On the maximal rate of decay of solutions to
nonlinear Klein-Gordon equations

Philip Brenner
School of Mathematical and Computing Sciences
Chalmers University of Technology and Goteborg University
SE 412 96 Goteborg, Sweden
email: philip@math.chalmers.se

August 31, 2001

The Klein-Gordon equation is the equation for relativistic wave-propagation

6t2uo—Auo+m2u0:0 z€eR™t>0

(KG) n
Uolo= p, Oruolo=1v =z €R

where m > 0,A = 2?21 8%1., (n > 3). The nonlinear counterpart, extensively
studied since early 1960’s, is

Ou—Au+miPu+ flu)=0 ze€R"t>0

NLKG
( ) ulo= ¢, Ogulo=1 =z €R"

~

where f(u) is a nonlinear function, f(u) = |u|’~!u; modified at 0 if necessary,

to be smooth enough, and with
I+i<p< 2= p
The conditions on f will be made precise below.

Energy:Let F(u) = [’ f(v)dv > 0. The energy
B(t) = %/(|8mu|2 +100ul? + m2|u[?)dz + /F(u)dm

is a conserved quantity, E(t) = E(0).Let X, = Hs X Ly with norm ||.||. defined
by

lu®lle = llu@®lF: + 0@,



Our assumptions on p and f imply that
E(t) < Cllu@)?

Global estimates in space-time (Strichartz estimates) for the KG (Strichartz
[15], Segal [12]): If the data ¢, belong to X, then

< ) <
lwell, 3, < Clllellm +l¥llz.) < Clluo (0]

]

where p > 2,8, = 3 — > = 537. More general, but also much more com-

plex, estimates that bound ug in L,(R, H,(R")) are available (Strichartz [15],
Marshall-Strauss-Wainger [9];cf also Brenner [2].A good exposition is given by
Ginibre and Velo 1995 [6])

Space-time integrals of solutions of NLKG. Let u, be a solution of KG
with the same data at ¢ = 0 as u, the solution of NLKG. Assume that the data
has finite energy (i.e. u(0) belongs to X.). Then one example of a Strichartz-
type estimate for the NLKG due to the author is that if 0 < p+ 6,6 = % - 1% =

n%_l, then
ifu, € Ly(R, Ly (R"™)) thenu € Ly(R, Ly (R™))

For more results of this type for the NLKG see Brenner [4] and Ginibre and
Velo [5].

Such a time-space estimate implies a decay estimate in the following sense:

Under the assumptions of finite energy data, let X = L7 (R™). We then get

1 t+T )
Mutt) = Mixu(t) = (7 [ Iullyan) =0,

for t = oo, and for any T > 0.

How fast can Mu(t) tend to 0 ¢ For nontrivial solutions u, € X, of the Klein-
Gordon equation (KG) it is known (Glassey [7] ) that in case X = L,(R"™) and

withé:%—%ZOandt2T>0,

Mu,(t) > ct™™
The next result will answer the question about a bound for the rate of maximal
decay for solutions of the NLKG.

We first need to be more precise about the nonlinearity f: The following are the
conditions we impose on f

Let f(u) € C* with f(R) C R and assume that



F(u) = /Ouf(v)dv > 0.

(i)
[f ()] < |ulh, Jul <1
IF )l <lul™™, Jul 21

where

*

1+%<po7p1<z—f§=p

(iii)
uf(u) —2F(u) > aF(u), some a >0

and F' is not flat at 0 or oo

The last condition ensures that we avoid local concentration of energy

Here is now our main result:

Main Theorem. Let u € X, be a solution of the NLKG, n > 3 and with f
satisfying (i) through (iii). Assume that u € Lfl"c(R, LLOC(R")), with q,p > 2
,and 6 = % - %. Let

X, = Ly({la] <)) 2 X = L,(R")
Then there is a constant ¢ > 0 such that

T 1 t+T N s
Mixu® 2 (G [ Iy, a0t >

fort>1 ,andt>T > 0.

Comment. We may replace X; in our Main Theorem by Y; = L,({e(¢)t < |z| <
(1 —€(t))t}) where €(t) denotes any positive function that tends to 0 as t — oo.

The question remains about the rate of decay in Ly({|z| < €(t)t}) , since by the
Energy decay theorem the corresponding Ls-norm tends to 0 as t — oco. In fact,
a result due to Morawetz [10] shows that for any fixed compact subset 2 of R™
we have [|u(t)||z,(o) € L2, where as above u is a solution of the NLKG.

Comment. Corresponding pointwise (i.e. ¢ = oo ) were previously given in the
case of smoooth (and small) data ([17], [1] - also large data, and [8]).



The following gives an example of a case when the maximal rate of Mu(t) is
attained. Let X = L,(R™) where now
§=3-5.,0€0,1,0<0< 25
(1) n—-1-0)<1l<(n—-1+6)
L,-Decay (Brenner, to appear). Assume that u € X, is a solution of the

NLKG, and let u, be corresponding solution of the Klein-Gordon equation. Let
(1) be satisfied, and assume that M} xu,(t) has mazimal rate of decay. Then

MZ’Xu(t) also attains the mazimal rate of decay, that is decays as O(t~™).

Similar results hold in the other cases when Strichartz’ estimates are known to
hold for the NLKG.For smooth data decay results decay results are also given
by e.g. [1], [4], [11], and for small data by [17].

The proof of the Theorem is based on the following three results:

Scattering (Brenner 1983-86,[2],[3],[4]). There exisits an everywhere de-
fined scattering operator on X. for the NLKG. In particular, for any finite
energy solution u € X, there is a solution uy of the Klein-Gordon equation with
the same energy as u, such that

lu(t) — us(@)lle = 0 ,as t — oo
Let Q; = {e(t)t < |z| < (1—€(t))t}, where 0 < e(t) < 1,€(t) = 0,ast — co.Let
Y, = H}(R"\ ;). Then

Energy decay ( Strichartz 1981, [16]). Let u, be a finite energy solution of
the Klein-Gordon equation. Then

[|uo(®)|ly, = 0 ,as t = o0

Proposition. Let u, be a non-trivial finite energy solution of the Klein-Gordon
equation. Then there is a constant ¢, = ¢,(data) > 0 such that

o (D)l Lomn) = €0 >0

Using these results we otain the following

Lemma. Let u be a finite energy solution of the NLKG. Then there are con-
stants ¢, = ¢,(data) > 0 as above, and t. > 1 such that

w2 (/> = 0 ,as t — o0
and
5Co < lulZ,(n<r) >t



Proof. The first statement follows from the Scattering and Energy decay theo-
rems. The second follows from that and the Proposition. O

The steps of the proof of the Main Theorem are now obvious( following Glassey’s
proof for the Klein-Gordon equation ,[7]):

Yoo < u®llazi<ey < lu®llL,(e1<ot™

and the results follows by taking the meanvalue over (t,t+T) for ¢t > T. O
It remains to prove the Proposition. Let F denote the Fourier transform, let
B(¢) = (|¢]? + mz)% and Bu(z) = F;,(B(§)Fu(€)). Define

®=1(¢+iB ') and ¥ = L(¢ —iB™ ')
where

¢ =u(0) , ¢ = du(0)
Then the solution u of the Klein-Gordon equation can be written in the form
u(t) = exp(itB)® + exp(—itB)¥

and, using duality, we have

/|u(t)|2dx= /|<I>|2dm+/|'l'|2dx

+2Re/emp(2itB)<I>lild$

Now, by Parseval’s formula, using the notation ¢ = Fv ,

/ exp(2itB)®Tds = / exp(2itB(£))® (€)W (¢)de

Since grade B(§) # 0 for £ # 0, and ® , ¥ belong to L, as well as their Fourier
transforms ( so that the products belong to L , respectively ), we can apply the
(generalized) Riemann-Lebesgue lemma to see that the right hand side tends to
0ast— oo.

Since

/|<I>|2d:1:+/|\11|2da:: /|¢|2d:c+/|B’1¢|2dm

the Proposition is proved. O
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