APPROACH REGIONS FOR THE SQUARE ROOT OF THE
POISSON KERNEL AND BOUNDARY FUNCTIONS IN
CERTAIN ORLICZ SPACES.

MARTIN BRUNDIN

ABSTRACT. If the Poisson integral of the unit disc is replaced by its square
root, it is known that normalised Poisson integrals of L” and weak L” bound-
ary functions converge along approach regions wider than the ordinary non-
tangential cones, as proved by Ronning and the author, respectively. In this
paper we characterise the approach regions for boundary functions in two
general classes of Orlicz spaces. The first of these classes contains spaces
L%, having the property L> C L® € L, 1 < p < co. The second contains
spaces L® that resemble L? spaces.

1. INTRODUCTION

Let P(z,¢) be the standard Poisson kernel in the unit disc U,
11—z
P = — "
where z € U and ¢ € OU =T = (—m, 7).
Let
PI(z) = | Peo)(o)de,

the Poisson integral of f € C(T). Then Pf(z) — f(0) as z — 0, as was first
shown by Schwarz [HAS)].

For any function h : Ry — R, let
(1) An(0) ={z €U :|argz—0| < h(l —|z|)}.

We refer to Ap(6) as the (natural) approach region determined by h at 6 € T.
Note that, even though we use the word “region”, we have not imposed any
openness assumptions on Ax(#). In most cases, one can assume that A is an
increasing continuous function with A(t) — 0 as ¢ — 0. Later, we shalllet z € U
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approach the boundary (z — @) within A (). We may think of the function A
as a parameter that measures the maximal admissible tangency a curve along
which z approaches the boundary may have.

If we only assume that f € L'(T), the convergence properties are different than
in the case of continuous functions. Fatou [F] proved in 1906 that if h(t) = at,
a > 0, then Pf(z) — f(0) a.e. as z — 0 and z € Ap(0), i.e. the convergence
is non-tangential. To prove this, one establishes a weak type (1,1) estimate
for the corresponding maximal operator. The result then follows via standard
techniques. Littlewood [L] proved that the theorem, in a certain sense, is best
possible. His result has been generalised, in different directions. For example,
given a curve 79 C U U {1} that touches T tangentially at the point 1, Aikawa
[HA] constructs a bounded harmonic function f in U such that for all points
0 € T the limit lim, ,y f(2) does not exist along the curve -y, where 7y is the
rotation of vy by the angle 6.

It is worth noting that one could consider more general approach regions, not
necessarily given in the form (1). This is done, for instance, in [NS] by Nagel
and Stein.

For a more complete treatise on the theorems and the general theory mentioned
so far, see [DB].

For z =z + iy let
1
L = 7 (1= [2")%(0; + 9y),
the hyperbolic Laplacian. Then

u(e) = Pf() = [ Pl 1) do,
for A > 0, defines a solution of the equation
Lou= (A —1/4)u.
In connection with representation theory of the group SL(2,R), one uses the
powers P(z, )" t1/2 o € R, of the Poisson kernel.

We shall use the notation f < g, for positive functions f and g, if there exists
a constant C' > 0 such that f < Cg at all points, and we write f ~ gif f < g
and g < f.

Since

Pol(2) ~ (1= |2)"log g

as |z| — 1, one sees that the one has to normalise P, in order to get boundary
convergence (Pyl(z) does not converge to 1). Thus, the operator that we shall
be concerned with is defined by



For A > 0 one has that
Py1(z) ~ (1= |2])"* 7,

and if one considers normalised A—Poisson integrals for A > 0, i.e. Pyf(z) =
Py f(z)/P\1(z), the convergence properties are the same as for the ordinary
Poisson integral. This is because the kernels essentially behave in the same
way.

We summarise the known convergence results in the following table. It should
be read from left to right as “For all f €[Function space] one has for almost all
0 € T that Pof(z) — f(0) as z — 0 and z € Ap(0) [Conv.] [A(0) determined
by].” In the table it is assumed that 1 < p < p; < oo, and

h(s)
O = sup — T -
2,2k§8§2,2k71 S(log 1/S)p1

By LP*° we mean weak LP (standard notation).

| Function space | Conv. | A;(f) determined by | Ref. |

C(T) if h(t) = 400 -
LY(T) iff lim sup ht) <oo |[PS1]
ts0 tlogl/t
. . h(t)
LP(T iff limsup —— < oo | [JOR], [MB2
™ 50? log 1 e = °° | OT PP
L>(T) iff lim sup @ =0Ve>0|[PS2]
t—0 t°F
LP1o(T) iff Y or <0 [MB1]
k>0

A few comments are in order. First of all, the convergence for continuous
functions is at all points, not only almost every point. This is because Py is a
convolution operator with a kernel being an approximate identity in T.

The results for LP(T), for finite values of p, are proved via weak type (p,p) esti-
mates for the corresponding maximal operators. To do this, in [JOR], Ronning
uses a quite technical machinery. In [MB2], a significantly easier proof is given
(relying basically only on Holder’s inequality), and the sharpness of the result
is proved (without the assumption that h should be monotone, which Ronning
assumed). Actually, it is proved that Myf < (Mgr fp)l/ P where

Mof(0) = sup 1Pof (2)],
| arg z—0|<h(1—|z|)
|z|>1/2
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the relevant maximal operator, and My, is the classical Hardy-Littlewood max-
imal operator.

In LP(T) one concludes the proofs with a standard approximation argument
with continuous functions, for which convergence is known to hold. However,
this is not an option in the case of boundary functions in L°°(T), since the
continuous functions are not dense in this space. The result by Sjogren, [PS2],
is therefore deeper in its nature. It relies on a theorem of Bellow and Jones,
[B-J], “A Banach principle for L*°”. Basically, the Bellow-Jones result for L
states that a.e. convergence is equivalent to continuity of the maximal operator
at 0, when restricted to the unit ball in L*°, in the topology of convergence in
measure. Actually, what Sjogren had to show was that for all € > 0 and all
k > 0 there exists § > 0 such that

[fllh<d = {OeT:Myf(0) >e}| <k,

for any function f in the unit ball of L*°, where M; is the maximal operator
defined above. (It is easy to see that, in the unit ball in L*°, the topology of
convergence in measure is equivalent with the L!-topology.)

In [MBI1], the author used a method similar to Sjogren’s to determine the
approach regions for boundary functions in LP**®° (weak LP), 1 < p < oo. It
relied on a Banach principle for LP>*°, proved in the paper.

The author has also, with essential help and an original idea from professor
Mizuta, Hiroshima University, established a result for the corresponding “square
root operator” in the half space ]R:”_+1 with boundary functions f € LP(G),
where G C R" is nonempty, bounded and open. For this result, see [MB3].

To understand better the significant difference in approach regions for LP and
L we consider, in this paper, two distinct classes of Orlicz spaces L®. Firstly,
Orlicz spaces where log ® grows at least as some positive power, thus possessing
the property that L>® C L® C LP for any p > 1. Secondly, Orlicz spaces that
resemble LP spaces. As a special case, with ®(z) = 2P, L® = LP. To make this
more precise, we shall now define these two classes of functions, A and A, from
which we then define corresponding Orlicz spaces:

Definition 1. Let ® : [0,00) — [0,00) be a C%-function and define M(z) =
log ®'(x). Then, ® is said to satisfy the V — condition, denoted ® € V, if the
following conditions hold:

(i) M'(xz) > 0 for all z € (0,00).
(i1) M((0,00)) =R

144) lim in M(2z)
(141) lw_mof M (@)

=mg > 1 (possibly mg = 00).

We note immediately that the conditions in Definition 1 imply that, for suffi-
ciently small @ > 0, one has

(2) lim M(z) =00

r—oo ¢
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The space L®, ® € V, that we shall define below (Definition 3) does not depend
on the behaviour of ® close to 0. Thus, without loss of generality, we impose
one further convenient assumption on M:

1
(3) /0 zM'(z) dz < oo.

Definition 2. A function ® : [0,00) — [0,00) is said to satisfy the A —
condition, denoted ® € A, if the following conditions hold:

(i) @ € C%(0,00) with ®"(z) > 0 for z > 0.
(1) limg_yo ®(z) = limy_,0 ®'(z) = 0.
29 (z)
1%
U 5w
Definition 3. For ® € V we define
L® = {f € L'(T) : ®(c|f]) € L'(T) for some ¢ > 0}.

~ 1, uniformly for z > z( for some z¢ > 0, where ¢(z) = 9'(z).

Definition 4. Let ® € A. For f € L*(T) define ||f|le = || ®(|f])||1 and let
L® ={f € LY(T) : [|flls < oco}.

It is readily checked that L® is a vector space, regardless of if ® € V or ® € A.

In this paper we shall prove the following two theorems:

Theorem 1. Let ® € V be given. Then, the following conditions are equivalent
for any function h : Ry — R,

(i) For any f € L*® one has for almost all 0 € T that Pof(z) — f(0) a.e. as
z— 60 and z € Ap(6).

M (Ciis)

log g(t)

(i)

— 00 ast — 0 for all C > 0, where g(t) = h(t)/t.

Theorem 2. Let ® € A be given. Then the following conditions are equivalent
for any function h : Ry — R, :

(1) For any f € L® one has for almost all @ € T that Pof(z) — f(0) a.e. as
z — 0 and z € Ap(0).

(74) limsup 9(t)

nSUD F o 17y < O Where 9(t) = h(t)/¢.

We conclude this section with some examples of ® € V and ® € A, indicating
what condition (i) in the theorems reduces to in these cases.

Let Li(z) = logz and, for n > 2, let L,(x) = L,_1(log z).

The convergence condition (#¢) in Theorem 1 and Theorem 2 only takes large
arguments of M and ® into account, respectively. Thus, it is clearly sufficient
to know the order of magnitude of M(z) and ®(z) as z — oo.
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Example 1 (® € V). Our first example is M(z) ~ zP, p > 0, as £ — oo. This
example covers all spaces L?, where ®(z) ~ z%exp [zP] as z — o0, @ € R and
p > 0.

Since M (z) ~ zP as © — oo, we may (in this context) assume that M (x) = zP.
We now have

logl/t P +1
M(CEE) _, ((orrsn '
log g(t) log g(t)

Clearly, this expression tends to oo (for all C > 0) if and only if

log g(t)
(log1/t) Pl
as t — 0. Note that the convergence is independent of a > 0.

— 0,

Obviously, there is no optimal approach region. Specific examples of admissible
functions h determining Ay () are h(t) = texp [C(log1/t)*(Lyn(1/t))*], for 0 <
s <p/(p+1), n>2 and arbitrary C,s’ > 0. d

Example 2 (® € V). In this example we assume that M (z) ~ exp [zP], p > 0,
as © — oo. As above, we may assume that we have equality, i.e. M(z) =
exp [zP]. We get

M (Cigsty) exp [(o log 1/ t)p —L2<g<t))]

log 9(%) log g(t) »
exp [LQ(g(t)) ((CLQ(g(tl)o)gl/i/fog g(t)) B 1)] .

Clearly this expression tends to oo as t — 0, for all C' > 0, if and only if
log1/t
Ly(g(t))* /7 log g(t)

— 00

ast — 0.

Again, there is no optimal approach region. Specific examples of admissible
functions h determining Ay (6) are

log1/t
h t) =1 ’
=t [T G L am
where a € (0,1) if n=1and a >0 ifn > 2. O

Example 3 (® € A). The natural example here is ®(x) = zP, p > 1, which
obviously gives L® = LP. Tt is easily seen that we, in this case, recover the
convergence result by Ronning. More generally, if ® € A, we have convergence
along approach regions specified by h(t) = Ct®(log1/t), but not along any
essentially wider approach regions. This should be compared to the result in
Theorem 1, where in general no largest possible approach region exists. U



2. PRELIMINARIES, & € V

In this section we assume that & € V, without further notice. For ¢,8 > 0
define ¢ .(x) = Bexp[M (cz)]. Furthermore, let

o Bp(z) = /0 " b5e(y) dy.
* Yp.c(y) = (%C)*l(y).
o Vg (y) = /0 Pp.o(t) dt.

Note that, if 8 = ¢ = 1, this definition is in agreement with Definition 1, where
M(z) = log @'(z). With these definitions the pair (®g., Ug,) is referred to as
a complementary pair.

For abbreviation, if 8 = ¢ = 1, we write ¢, ®,4 and ¥ instead of ¢1,1, ®1,1,%1,1
and ¥y 1, respectively.

We shall make use of the following standard inequality (valid for any comple-
mentary pair):

Proposition (Young’s inequality). Let (®g ., ¥g.) be a complementary pair.
Then

zy < <I)ﬁ,c(x) + LI’ﬁ,c(y)a
for any positive numbers x and y. Equality holds if and only if x = g .(y).

Lemma 1. If f € L® then ||f|1 < 27r®1_’i (@I D1/ (27)).
Proof. ® is convex, so the result is just a restatement of Jensen’s inequality. [

For the concluding approximation argument, in the proof of Theorem 1, we
need

Lemma 2. Assume that f € L®(T), i.e. assume that |P1e(|fDIL < oo for
some ¢ > 0. Then, for € > 0 given, there exists g € L>°(T) such that ||®1 (| f —
ghll <e.

Proof. Let g(x) = f(x)x{ s <r) for sufficiently large R > 0.

O

Lemma 3. Assume that {ax} and {b;} are two sequences of positive numbers,
such that limy_,o, ar = 0 and such that

Then there exists subsequences {ay; } and {by,} and a sequence {N;} C N such

that
Z Niay, = oo,
i



and

Z Nibk:,- < 0.
i

Proof. Trivial! O

The following proposition is a key observation, solving an extremal problem.

Proposition 1. Let a,c and € be given positive numbers. Let g € LY be a
nonnegative function, not identically 0, supported in [—a,a]. Then there ez-
ists a nonnegative and measurable function f, supported in [—a,a] and satis-
fying [r f(@)g(p)dp = €, such that, for all nonnegative functions f such that

f'[[‘ flp)g(p)de > €, one has that
[ eendez [ aniende
lpl<a lpl<a

Moreover, f() = 3,.(9()), where B > 0 is the unique number determined by
Jigi<a¥8.0(9(0)g(0) dip = €.

Proof. By the Young inequality we have, for any 8 > 0, that

/ F(@)glo) dp < / Bp.0(f(9)) do + / Us.0(g()) dop,
lpl<a lel<a lel<a

where equality holds if and only if f(¢) = f(¢) = ¥..(9(¢)). Choose 8 > 0
(uniquely) such that

/| _Jtordo =

For an arbitrary nonnegative function f with / f(v)g(p) dp > e, we then have
T

/ Dpo(f () dp 2/ F(@)g(p) dip — / Wy o(g(9)) dp
lpl<a lp|<a

as desired. O



3. THE PROOF OF THEOREM 1
Throughout this section we assume that g(t) = h(t)/t — oo as t — 0,
without loss of generality.

Before turning to the proofs of the two implications, we introduce a suitable
notation. If we write t = 1 — |z| and z = (1 — )¢, then

:])Of(z) = Rt * f(e)a
where the convolution is taken in T and

1 t(2 1) 1
Ry(0) = Vor (1 —t)et — 1| Py1(1 —t)

Here 6 € T = (—m, ], as before. We are interested only in small values of ¢, so
we might as well assume from now on that ¢ < 1/2. Since Py1(1—t) ~ v/tlog1/t,
the order of magnitude of R; is given by

Ri(0) ~ Qu(0) = —— - —

- log1/t t+6]

Now let 7, denote the translation 7,,f(0) = f(0 —n). Then the convergence
condition (7) in Theorem 1 above means

lim m,R:* f(68) = f(9).
t—0
In|<h(t)

The relevant maximal operator for our problem is

Mo f(0) = sup [Pof (2)I-
|arg z—0|<h(1—|z|)
|z|>1/2

Notice that My f(0) is dominated by a constant times

(4) Mf(0) = sup 7,Q *|f[(6).
[n|<h(t)
t<1/2

3.1. Proof of (ii) = (7).

Proof. Let f € L® and € > 0 be given.

We may assume that f > 0, without loss of generality. Write

Qi(0) = Qu®)xqo<2n)y + Qe(O)x{8)>2n()}
= Qi(0)+Q7(0).
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By letting

M;f(0) = sup 7,Q]* f(0),
|n|<h(t)
0<t<1/2

Jj€{1,2}, we get Mf < My f + Msyf and hence

{Mf >2}C{Mif>ctU{Maf > ¢}

To deal with My f, we observe that when |n| < h(t)

1 1
log1/t ¢+ [0 —1

2 1
log1/t . t+10]

mQi(0) < X{|0—n[>2h(t)}

The last expression is a decreasing function of |#|, whose integral in T is bounded
uniformly in ¢. It is well known that convolution by such a function is controlled
by the Hardy-Littlewood maximal operator Mgy, so that Myf < CMygyrf.
Since My, is of weak type (1,1), we obtain

{Myf > e} < Ce™ Y fx

By invoking Lemma 1, we get

(5) (Maf > e < S e (121c(Dla/2m)

Let us now turn our attention to M;. Assume that M; f(#) > . Then there
exists ¢ € (0,1/2) and |n| < h(t) such that

1 o
/ fl0—n—9) dp > e.
log 1/t Jip<on@y t+ el

It follows then, by Proposition 1, that

1
1 (f(0—n— ) dp > &1pe (—2))do.
(©) /Mh(t) (f(O— 17— @) dp > /Wh(t) e (HM)) o

where 3 is chosen such that

1 1
7 / @b,c( ) dp = elogl/t.
™) lo|<2h(t) Pe\t+ lel ) t+ el /

We shall now use (7) to get an estimate of the size of 5. We have




11

1 1
elogl/t = / ( ) . d
g1/ (| <2h(t) Vo t+lel) t+]pl v

g "/’ﬁ,c(y) d
o,

t+2h(t)

< 2¢p,(1/t) - log (1 +2g(t))
< Ctpe(1/t) -logg(t),
so that
1 log1/t
®) 52101 (Ot )

Now, let B(s) = ®1(t1,c(s)). Then it is clear that B is increasing and
lims_, o B(s) = oo. For convenience, let I; denote the interval [—2h(t), 2h(t)].
We have

1 1
||®1,c(¢ﬁ,c(rm))||Ll(It) - /It B (W) de
B

AV
B
>
=

We may now invoke (8) to get

log1/t
]' td)l,c Cgm
191,c($,c( Wiy = 4h(t)B( (C-oeatr)

t+ | 3h(t)
log 1/t
> 4h(t)B M ———] -1
= (C P [ (CE log g(t)) Ogg(t)])
> C(e)h(1),
by condition (7¢) in Theorem 1. Thus, we have
h(t) <c

||<P1,c(1/)ﬁ,c(ﬁ|(p|))||Ll(It) B
which gives, by (6),

h(t) < C Iél,c(f(w))dw

C f P1,(f(0—n— ) dep.

AN
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To sum up, we have shown that for each 6§ with M;f(0) > ¢ there exists a t
such that the interval J(0) = [0 — 3h(t),0 + 3h(t)] has the property

/ B1.(f()) dip > Chit).
J(6)

A covering argument now yields a sequence (6;,t;) with M7 f(6;) > ¢ such that
the corresponding intervals J(6;) are disjoint, and such that the union of the
scaled intervals J'(6;) = [0; — 10h(t;),0; + 10h(t;)] covers the set {Mif > e}.
In particular we have

osePls 2 30 [ ansiende

\Y

Q
g
=

Thus,

Lf>ell < Y10
< C) h(ty)
< Cl®1e(f)]1-

It follows, from the above estimate and from (5), that

{M[ > 2} < Ci(e)[|Pr,e ()l + Cal€) D1 (1Pre(f)l1/(27)) -
For each € > 0 the right hand side tends to 0 with ||®1,.(f)|/1. By Lemma 2 we
are done (approximation with bounded functions).

O
3.2. Proof of (i) = (ii).

Proof. Assume that condition (i%) in Theorem 1 is false. We show that this
implies that (7) is false also.
Assume that, for some Cy > 0,
log1/t
M (Coisty)
liminf ——=
-0 log g(t)

= A < o0.
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The claim now is that we may assume that

(C log 1/t

o Ologg(t)) _
(9) llglélf log g (1) =A€(1/4,1/2).

To see that we may assume that A < 1/2 we note that, by the conditions
we have on M, there is a number m € (0,1) such that M(z) < mM(2z) for
sufficiently large x. Thus we have

M (Cy log1/t
lim inf < m™ lim inf M =mM A.
0 log g(t) =0 log g(t)

By choosing N = N(A) large enough, we can make m’¥ A < 1/2. Thus, we can
assume from now on that A < 1/2.

To see that we may assume that A > 1/4, note that if for some ¢ > 0 we have

log1/t
M (Cologg(t)> <1/4

log g(t)

then we can clearly make g(t) smaller so that the quotient above is greater than
1/4, say, and still smaller than 1/2. Then the corresponding approach region
for the new function g (at any € € T) is a subset of the original one, and it
suffices to disprove convergence in the new one.

Pick a decreasing sequence {t;}5°, converging to 0, such that

M (Co logl/ti)

log g(t:)
10 — 4,
(10 log g(t:)
. ) log 1/t; .
as 1 — oo. For convenience, let s; = CO] @) We may assume that {t;}$° is
0g g\t;
chosen such that
M .
(11) 1ja < M)y
log g(t;)
for all s € N.
Let

1
filp) = i1 (m) * X{|o|<h(t:)}>

where 3; 1 = t;p(s;).
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Note that ®(z) < z - ¢(x), so that ®(1g,1(z)) < - Pgi(x) = 7 -(z/p), and
thus

[e(fill <

1
2 Bits
_ 2 / P(y) dy
; 1
'BZ B; (t;+h(t;))

1
1 [5G ()
< 2t;- —27d
- ﬂitz’/o Y Y

o(s:)
— g [ Py

At this stage we make a change of variables, y = ¢(z), and use (3) to get

1@ (i)l

IN

2t; - d(si) /OSi M’ (z) dz

< 2 d(s) ( /0 oM () da + /1 " M (5) dac)

IN

2, - (1) (0 +s; /1 " M () d:v)

2t; - ¢(si) (C + s;:M(s;))
Ct; - (s;) - ;M (s;)

IAIA

Now, using the above estimate, we get

h(ti) h(t:)
[@(fi)llh = ti-d(si) - siM(s:)
> og 172, &P [log g(t:) — M(si)]
Cg(ti)1/2
log1/t; ’

the last two inequalities by (11). For all ¢ > 0 sufficiently small, we have that
log 1/t
M (Coiis)  (ogi/t)e
1/2>2 ———=>>Cf —— 0
log g(t) (log g(¢)) '+«
for some sufficiently small a > 0, by (11) and (2).

It follows that
h(t;
(12) )

1@ (fo)ll

as ¢ — 0o.
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It follows from (4.2), by Lemma 3, that we can pick a subsequence of {¢;}, with
possible repetitions, for simplicity denoted {¢;} also, such that

(13) > h(ti) = oo,
1
and
(14) D lIR( i)l < oo
1

We shall now proceed with the construction of a function that disproves bound-
ary convergence a.e. The idea is to distribute mass on T over and over again,
sufficient to make the relevant Poisson integral larger than some positive con-
stant, at all points in T, and at the same time being able to make the function
arbitrarily close to 0 on a set with positive measure.

Let A; = h(t1), and for n > 2 let Ap, = h(tn) + 37— 2h(t;). By (13) one has
that lim,_,, A, = oo.

Define (on T) Fj(¢) = 74, fj(¢), and let

FMN) () = sup Fj(y).
PN

It is clear by construction that any given ¢ € T lies in the support of infinitely
many Fj:s.
Pointwise one obviously has that

o(FM () <Y

(Fj(¢),
=N

<

so that

|@(FM)|y

N
™
=
>

as N — oo, by (14). Thus, in particular, F(N) ¢ L® for any N > 1.

For @ € T and a given & > 0 we can, by construction, find ;7 € N so that
0 € supp (Fj) and so that t; € (0,&). We can then choose 7, with || < h(t;),
so that 6 —n = A; mod 27. It follows that
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limsup PoFMN)((1—)e"®=M) > lim sup Po Fj (1 — t;)e*7).
£0, [n|<h(?) P

We shall now conclude the proof by proving that the right hand side above is
always greater than some positive constant.

We have

. F(A: —
PoFj((1 —tj)ett) > 2 / 5= 9 g,
log 1/tj Jipi<hiy)  ti + ||

_ ¢ / i)
= o
log 1/t Jip1<nt;) ti + |l
1
__C /h“ﬂ v (7m) ”
log 1/t Jo ti+¢
_ ¢ /ﬂft; YW 4,
B

log 1/% o= Gy IR

#(s5)
> C / i) ap(y) dy.
log1/t; Jy y

In the last inequality, the lower limit m can be replaced by 1, since by
(11) we have

Bi(tj +h(t;)) > Bjh(t))
= exp|logg(t;) — M(s;)]
> exp[(logg(t;))/2]
— 00,

as j — oo.

We continue the estimate by making the change of variables y = ¢(z), and we
get

A C % gl (x)

PoF;((1 —t)ett) > / 2 g
C 8i

= — zM'(z) dx
log 1/t; w(1)
C 53

—_ xM'(z) dz

log1/tj Js, /o («)

Cs;
og1/1; (M(sj) — M(s;/2)).

Y

Y
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At this point we note that, by Definition 1 (i7i), we have M(s;) — M(s;/2) >
CM(s;) for some positive constant C (depending only on mg). We may now,
finally, continue the estimate to get the desired conclusion. We have

» Cs;M(s;)
PoF;((1 —t;)ethi) > L2707
I 1 log 1/t;
_ CM(sy)
log g(t;)
Z 017

the last inequality by (11).

To sum up, we have shown that for any 6 € T one has

(15) limsup PoFM((1 - 1)) > (.
t—0, |n|<h(t)

Take N so large so that Apv)(C1/2) < 7, say, and a.e. convergence is disproved.

O

4. THE PROOF OF THEOREM 2

In this section we assume that ® € A, without further notice. We use basically
the same notation as we did in the proof of Theorem 1, and we shall carry
out only those calculations that differ from that proof. Remember that the
parameter ¢ should have the value 1 when applying the other proof to this.
The results from Section 2 are easily seen to remain true for ® € A (again with
c=1).

For 3> 0, let ®g(z) = ®(x). Furthermore, let
o pg(z) = @'ﬂ(w)
o Ps(y) = (</>@)_1(y)-
¢ W) = [ bslt)dt
0

(®3, ¥p) is referred to as a complementary pair, as before.

For short, if 8 = 1, we write ¢, @, and V¥ instead of ¢1, 1,11 and ¥y, respec-
tively.

Lemma 4. Assume that ® € A. Then the following hold, uniformly in (xg, 00):
(1) ¢(2z) ~ ¢(z) and ®(2z) ~ O(z).

(i1) @(z) ~ xg(z).
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[T
(iii) /0 Wy ~ (o).

Proof. To prove the first part of (), note that

o20) [P )
OB Swm) T / O

2.’Edt
/s

~ 1,

and the statement follows. If we can establish (i7), then the second part of (%)
follows with the same techniques used to prove the first part. We have

B(z) = /0 " ot) dt

~ / wtqﬁ'(t)dt
0
= ad(z) — ®(x),

and thus ®(z) ~ z¢(x), so (i) is proved. Statement (i7i) is trivial, via the
change of coordinates given by y = ¢(z). O

4.1. Proof of (ii) = (i).

Proof. All we need to prove, according to the proof of Theorem 1, is that
h(t)
12 (s (Dl z,)

(16) <C.

In fact, all we need to do to show this, is to estimate g slightly differently. Here
we have

elogl/t = 2/? zpﬁ—(y)dy

o
1

< 2/”%_(?/)@
0 Yy

S ¢s(1/t),

the last inequality by Lemma 4, (7i7), so that
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(17) >tp(Celogl/t).

| =

Now, let B(s) = ®(¢(s)). Then, by Lemma 4, (iz), we have B(s) ~ si(s). For
convenience, let I; denote the interval [—2h(t),2h(t)]. We have

1 1
o5y = [ K (—ﬁ(t . M)) dy

1 1
~ C . d
e (t+|w|) B+ o) %
Celogl/t

IB ?

the last equality by (7). We may now invoke (17) to get

1

1265 (7o

Dy = Cile)t(log1/)¢ (Celog 1/1)

> Ca(e)t® (Cclogl/t)
~ C3(e)t® (log1/t),

where we have used Lemma 4, () and (4¢). Thus, by assumption (z) in Theorem
2, the desired inequality (16) follows.

U
4.2. Proof of (i) = (i).

Proof. Assume that condition (74) in Theorem 1 is false. We show that this
implies that (7) is false also.

Pick a decreasing sequence {¢;}{°, converging to 0, such that

g(ti)

" wlog 1/ ™

as 1 — oo. Let s; = log1/t;, and define

1

filp) = g, <m> " X{lp|<h(ti)}>

where 8; 1 = t;p(s;).
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Using ®(ys(z)) ~ 5 - ¥p(z), we get
h(t:) Pp, (ﬁ)
Ifdle = /o Bi(ti + )
1 [Fn Y(y)
- — 2 qy
/

ﬂi 1
i (8 +h(t;))

o(s3)
b b(s:) /0 ¥) 4

)
ti - p(si)si
ti - @(s5)-

dy

AN

AR

Now, using the above estimate, we get

hiti) o g(ti)

Ifille = — @(si)
Thus, by (18), we have
h(t:)
— 00,
| fille

as ¢ — 00.

Copying the proof of Theorem 1, we now see that it suffices to prove that

1 iz (z)
d C
log 1/, /«pu) ¢(x) =

for some constant C' > 0, to disprove convergence. However, by Definition 2,
(7i7), we have

1 % zd!(z) 1 /Sa‘
de > ——— Cydz
log 1/t; /¢(1) () — logl/t; Jo 0
= C(p.

We are done. O
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