CONTINUED FRACTIONS AND INCREASING
SUBSEQUENCES IN PERMUTATIONS
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ABsTRACT. We point out a generalization of a theorem of Robertson,
Wilf and Zeilberger, giving a continued fraction expansion for the joint
distribution of the numbers ey, of increasing subsequences of length k+1
in 132-avoiding permutations, for all k£ simultaneously. This shows that
any Stieltjes continued fraction with monomial denominators is the gen-
erating function of a statistic consisting of a linear combination of the
er’s. Some applications are given, one of which relates fountains of coins
to 132-avoiding permutations according to number of inversions. An-
other relates ballot numbers to such permutations according to number
of right-to-left maxima.

1. INTRODUCTION AND MAIN RESULTS

The purpose of this paper is to point out a generalization of a theorem
of Robertson, Wilf and Zeilberger [9], and some interesting consequences of
this generalization. The theorem of Robertson, Wilf and Zeilberger gives a
simple continued fraction that records the joint distribution of the patterns
12 and 123 (increasing subsequences of lengths two and three, respectively)
on permutations avoiding the pattern 132.

Generalizations of this theorem have already been given, by Krattenthaler
[4], by Mansour and Vainshtein [5] and by Jani and Rieper [3]. However, in
none of these papers is there explicit mention of the joint distribution of the
statistics under consideration, namely the number of increasing subsequences
of length k in a permutation.

That generalization gives a continued fraction of Stieltjes type, with mono-
mial generators, and we show that any such continued fraction is the gen-
erating function for some combination of the patterns 12-- -k for various k.
Moreover, there is a single invertible linear transformation that translates
between combinations of pattern statistics and the corresponding continued
fractions.

Let m = aja9 - - - a, be a permutation on {1,2,... ,n} and let 7 = bybo - - - by,
be a permutation on {1,2,... ,k}. We say that 7 has j occurrences of the
pattern T if there are exactly j different sequences 1 < 47 < 49 < -+ <

iy, < n such that the numbers a; a;, - - a;, are in the same relative order
as biby -+ bg. We indicate this by 7(7) = j. If 7(w) = 0 we say that = is
T-avoiding. For convenience we let Soo = (U, Sn, Where S, is the set of
permutations of length 7, and we let S, (132) be the set of all 132-avoiding
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permutations. For k > 1, we denote by e;_; the pattern 12---k. Thus ey
is the length of .

We now give the main theorem. Its proof is a straightforward generaliza-
tion of the proof in [9], and implicit in the proof in [5], so we only sketch it
here.

Theorem 1. The following continued fraction expansion holds:

2. 1l = 0

TESwo(132) k>0

20,0
! .00

(1)), ()

n n
in which the (n + 1)st denominator is H x,(ck)
k=0
Proof. If m € 85(132) then each letter in 7 to the left of n must be greater

than any letter to the right of n. Thus, if 7 = mynme (where both 71 and o
must necessarily be 132-avoiding) then

exT = eT1 + ep_171 + exma.
It follows that the generating function
C(zo,z1,...) = Z zlxst -
TESoo(132)
satisfies
C(zo,x1,...) =1+ 20C(xox1, 2122, ... )C (20, T1, ... )-

Equivalently,
1

N 1— iL‘()C(.’E()iL‘l,xl.’EQ, .. )

C(xg,x1,...)

and the theorem follows by induction. O

By considering statistics defined in terms of linear combinations of the egs
we obtain a more general version of Theorem 1. Let q = (qo,¢1,...), where
the g; are indeterminates. Let e = (eg,e1,--.), Ax = (Aok, Aigs---) € ZN,
and let A be the infinite matrix [A;;]. Also, let (Ag,e) = .5 Ajkej. Then
we have

plmAsq) = [ g
k>0

= H H qz‘jkeﬂ

k>03>0

- H(Hq,:fk)e”.

720 \k>0
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By letting z; = [[.>0 q,i‘jk and applying Theorem 1 we get a continued
fraction in which the (n + 1)st denominator is

()
=" = (e ) = ITa™"

Jj=>0 720 \k2>0 k>0
where b,, = ((g), (1),--.). This proves the following corollary:

Corollary 2. With definitions as above, we have

1
Z p(m, Asq) = or
TESs0(132) 1— I1 qf =
H kok 1k

Aok +2A15+ A2k
H 95

Aok +3A1k+3Aok + A3k
1— H 9y

in which the (n+1)st denominator is H q,iAk’b"), where b, = ((8), (Tf), ... )
k>0

A Stieltjes continued fraction is a continued fraction of the form
1

C1

C =

1—
1—
1—

C2

C3

We say that C has monomial denominators if each ¢; is a monomial in some
set of variables.

Corollary 2 allows us to interpret every Stieltjes continued fraction with
monomial denominators as the generating function for the distribution of a
statistic on Soo(132) consisting of a (possibly infinite) linear combination of

er’s. Let B = [(;)] be the infinite matrix with (;) in the ith row and jth
column, for 4,7 > 0. Its inverse is B! = [(—1)*7 (;)]

Theorem 3. There is a one-to-one correspondence between Stieltjes contin-
ued fractions with monomial denominators and statistics consisting of linear
combinations of er’s on Sx(132). Moreover, if F(qo,q1,--.), is a continued
fraction with (n + 1)st denominator H q,Z"’“ then the corresponding AyiS in

k>0
Corollary 2 are given by the infinite matriz relation

[Ank] = B! [Ynk]-

Proof. The kth exponent of the (n+ 1)st denominator in the continued frac-
tion of Corollary 2 is y,x = (by, Ag). In other words, the relationship be-
tween the A, and the vy, is given by

[Ynk] = [(br, Ak)] = B[Ank]
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and the Theorem follows. O

2. DYCK PATHS

Before giving applications of Theorem 3 we review some theory on Dyck
paths and their relation to 132-avoiding permutations.

A Dyck path of length 2n is a path in the integral plane from (0,0) to
(2n,0), consisting of steps of type u = (1,1) and d = (1,—1) and never
going below the z-axis. We call the steps of type u up-steps and those of
type d we call down-steps. The height of a step in a Dyck path is the height
above the z-axis of its left point.

A nonempty Dyck path w can be written uniquely as uwidws where w;
and we are Dyck paths. This decomposition is called the first return decom-
position of w, because the d in uw;dws corresponds to the first place, after
(0,0), where the path touches the z-axis.

In [4] a bijection ® between Sy (132) and the set of Dyck paths of length 2n
is studied. This bijection can also be defined recursively as we now explain.

For a permutation # on S C N let 7 be the corresponding permutation
in S, where n = | S|, such that the order relations among the elements are
preserved. For example if 7 = 3627 then 7 = 2314. A permutation 7 of
length n > 0 is easily seen to be 132-avoiding if and only if it can be written
as minme where 71 and 7y are 132-avoiding and each letter in 7 is larger
than each letter in m9. The bijection @ is then defined recursively by:

®(e)=e¢ and &(7) =ud(m)dP(72),

where ¢ is the empty permutation/word. For example, letting ® operate on
the permutation 41253 we successively obtain

41253 — u412d3 — wudl2dud — wvwudulddud — uwuduudddud.

In what follows, when we talk about a correspondence between a Dyck path
and a 132-avoiding permutation, we will always mean the correspondence
afforded by ®.

Using ® we can interpret exm in terms of the Dyck path corresponding
to m. Namely (see [4]), we have

h(d) — 1
1) ar= 3 (")
d in ®(n)
where the sum is over all down-steps d in ®(7) and h(d) is the height of the

left point of d. This can also be shown by induction over the length of ,
since for a nonempty permutation m = mynmwy we have

€T = eT1 + €x_1T1 + eLTa.
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Thus, if frw =4 inw (h(dgfl), we have

o - 3 (h(d)k - 1)

dinw
_ d %:w (h;d)> N d %:wz (h(d;ﬂ - 1)
= d %:wl (h(d)k — 1) +d %:wl (hggd)_ _1 1) + fy

= frw1 + fr—1wi + frwa,

for w = uwidws. Since fo®(7) = e, it follows by induction over the length
of w that fr o ® = ey.

3. APPLICATIONS

We now give some applications of Theorem 3. Some of these relate known
continued fractions to the statistics e, but others relate these statistics to
various other combinatorial structures.

3.1. A continued fraction of Ramanujan. The following continued frac-
tion R(g,t) was studied by Ramanujan (see 7, p. 126]). It was shown in [2]
that the coefficient to t"¢* in the expansion of R(g,) is the number of Dyck
paths of length 2n and area k:

1
qt
I’
¢t

7
t
14t

R(q,t) =
]_ —

1—
1—

Using Theorem 3, we give an interpretation in terms of the patterns ex. We
have I = (y0,71,.-.) = (1,3,5,...). Thus, according to Theorem 3, we have
(Ao, AL, -..) = [(=1)"F()IL = (1,2,0,0,...), since

b= 00+ 05 (2) = 2

k>0
where §;; is the Kronecker delta. Thus

R(gt)= Y gomt2am

so R(q,t) records the statistic eg+2e; on 132-avoiding permutations. In fact,
the bijection @ translates the statistic eg + 2e; into the sum of the heights
of the steps in the corresponding Dyck path, which in turn is easily seen to
equal area.
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3.2. Fountains of coins. A fountain of coins is a two dimensional array of
circles where each circle (except for those in the bottom row) rests on two ad-
jacent ones in the row below (see Figure 1). Let F(z,t) =3_, , f(n, k)zktm,
where f(n, k) counts the number of fountains with n coins in the bottom
row and k coins in total. In [6] it is shown that

1

Tt
Tt
z3t
zit

F(z,t) =

1—

1—

1—

A straightforward application of Theorem 3 gives the following result. Note
that e;7 is the number of non-inversions in m, that is, pairs of letters in «
that are in increasing order.

Proposition 4. The number f(n,k) equals the number of permutations
m € Sp(132) with (eg + e1)m = k. Equivalently, f(n,k) equals the num-
ber of permutations in S,(132) with k — n non-inversions.

If we reverse each permutation in S,(132) we see that f(n, k) also equals
the number of 231-avoiding permutations in S,, with exactly k—n inversions.

We also give a combinatorial proof of Proposition 4, by constructing a
bijection between the set of Dyck paths of length 2n and the set of fountains
with n coins in the bottom row. Let ¥ be the bijection that maps a Dyck
path on the fountain obtained by placing coins at the centre of all lattice
squares inside the path, in the way that Figure 1 suggests.

FIGURE 1. A fountain of coins and the corresponding Dyck path

The ¢th slant line in a fountain is the sequence of coins starting with the
ith coin from the left in the bottom row and continuing in the northeast
direction. The height of a down-step thus corresponds to the number of
coins in the slant line ending at the down-step d. Now, eg is the number of
coins in the bottom row and (h(dl)_l) is one less than the number of coins in
the corresponding slant line (see the end of Section 2). Thus we have that
eg + e1 counts the total number of coins in the fountain.
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3.3. Increasing subsequences. The total number of increasing subsequences
in a permutation is counted by ey + e; + ---. An application of Theorem 3
gives the following continued fraction for the distribution of ey +e; ++--:

Z $eg7r+el7r+---t\7r| _ 1

3.4. Right-to-left maxima. We say that an increasing subsequence
m(iy)w(ig) - - - m(ig) of m € Sy, is right mazimal if 7(ix) < 7(j) implies j < iy
(so that the sequence can not be extended to the right).

Proposition 5. Let m € §,(132) and let mym be the number of right mazi-
mal increasing subsequences of w of length k + 1. Then

MET = €T — €417 + €T — =+ .
In particular, the number of right-to-left maxima in w equals
eym —e1mM + eom —egm + - - .

Proof. 1t suffices to prove that for all 7 € S (132) and & > 0 we have
mym + mgy1m = exm. The statistic ex counts all increasing sequences of
length k£ in 7. If such a sequence is right maximal, it is counted by myg. It
therefore suffices to show that every increasing subsequence of length k that is
not right maximal can be associated to a unique right maximal subsequence
of length k 4+ 1, and conversely.

If an increasing subsequence of length k is not right maximal, it can be
extended to a right maximal one of length k + 1 and we show that this can
only be done in one way. Suppose z is the last letter of the original sequence
and that the sequence can be extended to a right maximal one by adjoining
either y or z, where y comes before z in w. Then y must be greater than z,
S0 z,y, z form a 132-sequence which is contrary to the assumption that 7 is
132-avoiding.

Conversely, deleting the last letter in a right maximal sequence of length
k + 1 clearly gives a non-right maximal sequence of length k. O

Let Mi(z,t) := Y res. (132) g™k (M Tf ;= 0 for i < k and vy = (—1)7
for j > 0, then the n-th coordinate in B[y;] is

(Z)‘(kﬁ1>+(ki2>_.._,

which is easily shown to equal (Zj) That, together with Theorem 1, implies
that Mg(z,t) is the continued fraction whose (n + 1)st denominator is the
monomial tz(i-1). Let Fi(z,t) = Yreso(132) 27" and define e 17 to
be 1 for all permutations 7 (that is, we declare all permutations to have

exactly one increasing subsequence of length 0). Applying Theorem 1 we
then have, for all £ > —1, that F(z,t) is the continued fraction with (n+1)st
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denominator tx(Z), since (n_—11) is naturally defined to be d,9. This leads to
the following observation.

Proposition 6. For all kK > 0 we have

1
My(z,t) = ——————.

e = TR @)

The ballot number b(n, k) is the number of paths from (0, 0) to (n+k,n—k)
that do not cross the z-axis. It is well known that the ballot number b(n, k) is
equal to ":—_ﬁk (n:k) Let B(z,1) 1=}, 1 b(n, k)z*t". We have the following
identity for B(z,t) (see [8, p 152]):

C(zt)
Blz,t) = —>"7
@8 = 6@’
where C'(z) is the generating function for the Catalan numbers.

Proposition 7. The number of permutations of length n with k right-to-left
mazima equals the ballot number

bin—1,n— k) = —" (2”_k),

C n—k n

and

n—k{n+k
b(n_l’k):nﬂc( k )

counts the number of permutations of length n with k right mazimal increas-
ing subsequences of length two.

Proof. By Proposition 6 we have that

1
My(z,t) = —————
0@t = T—iew
records the distribution of right-to-left maxima. Since B(z~!, zt) = 17%2@)

we have that:
My(z,t) =1+ xtB(z™ ' 2t) =1+ Z b(n —1,n — k)zFt"
n.k

and the first assertion follows. For the second assertion, observe that by
Proposition 6 we have

1
M@t = 56w
Furthermore, we have
M (z,t) = My(z 1, zt) = 1 + tB(z, 1),
which concludes the proof. ]
The first assertion of Proposition 7 can be proved bijectively using the
map P in Section 2. In fact, the number of right-to-left maxima of 7 is equal

to the number of returns in ® (), that is, the number of times the path ® ()

intersects the z-axis. This number is known to have a distribution given by
b(n—1,k—1) (see [1]).
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3.5. Narayana numbers. The generating function for the Narayana num-
bers N(n,k) = L (}) (kj_l) satisfies the following functional equation (see for
example [1]):

N(z,t) := Y _ N(n,k)z*" = 1 + 2tN*(z,t) — 5tN(z,t) + tN(z,1).
n,k
This allows us to express N(z,t) as a continued fraction:

1 1
N ,t — =
(z,1) 1 ; "

S S
1—xtN(z,t) tz

Since the sequence of exponents to z is (0,1,0,1,...) we set (Ao, A\1,...) =
[(—1)"*(})](0,1,0,1,...) in order to apply Theorem 3. Now, for n # 0 we

have
N = _1n—kn:_n—1
= X o () = o
k odd
s0 (Aos A1,...) =(0,1,—2,4,—=8,...), which leads to the following Proposi-
tion.

Proposition 8. Let ar = (e; — 2e9 + 4e3 — ---)w. Then the statistic a has
the Narayana distribution over Sy (132), that is,

Z 20l = ZN(n,k)xkt".

ﬂESoo(132) ’n,k
Now
_ (h(d) -1 14 (—1)d
k—1 _ k—1 _
N 3D M G ED MR
k>1 k>1d in w d inw
so the interpretation of e; — 2e2 4+ 4es — - -+ in terms of Dyck-paths is the

number of even down-steps whose distribution is known to be given by the
Narayana numbers.
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