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Abstract

This paper considers the linear time-dependent Boltzmann equation in a bounded
domain with general boundary conditions, together with an interior source term
and an absorption term, both these terms with time-dependent coefficient going
to zero, when time goes to infinity. First, mild L'-solutions are constructed as
limits of iterate functions. Then the problem of convergence to a stationary
solution is studied by an H-theorem, using a relative entropy functional.

1 Introduction

The linear Boltzmann equation is frequently used for mathematical modelling in physics,
(e.g. for discribing the neutron distribution in reactor physics, cf. [1]-[4]).

One fundamental question concerns the large time behavior of the function f(x,v,t),
representing the distribution of particles; in particular, the problem of convergence to
a stationary equilibrium solution, when time goes to infinity. In our earlier papers
[5]-[8] we have studied such convergence to equilibrium for the space-dependent linear
Boltzmann equation with general boundary conditions and general initial data, under
the assumption of existence of a corresponding stationary solution. For the proofs we
use iterate functions, defined by an exponential form of the equation together with
the boundary conditions, and we also use a general relative entropy functional for the
quotient of the time dependent and the stationary solutions.

Then a fundamental question in kinetics concerns the existence and uniqueness of
stationary solutions to the space-dependent transport equation, with general collision
mechanism (including the cases of inverse soft and hard power forces), together with
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general boundary conditions, (including the periodic, specular and diffuse cases). In
our paper [9] we studied the stationary equation with a constant interior source term
and an absorption term.

In this paper we consider the time-dependent linear Boltzmann equation for the func-
tion f(x,v,t) in the case of an interior source term «(t)G(x,v) where a(t) = 1/(1+1)
and G is a given function, together with an absorption term «(t)f(x,v,t) and general
boundary conditions. First, solutions are constructed as limits of iterate functions,
f(x,v,t) = lim,_,o f"(x,v,t) in Section 3, where also global boundedness of higher
velocity moments is discussed. Then the main result of this paper concerning an H-
theorem for a relative entropy functional of our solution is proved in Section 4, together
with some corollaries, when ¢ — co. Finally in Section 5, we discuss the problem con-
cerning convergence of our solution to a stationary solution, when time goes to infinity.

For bounded gain operators the problem of existence and uniqueness for solutions to
the linear Boltzmann equation has been studied earlier by a different technique, cf. ref.
[3] and also [10]. But in our approach unbounded operators are also included, e.g. the
case of hard power collision forces.

2 Preliminaries

We consider the transport equation for a distribution function f(x,v,?), depending on
a space variable x = (1,79, 23) in a bounded convex body D with (piecewise) C*-
boundary I' = 8D, and depending on a velocity variable v = (vy, v9,v3) € V = R® and
a time variable t € R, . The linear Boltzmann equation in the case of a given interior
source a(t)G(x,v), where a > 0 is a given (continuous) function and G > 0 a given
(measurable) function, together with an absorption term «(t) f(x, v, t), is in the strong
form
of

57 %V ) +VVRf (%, v, 1) +a(t) f(x, v, 1) =

= a(t)G(x,v) + (Qf)(x, v, 1).

The collision term can be written

(2.1)

@NGvt) = [ ¥ ev) v t) = Yoo v fox v, OB, v = v. dbdCa..
Ve
(2.2)
where Y > 0 is a known distribution function, and B > 0 is given by the collision

process. Here v, v, are the velocities before and v/, vl the velocities after a binary
collision, and Q = {(0,¢) : 0 < 0 < 0,0 < ( < 27} is the impact plane. In the angular



cut-off case with 8 < 5 the gain and the loss term can be separated

@Qf)(x,v,t) = /VK(X, vl = v)f(x, v, t)dv' — L(x,v)f(x,v,1), (2.3)

where L is the collision frequency

L(x,v) = // B0, w)Y (x,v,)dOd(dv,,w = |v — v,]|. (2.4)
Ve
In the case of nonabsorbing body we have
L(x,v) = / K(x,v — v")dv". (2.5)
v
One physically interesting case is that with inverse k-th power collision forces
k—5

with hard forces for £ > 5, Maxwellian for £ = 5, and soft forces for 3 < k < 5.

The equation (2.1) is supplemented with the following initial conditions
f(x,v,0)=0, (x,v)eDxYV, (2.7)
together with (general) boundary conditions
Fevit) = (0 60) [ PR - v)f v 00, (28)

v [nv|

where (3 is a given function , 0 < 3(¢) < 1. The function R > 0 satisfies

/ R(x,v = v)dv =1, (2.9)

and n = n(x) is the unit outward normal at x € I'. The functions f_ and f, represent
the ingoing and outgoing trace functions corresponding to f. Furthermore, in the
specular reflection case, the function R is represented by Dirac measure R(x,Vv —
v) = 6(v — v+ 2n(nv)), and in the diffuse reflection case R(x,v — v) = [nv|W(x, V)
with some given function W > 0 (e.g. Maxwellian function).

Now using differentiation along the characteristics, the equation (2.1) can formally be
written

d
a(f(x +tv,v,t)) = a(t)G(x+ tv,v) +

+ / Kx+tv,v' =2 v)f(x+tv,v t)dv' — [a(t) + L(x + tv, V)] f(x + tv,v,1).
14
(2.10)



Let

ty=ty(x,v) = inf {r:x—7v ¢ D}

TERY

and x, = x(x,v) = x — t,v. Here ¢, represents the time for a particle going with
velocity v from the boundary point x;, = x — %, v to the point x.

Then we have the following mild form of the linear Boltzmann equation

t
f(X,V,t) :f_(Xb,V,t—tb)+/ [Qf(X_TV,V,t—T)+
0

(2.11)
+at—-7)(Gx—1v,v)— f(x—71V,V,t —7T))|dT
and the exponential form
FO6V, ) = fo (v, € — ty)e™ R TLOsvmlds 4
+/0 e Jolelt=a)tLix=svvllds|y (4 _ )G (x — 7v, V) + (2.12)

+ / Kx—-7v,v = v)f(x—7v,v t—71)dv']|dr.
v

3 Construction of solutions

We construct mild L!-solutions to our problem as limits of iterate functions f™, when
n — oo. Let first f~1(x,v,t) = 0 for all x,v € R*,¢ € R,. Then define, for given
function f"~! the next iterate f", first at the ingoing boundary (using the appropriate
boundary condition), and then inside D and at the outgoing boundary (using the
exponential form of the equation);

|n e < -

X, V, 1) R(x,v — v)f¥ (x,V,t)dv,
( o) [ )39, .
nv<0,x€F_8D,vEV—R3,tER+,

and
PRV, ) = 200 = v, v, t = dy)em B el Lol
t

+/ e Jolelt=s)tLix=svV)lds (4 _ )G (x — 7v, V) +

0 (3.2)

+ / Kx—71v,v' = v)f* Yx —7v,v/,t — 7)dv']dT,
14

x €D\l (v),veV =R teR,.



Let also f™(x,v,t) =0 for x € R\ D.

Now we get a monotonicity lemma, which is essential in the following, and which can
be proved by induction.

Lemma 3.1. f*(x,v,t) > f*!(x,v,t),xe D,veV,teR,,neN.

Remark. The iterate function f"(x,v,t) represents the distribution of particles un-
dergone at most 7 collisions (inside D or at the boundary I' = 0D) in the time interval
(0,2).

Using differentiation along the characteristics, we get by (3.2) that
d
%[f”(x +itv,v,t)] = a)[G(x+tv,v) — f*(x + tv,v,t)] +
+ / Kx+tv,v = v)f" ' (x+tv,v, t)dv — (3.3)
— L‘Ex +tv, v, t) f (x + tv,v,t).

Let now «(t) = 1/(1+1t), and 3(t) = p/(1+1) with a constant p > 0, be the absorption
coefficients used in the following.

Then multiplying (3.3) by (1 + ¢) and differentiating the product, we get

c;lt 1+ f"(x+tv,v,t)] =G(x+tv,v)+
+ / Kx+tv,v = v)(1+1t) " (x +tv, v, t)dv — (3.4)
v

— L(x+tv,v)(1+1)f"(x +tv,v,1).

Now integrating (3.4), it follows by Green’s formula that
¢
(1+41¢) / [ (x, v, t)dxdv + / (1+47) / [P (x,v,7)|nv|dvdl'dr =
DV 0 vV

= t//DV G(x,v)dxdv + /Ot(l +7) //rv fM(x,v,7)|nv|dvdldr + (3.5)

- A+ [ pwlr o) = v, rliavr,

where by (2.9)

/ i (x,v,7)nv|dv = (1 — / (x,v,7)nv|dv.



So by Lemma 3.1 and (3.5) it follows that

/ DV f(x, v, t)dxdv + —/ //rv (x,v,7)nv|dvdldr 56)

< // G(x,v)dxdv.

Then Levi’s theorem gives existence of mild (defined by (2.11)) L'-solutions f(x,v,t) =
lim,, o f™(x,V,1) to our problem. Furthermore, if L(x,Vv)f(x,v,t) € L'(D x V), then
we get equality in (3.6) for the limit function f, giving mass conservation together with
uniqueness in the relevant function space, cf. [6] and also [3],

o [
/ DVf(X,v,t)dde + /0 //FV fi(x,v,7)|nv|dvdldr .

// G(x,v)dxdv.
1+t DV

In summary, we have the following existence and uniqueness theorem for solutions to
our time-dependent linear Boltzmann equation with general boundary reflections.

Theorem 3.2. Assume that K, L and R are nonnegative, measurable functions, such
that (2.5) and (2.9) hold, and L(x,v) € Lj.(D x V). Let a(t) = 1/(1 +t) and
B(t) = p/(1 +t) be the absorption coefficients in the interior and at the boundary of
the body D respectively, and let G(x,v) € L' (x,v) with [ [ Gdxdv > 0.

a) Then there exists a mild L' solution f(x,v,t) to the problem (2.1)-(2.4) with
(2.7) and (2.8). This solution, depending on G and p, satisfies the corresponding
inequality in (3.7).

b) Moreover, if L(x,v)f(x,v,t) € L'(D x V), then the trace of the solution f
satisfies the boundary condition (2.8) for a.e. (x,v) € T' x V. Furthermore,
mass conservation, giving equality in (8.7), holds together with uniqueness in the
relevant L'-space.

Remarks.

1) The statement in Theorem 3.2 (b) on existence of traces follows e.g. from Propo-
sition 3.3, Chapter XI, in [3].

2) The assumption Lf € L*(D x V) is for instance, satisfied for the solution f in the
case of inverse power collision forces, cf. (2.6), together with specular or diffuse



4

boundary reflections. This follows from a statement on global boundedness (in
time) of higher velocity moments, cf. Theorem 4.1 in [9],

// (14022 f(x,v,t)dxdv < C, < 00,
DV
o >max(0,7),-1<~y=(k—-5)/(k—1) < 1,t >0,

(3.8)

if (1+0%)72G(x,v) € L}(D x V).

For a proof of (3.8) we can multiply equation (3.4) by (1 + v2)°/2, and integrate,
(using Green’s formula) getting an equation analogous to (3.5). Then the gain
and loss terms can be estimated, using an inequality for the velocities in a binary
collision, cf. [5],

a/2

(1 —+ (UI)Q)U/Z _ (1 + ,1)2)0'/2 S
< Chwcos 0(1 + v*)max(lvff*l)(l + U2)UT—2 _

o—1

— Cowcos? (1 +v?) "2,
with constants C,Cs > 0 and o > 0, together with some elementary estimate,
+1

—w" < (14w )" =27 1 +0?) .

The function Y in (2.2) is here assumed to satisfy the following conditions

/ (1 +v.) 722D sup(Y (x, v..))dv., < oo,
\4

zeD

/Vxlglg(Y(x, v,))dv, > 0.

For further details on boundedness of higher velocity moments, see [9], and also
our earlier papers [5]-[8].

An H-theorem for a relative entropy functional

In this section we will prove an entropy theorem for the quotient of two solutions, f
and f, from Section 3, with a time shifting in the absorption coefficients for one of the
solutions.

Let g(x,v,t) = (1 +1)f(x,v,1),
and g(x,v,t) = (T +1)f(x,v, 1), (4.1)

where f and f are solutions from Section 3 with absorption coefficients a(t) = 1(1 +

t),0(t) =p/(1+1), and a(t) =1/(T +1),6(t) = p/(T +1t),T > 0, respectively.
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Then we can start from the following equations, cf. (3.4),

Lol +1v,v,0)] = Gl + 1v,9) + Qo) x + 1v,v,1),

g9(x,v,0) =0,
g-(x,v,t) = (1 ~3 _'T_t) ; “zj}R(x,\? — Vv)g+(x,V,t)dv,
and
[g(x +tv,v,t)] = Gx+tv,v)+ (Q9)(x + tv,v,1),
g(x,v,0) =0
g-(x,v,1) = ( T'j—t) /V :23:]%()(,\7 — v)g4(x, V,t)dv.

(4.2)

(4.3)

To prove an H-theorem for the convex function ¢(z) = (z — 1)%,2 = g/g, we begin

with the following calculations, cf. (4.2), (4.3),

%[(g — 1)2g] (x+tv,v,t) =

- B2 (2 -t -

- [2%— <§)2—1]G+
+2<§—1)[/Kg(v')dv'—L-g} +

+[1- (%)2 /Kg(v')dv'—L-g] -
=—(§—1 )G+ /K 9V -
- [ 5(2) mtv )dv L+ (2) W) -
~of [ Kgtv)iv' ~ L-g(v)] +

+ [ Koyt = L-g(v),

(4.4)

where L = [K(v — v')dv', (and where we have shortened the notations to the

essential varlables)

Assume now that Lf,Lf € L'(D x V), so also Lg, Lg € L*(D x V) for t > 0. Then,

[[ Kg(v')dv'dv = [ Lg(v)dv, and the same relation holds for g.



Then integration of (4.4) (from t, to t in the time variable) using Green’s formula,
gives (with some shortened notations)

//DV __1 xvtdxdv—//DV ——1 xvto)dxdv

+/t0 //FV ;_1) g1 (%, v, 7)|nv|dvdTdr —

_ /t: //FV (5_— - I)Zg(x,v,T)\nv|dvdFdT - ws)

__/t//DV W—I)QG(x,v)dxdvdT—
N/

x g(x,v', 7)dxdvdv'dr.

For the boundary terms we use, if p = 0, a Darrozes-Guiraud inequality, cf. ref [2],

/V (g— — 1)29_|nv|dv < /V (z—i — 1) g.|nv|dv. (4.6)

Then we get the following H-theorem for g/g:

X v, t 2
//DV X v, t o 1i| g(X,V,t)dde+
2
// g(x,v,7) 1} G(x,v)dxdvdr +

to DV XVT

/ /] pyy Y *">[g§ ;23 —zg’}:jﬁ:g : (4.7)

X g(x, v’ T)dxdvdv'dT <

to) 2
// g vito) 1] g(x, v, ty)dxdv.
pv Lg(x,v, ty)

But g = (T +t)f and g = (1+1)f, so
(1+1) // T+t fXVt; 1}2f(x,v,t)dxdv+

)

)

lQI

py L1+1% X,V,t
/// T—|—7' fXVT
py L1+T fXVT
T+7' f( ) f_(XaV,aT) 2 (48)
*fm(l D o KO I Fo e Fe
X f(x,v' dedvdv'd7'<

T+t0 f_(XaV:tO) 2
1+ ) . -1 X, Vv, ty)dxdv.
’ //DV L+t f(x,v,t) ] f o)

2
1} G(x,v)dxdvdr +




Now divide by (1 +t), and let ¢ — co. Then

tl;r& // ; 1}2f(x,v,t)dxdv} +
R [iﬁi:i:i% [ Gt yisavir} +

+tli‘1‘o{<1it>/t:(1 () ], kv o O

f(X,V,T) f(x’v’T) 2 ! !
X [f(X,V,T) ~ v',T)] f(x, V', 7)dxdvdv d’T}

<0.

We find that this inequality also holds in the case p > 0, because then we have, instead
of (4.6), that

/(g—_—1)29_|nv|dv§/[1:

with 3= p/(1+1),8=p/(T +1).

Then further elementary calculations, using (4.9), give the following H-theorem for
f/f, when t — oo.

ey

e 10 - B)gslnvidy

g+

=

Theorem 4.1. Let f and f be solutions from Theorem 3.2(b) corresponding to absorp-
tion coefficients a(t) = 1/(T+t), B(t) = p/(T+t), and a(t) = 1/(1+t), B(t) = p/(1+1)
respectively, and assume that L(x,v)f(x,v,t) and L(x,v)f(x,v,t) € LY(DxV),t > 0.

Then
) / / f f(x,v, 1)
hrn
t—00 v Lf(x,v,1)
lim / / (X ML
t—00 oy Lf(x,v,t

i {1+ ///DWmewféz::::; il

x f(x, v',t)dxdvdv'} =0.

— 1]2f(x,v,t)dxdv} =0,

v\/v\/

1] G(x, v)dxdv} =0, (410

Remark. Analogous H-theorems can be proved for general convex functions ¢(z), z =

f/f, cf. ref. [8].

Furthermore, if G(x,v) > 0 a.e. in D x V, (e.g. with Maxwellian G), then we have
the following corollary.
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Corollary 4.2. For the functions f and f in Theorem 4.1 it holds a.e. in D x V that

lim {M} —1. (4.11)

t—oo U f(x,V,1)

5 On existence of stationary solutions

In this section we will discuss the problem concerning convergence of our solution
f(x,v,t), (constructed in Section 3), to a corresponding stationary solution F'(x,v),
when time goes to infinity. Let

fx,v,t) = f(x,v,t+ A) (5.1)
with A =T —1.

Then it follows, by e.g. (2.1), that f satisfies an equation with absorption coefficients
a(t) = a(t+A) = 1/(T +t) and B(t) = B(t + A) = p/(T +1t), used in Section 4.
And the results, concerning the relative entropy functional from that section, can be
applied in the following theorem.

Corollary 5.1. The solution f from Theorem 3.2 satisfies (for arbitrary A =T — 1)

A
i f(x,v,t+ A)

L ) =1, a.e.(x,v) €D xV. (5.2)

Then, concerning convergence to equilibrium for our time-dependent solution (con-
structed in Section 3), it follows that f(x,v,t) converges (at least for a time sequence)
to some (stationary) measure solution, which (in some cases) can be a L' solution,
for instance in the case, when f also is a L* solution. We hope to come back to this
question in a forthcoming paper, and we know (by an H-theorem analogous to that
in Section 4), that we have uniqueness, if there exists a mild L' solution, cf. ref. [8].
Compare also other papers concerning the problem of convergence to equilibrium for
the linear Boltzmann equation, e.g. ref. [11] and also ref. [12].
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