APPROACH REGIONS FOR L^p POTENTIALS WITH RESPECT TO THE SQUARE ROOT OF THE POISSON KERNEL - A NEW PROOF.

MARTIN BRUNDIN

ABSTRACT. If one replaces the Poisson kernel of the unit disc by its square root, then normalised Poisson integrals of L^p boundary functions converge along approach regions wider than the ordinary nontangential cones, as proved by Rönning. In this paper we present a new proof, characterising these regions.

1. Introduction

Let $P(z, \beta)$ be the standard Poisson kernel in the unit disc U,

$$P(z,eta) = rac{1}{2\pi} \cdot rac{1-|z|^2}{|z-e^{ieta}|^2}$$

where $z \in U$ and $\beta \in \partial U = \mathbb{T} \cong (-\pi, \pi]$.

Let

$$Pf(z) = \int_{\mathbb{T}} P(z, \beta) f(\beta) \, d\beta,$$

the Poisson integral of $f \in L^1(\mathbb{T})$.

For any function $h: \mathbb{R}_+ \to \mathbb{R}_+$ let

(1)
$$\mathcal{A}_h(\theta) = \{ z \in U : |\arg z - \theta| \le h(1 - |z|) \}.$$

We refer to $\mathcal{A}_h(\theta)$ as the (natural) approach region determined by h at $\theta \in \mathbb{T}$. Note that, even though we use the word "region", we have not imposed any openness assumptions on $\mathcal{A}_h(\theta)$.

Let

$$P_0 f(z) = \int_{\mathbb{T}} \sqrt{P(z,\beta)} f(\beta) d\beta,$$

²⁰⁰⁰ Mathematics Subject Classification. 42B25, 42A99, 43A85.

Key words and phrases. Square root of the Poisson kernel, approach regions, almost everywhere convergence, maximal functions.

I would like to acknowledge the help that I have received from professor Peter Sjögren and professor Hiroaki Aikawa. Moreover, I am most grateful to the Sweden-Japan Foundation for giving me the financial support that allowed me to work in Japan for three months.

and denote the normalised operator by \mathcal{P}_0 , i.e.

$$\mathcal{P}_0 f(z) = \frac{P_0 f(z)}{P_0 1(z)}.$$

We now state some known convergence results for the operators P and \mathcal{P}_0 . For more results about \mathcal{P}_0 , see e.g. [MB].

Theorem (Schwarz, [HAS]). Let $f \in C(\mathbb{T})$. Then $Pf(z) \to f(\theta)$ as $z \to e^{i\theta}$, $z \in U$.

Theorem (Fatou, [F]). Let $f \in L^1(\mathbb{T})$. Then, for a.e. $\theta \in \mathbb{T}$, one has that $Pf(z) \to f(\theta)$ as $z \to e^{i\theta}$ and $z \in \mathcal{A}_h(\theta)$, if $h(t) \sim t$.

The theorem of Fatou was proved to be best possible, in the following sense:

Theorem (Littlewood, [L]). Let $\gamma_0 \subset U \cup \{1\}$ be a simple closed Jordan curve, having a common tangent with the circle at the point 1. Let γ_θ be the rotation of γ_0 by the angle θ . Then there exists a bounded harmonic function f in U with the property that, for a.e. $\theta \in \mathbb{T}$, the limit of f along γ_θ does not exist.

Littlewood's result has been generalised in several directions. For instance, with the same assumptions as in Littlewood's theorem, Aikawa, [HA], disproves convergence at all points $\theta \in \mathbb{T}$.

Theorem (Sjögren, [PS1]). Let $f \in L^1(\mathbb{T})$. Then, for a.e. $\theta \in \mathbb{T}$, one has that $\mathcal{P}_0 f(z) \to f(\theta)$ as $z \to e^{i\theta}$ and $z \in \mathcal{A}_h(\theta)$, if $h(t) \sim t \log 1/t$.

Theorem (Rönning, [JOR]). Let $1 \leq p < \infty$ be given and let $f \in L^p(\mathbb{T})$. Then, for a.e. $\theta \in \mathbb{T}$, one has that $\mathcal{P}_0 f(z) \to f(\theta)$ as $z \to e^{i\theta}$ and $z \in \mathcal{A}_h(\theta)$, if (and only if if h is assumed to be monotone) $h(t) \sim t(\log 1/t)^p$.

The results by Sjögren and Rönning were proved via weak type estimates for the corresponding maximal operators, and approximation with continuous functions.

Theorem (Sjögren, [PS2]). The following conditions are equivalent for any increasing function $h: \mathbb{R}_+ \to \mathbb{R}_+$:

(i) For any $f \in L^{\infty}(\mathbb{T})$ one has for almost all $\theta \in \mathbb{T}$ that

$$\mathfrak{P}_0 f(z) \to f(\theta) \ as \ z \to e^{i\theta} \ and \ z \in \mathcal{A}_h(\theta).$$

(ii) $h(t) = O(t^{1-\varepsilon})$ as $t \to 0$ for any $\varepsilon > 0$.

In his proof, Sjögren never uses the assumption that h should be increasing. Thus, it remains valid for an even larger class of functions h. The proof of this result differs much from the L^p -case, since the continuous functions are not dense in L^{∞} . Sjögren instead used a result by Bellow and Jones, [B-J], "A Banach principle for L^{∞} ". Following the same lines, the author proved the following $(L^{p,\infty}$ denotes weak L^p):

Theorem (Brundin, [MB]). Let $1 be given. Then the following conditions are equivalent for any function <math>h : \mathbb{R}_+ \to \mathbb{R}_+$:

(i) For any $f \in L^{p,\infty}(\mathbb{T})$ one has for almost all $\theta \in \mathbb{T}$ that

$$\mathcal{P}_0 f(z) \to f(\theta) \text{ as } z \to e^{i\theta} \text{ and } z \in \mathcal{A}_h(\theta).$$

(ii)
$$\sum_{k=0}^{\infty} \sigma_k < \infty$$
, where $\sigma_k = \sup_{2^{-2^k} < s < 2^{-2^{k-1}}} \frac{h(s)}{s(\log 1/s)^p}$.

In this paper we prove the following theorem, with a method different from Rönning's:

Theorem 1. Let $1 \leq p < \infty$ be given and let $h : \mathbb{R}_+ \to \mathbb{R}_+$ be any function. Then the following conditions are equivalent:

- (i) For any $f \in L^p(\mathbb{T})$ one has for almost all $\theta \in \mathbb{T}$ that $\mathfrak{P}_0 f(z) \to f(\theta)$ as $z \to e^{i\theta}$ and $z \in \mathcal{A}_h(\theta)$.
- (ii) $\limsup_{t \to 0} \frac{h(t)}{t(\log 1/t)^p} < \infty$.

2. The proof of Theorem 1

We shall prove the implication $(ii) \Rightarrow (i)$ in Theorem 1 via Proposition 1 below. The implication $(i) \Rightarrow (ii)$ is proved by via contraposition. We begin by introducing a convenient notation.

Let t = 1 - |z| and $z = (1 - t)e^{i\theta}$. Then

$$\mathfrak{P}_0 f(z) = R_t * f(\theta),$$

where the convolution is taken in \mathbb{T} and

$$R_t(\theta) = \frac{1}{\sqrt{2\pi}} \frac{\sqrt{t(2-t)}}{|(1-t)e^{i\theta}-1|} \frac{1}{P_0 1 (1-t)}.$$

If f and g are positive functions we say that $f \lesssim g$ provided that there exists some positive constant C such that $f(x) \leq Cg(x)$. We write $f \sim g$ if $f \lesssim g$ and $g \lesssim f$.

Since we are interested only in small values of t, we might as well from now on assume that t < 1/2. Since $P_01(1-t) \sim \sqrt{t} \log 1/t$, the order of magnitude of R_t is given by

$$R_t(\theta) \sim Q_t(\theta) = \frac{1}{\log 1/t} \cdot \frac{1}{t + |\theta|}.$$

Now let τ_{η} denote the translation $\tau_{\eta} f(\theta) = f(\theta - \eta)$. Then the convergence condition (i) in Theorem 1 above means

$$\lim_{\substack{t \to 0 \\ |\eta| < h(t)}} \tau_{\eta} R_t * f(\theta) = f(\theta).$$

The relevant maximal operator for our problem is

$$M_0f(heta) = \sup_{egin{subarray}{c} |rg z - heta| < h(1-|z|) \ |z| > 1/2 \end{array}} |\mathcal{P}_0f(z)|.$$

Notice that $M_0 f(\theta)$ is dominated by a constant times

(2)
$$Mf(\theta) = \sup_{\substack{|\eta| < h(t) \\ t < 1/2}} \tau_{\eta} Q_t * |f|(\theta).$$

Proposition 1. Assume that condition (ii) in Theorem 1 holds. Then $Mf \leq C(M_{HL}f^p)^{1/p}$, where M_{HL} denotes the classical Hardy-Littlewood maximal operator.

Note that this result in particular shows that M is of weak type (p, p). Convergence follows immediately with a standard approximation argument with continuous functions.

Proof. (Proposition 1) We may assume that $f \geq 0$, without loss of generality. We also assume that $1 \leq p < \infty$ is fixed and that q = p/(p-1) (where $q = \infty$ if p = 1).

Note, first of all, that

(3)
$$||Q_t||_q \le C_q \frac{1}{t^{1/p} \log 1/t}$$

We also have that

for all $t \in (0, 1/2)$. By (4) it follows, as is well known, that

$$(5) Q_t * f(\theta) \le CM_{HL}f(\theta),$$

independently of t.

Now, let $t \in (0, 1/2)$ be fixed and let $f(\varphi) = f_1(\varphi) + f_2(\varphi)$, where

$$f_1(\varphi) = f(\varphi)\chi_{\{|\varphi-\theta| < 2h(t)\}}.$$

Then, by (3) and by assumption, we have

$$\tau_{\eta} Q_{t} * f_{1}(\theta) \leq \|Q_{t}\|_{q} \|f_{1}\|_{p}$$

$$\leq \frac{C}{t^{1/p} \log 1/t} \cdot \left(\int_{|\varphi - \theta| \leq 2h(t)} f(\varphi)^{p} d\varphi \right)^{1/p}$$

$$= C \left(\frac{4h(t)}{t(\log 1/t)^{p}} \cdot \frac{1}{4h(t)} \int_{|\varphi - \theta| \leq 2h(t)} f(\varphi)^{p} d\varphi \right)^{1/p}$$

$$\leq C (M_{HL} f^{p}(\theta))^{1/p}.$$

Furthermore, by (5) and since $|\eta| < h(t)$, we have

$$\begin{array}{lcl} \tau_{\eta}Q_{t}*f_{2}(\theta) & \leq & C\cdot M_{HL}f_{2}(\theta-\eta) \\ \\ & = & C\sup_{r>0}\frac{1}{2r}\int_{|\varphi-(\theta-\eta)|< r}f_{2}(\varphi)\,d\varphi \\ \\ & \leq & C\sup_{r>h(t)}\frac{1}{2r}\int_{|\varphi-\theta|< 2r}f(\varphi)\,d\varphi \\ \\ & \leq & C\cdot M_{HL}f(\theta) \\ \\ & \leq & C(M_{HL}f^{p}(\theta))^{1/p}. \end{array}$$

Hence, for all $t \in (0, 1/2)$ and $|\eta| < h(t)$ we have

$$\tau_{\eta}Q_t * f(\theta) \le C(M_{HL}f^p(\theta))^{1/p},$$

and the proposition is established.

Proof. (Proof of the implication $(i) \Rightarrow (ii)$) Assume that condition (ii) in Theorem 1 is false. We show that this implies that (i) is false also. We assume that p > 1, since the result for p = 1 is already established by Sjögren.

Assume that

(6)
$$\limsup_{t \to 0} \frac{h(t)}{t(\log 1/t)^p} = \infty,$$

Pick any decreasing sequence $\{t_i\}_{1}^{\infty}$, converging to 0, such that

(7)
$$1 \le \frac{h(t_i)}{t_i(\log 1/t_i)^p} \uparrow \infty,$$

as $i \to \infty$. Let

$$f_i(\varphi) = t_i^{1/(p-1)} \log 1/t_i \cdot \left(\frac{1}{t_i + |\varphi|}\right)^{1/(p-1)} \cdot \chi_{\{|\varphi| < h(t_i)\}},$$

Now,

$$||f_i||_p^p = C_p t_i^{p/(p-1)} (\log 1/t_i)^p \int_0^{h(t_i)} \left(\frac{1}{t_i + |\varphi|}\right)^{p/(p-1)} d\varphi$$

$$\leq C_p' t_i^{p/(p-1)} (\log 1/t_i)^p t_i^{1-p/(p-1)}$$

$$= C_p' t_i (\log 1/t_i)^p$$

It follows that

$$\frac{h(t_i)}{\|f_i\|_p^p} \ge C(p) \cdot \frac{h(t_i)}{t_i (\log 1/t_i)^p}.$$

By (7) the right hand side tends to ∞ as $i \to \infty$. Thus, by standard techniques, we can pick a subsequence of $\{t_i\}$, with possible repetitions, for simplicity denoted $\{t_i\}$ also, such that

(8)
$$\sum_{1}^{\infty} h(t_i) = \infty,$$

and

(9)
$$\sum_{1}^{\infty} \|f_i\|_p^p < \infty.$$

Let $A_1 = h(t_1)$, and for $n \ge 2$ let $A_n = h(t_n) + \sum_{j=1}^{n-1} 2h(t_j)$. By (8) one has that $\lim_{n \to \infty} A_n = \infty$.

Define (on T) $F_j(\varphi) = \tau_{A_j} f_j(\varphi)$, and let

$$F^{(N)}(\varphi) = \sup_{j>N} F_j(\varphi).$$

It is clear by construction that any given $\varphi \in \mathbb{T}$ lies in the support of infinitely many F_j :s.

Since $[F^{(N)}(\varphi)]^p = \sup_{j \ge N} [F_j(\varphi)]^p \le \sum_{j \ge N} [F_j(\varphi)]^p$, it follows that

$$||F^{(N)}||_p^p \le \sum_{j=N}^{\infty} ||F_i||_p^p$$

$$= \sum_{i=N}^{\infty} ||f_i||_p^p \to 0$$

as $N \to \infty$, by (9). Thus, in particular, $F^{(N)} \in L^p$ for any $N \ge 1$.

For $\theta \in \mathbb{T}$ and a given $\xi_0 > 0$ we can, by construction, find $j \in \mathbb{N}$ so that $\theta \in \text{supp}(F_j)$ and so that $t_j \in (0, \xi_0)$. We can then choose η , with $|\eta| < h(t_j)$, so that $\theta - \eta \equiv A_j \mod 2\pi$. It follows that

$$\lim_{t \to 0, \ |\eta| < h(t)} \mathcal{P}_0 F^{(N)}((1-t)e^{i(\theta-\eta)}) \ge \lim_{j \to \infty} \sup \mathcal{P}_0 F_j((1-t_j)e^{iA_j}).$$

We have

$$\mathcal{P}_{0}F_{j}((1-t_{j})e^{iA_{j}}) \geq \frac{C}{\log 1/t_{j}} \int_{|\varphi| < h(t_{j})} \frac{F_{j}(A_{j}-\varphi)}{t_{j}+|\varphi|} d\varphi$$

$$= \frac{C}{\log 1/t_{j}} \int_{|\varphi| < h(t_{j})} \frac{f_{j}(\varphi)}{t_{j}+|\varphi|} d\varphi$$

$$= 2Ct_{j}^{1/(p-1)} \int_{0}^{h(t_{j})} \left(\frac{1}{t_{j}+\varphi}\right)^{1+1/(p-1)} d\varphi$$

$$\geq C_{p}''$$

$$> 0.$$

To sum up, we have shown that for any $\theta \in \mathbb{T}$ one has

$$\lim_{t\to 0, |\eta|< h(t)} \mathcal{P}_0 F^{(N)}((1-t)e^{i(\theta-\eta)}) \ge C_p'' > 0.$$

Take N so large so that the measure of $\{F^{(N)} > C_p''/2\}$ is small, and a.e. convergence to $F^{(N)}$ is disproved.

REFERENCES

- [HA] H. AIKAWA, 'Harmonic functions having no tangential limits' Proc. of the AMS 108[2] (1990), pp. 457-464.
- [B-J] A. Bellow and R.L. Jones, 'A Banach principle for L^{∞} ', Adv. Math. 120 (1996), pp. 155-172.
- [MB] M. BRUNDIN, 'Approach regions for the square root of the Poisson kernel and weak L^p boundary functions', Preprint 1999:56, Department of Mathematics, Göteborg University and Chalmers University of Technology (1999).
- [F] P. FATOU, 'Séries trigonométriques et séries de Taylor', Acta Math. 30 (1906), pp. 335-400.
- [L] J.E. LITTLEWOOD, 'On a theorem of Fatou', J. London Math. Soc. 2 (1927), pp. 172-176.
- [JOR] J.-O. RÖNNING, 'Convergence results for the square root of the Poisson kernel', Math. Scand. 81 (1997), pp. 219-235.
- [HAS] H.A. Schwarz, 'Zur Integration der partiellen Differentialgleichung $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ ', J. Reine Angew. Math. 74 (1872), pp. 218-253.
- [PS1] P. SJÖGREN, 'Une Remarque sur la Convergence des Fonctions Propres du Laplacian à Valeur Propre Critique', Théorie du potentiel, ed. G. Mokobodzki and D. Pinchon, LNM nr 1096, Springer (1984), pp. 544-548.
- [PS2] P. SJÖGREN, 'Approach regions for the square root of the Poisson kernel and bounded functions', Bull. Austral. Math. Soc. Vol. 55 (1997), pp. 521-527.

DEPARTMENT OF MATHEMATICS, GÖTEBORG UNIVERSITY AND CHALMERS UNIVERSITY OF TECHNOLOGY, 412 96 GÖTEBORG, SWEDEN

E-mail address: martinb@math.chalmers.se