IEME < (7314

MR

1filly =0

T
=

as N — oo, by (9). Thus, in particular, FN) € LP for any N > 1.
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For # € T and a given & > 0 we can, by construction, find ;7 € N so that
6 € supp (F;) and so that t; € (0,&). We can then choose 7, with |n| < h(t;),
so that 6 —n = A; mod 27. It follows that

limsup PoFM((1 -

t—0, [n|<h(t)

We have

PoF;((1 —t;)eh) >

v

>

£)e@=m) > lim sup Po F;((1 — t;)e™).

j—o0

c / Fi(Aj — )
o
log 1/t Jigi<nety) ti + 1ol

fily)

7
log 1/t; Jip<n(t;)

tj+ el
; 141/(p—1
2Ctl'/(pl)/h(tj)< 1 > /(p )d(p
! 0 tityo
cy
0.

To sum up, we have shown that for any 6 € T one has
limsup PeFM (1~ 1)) > ¢y > 0.

t—0, [n|<h(t)

Take N so large so that the measure of {F(N) > C//2} is small, and a.e.
convergence to FV) is disproved.

O
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