Classical dynamical r-matrices, Poisson
homogeneous spaces, and Lagrangian subalgebras

Eugene Karolinsky*
Department of Mathematics, Kharkov National University,
4 Svobody Sqr., Kharkov, 61077, Ukraine

karol@skynet.kharkov.com; karolinsky@ilt.kharkov.ua

Alexander Stolin

Department of Mathematics, University of Goteborg,
SE-412 96 Goteborg, Sweden

astolin@math.chalmers.se

Abstract

In [18] Lu showed that any dynamical r-matrix for the pair (g,u) nat-
urally induces a Poisson homogeneous structure on G/U. She also proved
that if g is complex simple, u is its Cartan subalgebra and r is quasitrian-
gular, then this correspondence is in fact 1-1. In the present paper we find
some general conditions under which the Lu correspondence is 1-1. Then
we apply this result to describe all triangular Poisson homogeneous struc-
tures on G/U for a simple complex group G and its reductive subgroup U
containing a Cartan subgroup.

1 Introduction

The notion of a Poisson-Lie group was introduced almost 20 years ago by Drinfeld
in [4]. Its infinitesimal counterpart, Lie bialgebras, were introduced in the same
paper and later it was explained that these objects are in fact quasiclassical limits
of quantum groups (see [5]). Lie bialgebra structures on a Lie algebra g are in
a natural 1-1 correspondence with Lie algebra structures on the vector space
D(g) = g @ g* with some compatibility conditions. D(g) with this Lie algebra
structure is called the double of the Lie bialgebra g.
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The most popular and important class of Lie bialgebras is the class of quasi-
triangular Lie bialgebras (see [5]). They can be defined by an element r € g ® g
(called the classical r-matrix) such that

Q:=r+r*
is g-invariant, and the classical Yang-Baxter equation (CYBE)
[7’12, 7‘13] + [7,12, 7”23] + [7,13’ 7"23] =0

is satisfied. If r is skew-symmetric, then one says that the corresponding Lie
bialgebra is triangular. In general, A :=r — % (i.e., the skew-symmetric part of
r) satisfies the modified CYBE

[A12’A13] + [A12, A23] + [A13’ A23] — %[912’ Q23].

It is well known (and can be easily shown) that if g is a complex simple finite-
dimensional Lie algebra, then any Lie bialgebra structure on g is quasitriangular.
For the case €2 # 0 (“quasitriangular case in the strict sense”) they were classified
by Belavin and Drinfeld, see [1, 2]. The triangular case was studied in [20, 21, 22].

In the paper [23] it was shown that for such g there are only two possible
structures of the D(g). In the triangular case D(g) = gle] = g® ge, where ¢2 = 0
and otherwise, D(g) = gxg (and g is embedded diagonally into gxg). Then it is
clear that solutions of the CYBE (resp. the modified CYBE with 2 # 0) are in
a 1-1 correspondence with Lagrangian subalgebras [ in g[e] (resp. in gx g) such
that [N g =0.

Along with the Poisson-Lie groups it is natural to study their Poisson actions,
and in particular their Poisson homogeneous spaces. Drinfeld in [7] gave a general
approach to the classification of Poisson homogeneous spaces. Namely, he showed
that if G is a Poisson-Lie group, g is the corresponding Lie bialgebra, then Poisson
homogeneous G-spaces are essentially in a 1-1 correspondence with G-orbits on
the set of all Lagrangian subalgebras in D(g). A classification of Lagrangian
subalgebras in some important cases (including the case g is complex simple,
D(g) = gxg) was obtained in [15, 16, 17].

At the same time an important generalization of the CYBE, the dynami-
cal classical Yang-Baxter equation, was introduced in physics and mathemat-
ics. Notice that this equation is defined for a pair (g, u), where u is a subalge-
bra of g. From the mathematical point of view it was presented by Felder in
[12, 13]. This equation and its quantum analogue were studied in many papers,
see [10, 8, 19, 24]. First classification results for the solutions of the classical dy-
namical Yang-Baxter equation (dynamical r-matrices) were obtained by Etingof,
Varchenko, and Schiffmann in [10, 19].

Later Lu ([18]) found a connection (which is essentially a 1-1 correspondence)
between dynamical r-matrices for the pair (g,u) (where u is a Cartan subalgebra
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of the complex simple finite-dimensional algebra g), and Poisson homogeneous
G-structures on G/U. Here U C G are connected Lie groups corresponding
tou C g, and G is equipped with the standard quasitriangular (with Q # 0)
Poisson-Lie structure.

Lu also noticed that this connection can be generalized to the case u is a sub-
space in a Cartan subalgebra (with some “regularity” condition). The dynamical
r-matrices for the latter case were classified by Schiffmann in [19]. In this case
connections between dynamical r-matrices and certain Lagrangian subalgebras
can be derived directly from [19].

Now let G be a complex connected semisimple Lie group, and let U be its
connected subgroup. Suppose u C g be the corresponding Lie algebras. In the
present paper we consider connections between Poisson homogeneous structures
on G/U related to the triangular Poisson-Lie structures on G (i.e., with Q =
0), where U is a reductive subgroup containing a Cartan subgroup of G, and
triangular dynamical r-matrices for the pair (g, u).

In fact, our results are based on a general result on relations between dynam-
ical classical r-matrices and Poisson homogeneous structures (see Theorem 12),
which is valid also in the quasitriangular case. Notice that the results of Sec-
tions 2 and 3 can be used to describe a 1-1 correspondence between dynamical
r-matrices for the pair (g,u), where u C g is a Cartan subalgebra, and Poisson
homogeneous G-structures on G/U, where G is equipped with any quasitrian-
gular (with ©Q # 0) Poisson-Lie structure (of course the latter result is due to
Lu). Our approach is based on some strong classification results for dynamical
r-matrices given recently by Etingof and Schiffmann in [9].

The paper is organized as follows. In Section 2 we describe a correspondence
between the (moduli space of) dynamical r-matrices for a pair (g, u) and Poisson
homogeneous G-structures on G /U proving that under certain assumptions it is
a bijection. In Section 3 we consider a procedure of twisting for Lie bialgebras
and examine its impact on the double D(g) and Poisson homogeneous spaces
for corresponding Poisson-Lie groups. Then we use the twisting to weaken some
restrictions needed in Section 2. In Section 4 we consider the basic example of
our paper: g is semisimple, u C g is a reductive Lie subalgebra that contains
some Cartan subalgebra of g, and the Lie bialgebra structure on g is triangular
(i.e., D(g) = gle]). Finally, in Appendix we present a general approach to the
description of all Lagrangian subalgebras in g[e] and give a direct classification
of the Lagrangian subalgebras [ C g[¢] such that [N g = u.
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2 Classical dynamical r-matrices and Poisson
homogeneous spaces

In this section we assume g to be any finite-dimensional Lie algebra over C.
Let G be a connected Lie group such that LieG = g. Let u C g be a Lie
subalgebra (not necessary abelian). By U denote the connected subgroup in G
such that Lie U = u. We propose (under certain conditions) a connection between
dynamical r-matrices for the pair (g, u) and Poisson structures on G /U that make
G/U a Poisson homogeneous G-space (for certain Poisson-Lie structures on G).
Note that this connection was first introduced by Jiang-Hua Lu in [18] for the case
g is simple, u is a Cartan subalgebra, and the dynamical r-matrix has non-zero
coupling constant. Our result is inspired by [18].

In order to recall the definition of the classical dynamical r-matrix we need
some notation. Let z,...,x, be a basis of u. By D denote the formal neigh-
borhood of 0 in u*. By functions from D to a vector space V we mean the
elements of the space V|[z1, ..., z,]], where z; are regarded as coordinates on D.
If w e QF(D,V) is a k-form with values in a vector space V, we denote by
w:D — Afu®V the corresponding function. Finally, for an element r € g® g
we define the classical Yang-Baxter operator

CYB(T) — [7"12, 7,13] + [7,12, 7,23] + [7,,13’ 7“23].

Recall that a classical dynamical r-matriz for the pair (g, u) is an u-equivariant
function r : D — g®g that satisfies the classical dynamical Yang-Baxter equation
(CDYBE):

Alt(dr) + CYB(r) = 0, (1)

where for z € g®*, we let Alt(z) = 212 + 22! 4 2312 (see [9, 10, 8]). Usually one
requires also an additional quasi-unitarity condition:

r+7r? =Q e (S%g).

Note that if r satisfies the CDYBE and the quasi-unitarity condition then € is a
constant function.

Suppose 2 € (5?g)%. Let us denote by Dynr(g,u, Q) the set of all classical
dynamical r-matrices r for the pair (g,u) such that r + r?' = Q.

Denote by Map(D, G)* the set of all regular u-equivariant maps from D to
G. Suppose g € Map(D, G)". For any u-equivariant function 7 : D — g ® g set

9 = (Ady ® Ady)(r — 7y + 75" + 7y),

where 7, = g 'dg, and 7,(A) = A ® 1@ 1)([7,"%,75"%](\)). Then r is a classi-
cal dynamical r-matrix iff 79 is (see [9]). The transformation r — r9 is called
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a gauge transformation. It is indeed an action of the group Map(D,G)" on
Dynr(g,u, Q) (i.e., (r9)% = r9291). Following [9] denote by Mg, u,2) the mod-
uli space Map,(D, G)*\Dynr(g,u,{2), where Map,(D, G)"* is the subgroup in
Map(D, G)* consisting of maps g satisfying ¢g(0) = e.

In what follows we need the following notation. Suppose a € g®*¥. By @
(resp. ‘@) denote the left (resp. right) invariant tensor field on G corresponding
to a.

Suppose p € g ® g satisfies the classical Yang-Baxter equation (CYBE), i.e.,
CYB(p) = 0. Assume also that p + p** = Q (ie., p = £ + A, where A € A%g).
Introduce a bivector field 7, = e N — X on G. Tt is well known that
(G,m,) is a Poisson-Lie group.

Now let r € Dynr(g,u,). We have r = %—i— A, where A € A%g. Set
7 i=7r(0) = p = m — K. Consider a bivector field 7. on G/U defined by
7-(9) = p«7r(g), where p : G — G/U is the natural projection, and g = p(g).
Note that 7, is well defined since 7(0) € (g ® g)*. -

The following proposition belongs to Jiang-Hua Lu [18] (note that in [18] it
is stated for the case g is simple, u is a Cartan subalgebra, but the proof fits the
general case).

Proposition 1. The bivector field m, is Poisson, and (G/U,n,) is a Poisson
homogeneous (G, m,)-space. O

Proposition 2. Suppose g € Map,(D,G)". Then m, = mpg.

Proof. Since (G/U,,) is a Poisson homogeneous (G, m,)-space, we see that m,
depends only on 7,.(e) = the image of (0) — p in A?(g/u). Thus it is enough to
note that 79(0) —r(0) cEu® g+ g u. 0O

Corollary 3. The correspondence r — 7, defines a map from M(g,u,QQ) to the
set of all Poisson (G, m,)-homogeneous structures on G/U. O

Suppose now that the following conditions hold:
(a) u has an u-invariant complement m in g (we fix one).
(b) Q€ (u®@u)® (m®m).
(¢) p€Z+ (A*m)~.

Theorem 4. Under the assumptions above the correspondence r — 7, is a bijec-
tion between M (g, u, Q) and the set of all Poisson (G, w,)-homogeneous structures

on G/U.

The rest of this section is devoted to the proof of Theorem 4. First we recall
some results from [9]. Assume that (a) holds. Set

Mg = {x € % + (A*’m)* | CYB(z) = 0in A® (g/u)} :



Theorem 5 (Etingof, Schiffmann [9]). 1. Any class C € M(g,u,2) has a
representative r € C such that r(0) € Mq. Moreover, this defines an embedding
M(g, u, Q) — Maq.

2. Assume that (b) holds. Then the map M(g,u,Q) — Mgq defined above is
a bijection. U

Now suppose b € (A?(g/u))* = (A*m)*. Set m(g) = (Lg)+b + pumy(g). Since
p is u-invariant, we see that m,(g) = 0 for g € U; therefore 7 is a well-defined
bivector field on G/U.

Proposition 6. The bivector field 7 is Poisson iff CYB(p + b) = 0 in A3(g/u).

Proof. Set a = A +b. Define a bivector field # on G by the formula 7 = @ — x.

Note that T = 74—7@,, therefore 7 = p, . Let us normalize the Schouten bracket

of the bivector fields on G in a way that [Z, 7] = CYB(z) for all z € A%g. Then
we have

7,7 = [@, @] - 2[@, N+ X, X] = CYB(a) — CYB(A).

Since p = § + A satisfies the CYBE, we see that CYB(A) = 1[Q'2, 0%] € (A%g)®.
Thus

\
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[7,7] = CYB(a) — %[Q”, 0% = CYB (% + a) = CYB(p+b).

To finish the proof it is enough to note that [m, 7] = p.[7, 7. O

Proof of Theorem 4. Let us construct the inverse map. Suppose (G/U,7) is
a Poisson homogeneous (G,m,)-space. Set b = 7(e) € A*(g/u) = A?m. The
condition (c) implies that in fact b € (A%*(g/u))* = (A*m)*. Furthermore, (c)
yields that p+ b € £ + (A?m)*. By Proposition 6, we have CYB(p + b) = 0 in
N3(g/u), ie., p+ b € Mgq. Then, by Theorem 5, there exists 7 € Dynr(g,u, )
such that 7(0) = p + b, and the image of r in M(g, u, Q) is uniquely determined.
It is now easy to verify that m = 7. O

3 Twisting of Poisson homogeneous structures

Assume again that g is an arbitrary finite-dimensional Lie algebra over C. Recall
that a Lie bialgebra structure on g is a 1-cocycle 6 : g — A?g which satisfies the
co-Jacobi identity. Denote by D(g,d) the classical double of (g, d).

We say that two Lie bialgebra structures d;, d, on g are in the same class
if there exists a Lie algebra isomorphism f : D(g,d1) — D(g,02), which pre-
serves the canonical forms @; on D(g, d;), and such that the following diagram is



commutative:
8 ——D(g,01)
|1
D(g: 62)

Theorem 7. Two Lie bialgebra structures §, &' on g are in the same class if and
only if 8 = § + ds, where s € A*g and

CYB(s) = Alt(6 ® id)(s). 2)

Proof. (=) Let us consider D(g,d). Then ¢’ is uniquely defined by a Lagrangian
subalgebra [ C D(g, §) such that [N g = 0. Clearly, [ is the graph of a linear map
S :g* — g. Define an element s =) . 5, ® 5] € g® g via

S = (I s0)sf (3)
for any [ € g*. Since [ is Lagrangian, we see that s is skew-symmetric. Let us

show that §' = § + ds.
Indeed, for any a € g, I1,15 € g*,

<5'(a),ll®12>=62(5'(a) (S(h) + 1) @ (S(l) +12)) =
Q(a,[S(l) + 4, S(lo) +bo]) =
= {11, ]} + Q(a,[S(1), L)) + Q(a, [, S(12)),

and
(a, [l1,lo]) = (6(a), 11 ® Iz,
Q(a, [5( 1), l2]) = ([a, S()], o) = (1 ® a, 8], 11 ® o),
Q(a, [l, S(l2)]) = —([a, S(lp)], 1) = —(1 ®a,s],la ® 1) =

([1 ® a, 57 ] lo ® ll) = <[a'® 1,8],[1 ® l2>7

where (-,-) is the canonical pairing between g and g*, and @ is the canonical
bilinear form on D(g, 9).

Now let {e;} be an arbitrary basis in g and {f?} be its dual in g* C D(g,9).
Then the canonical element 75 = Y, e; ® f* € D(g, §)*? satisfies the CYBE and
ry = 15 + s satisfies the CYBE as well (since 75 + s is the canonical element for
the double D(g, d')). It is easy to show that these two facts imply (2).

(<) s € A?g defines S : g* — g via (3) and the graph of S is | C D(g,d),
a Lagrangian subspace because s is skew-symmetric. Let us prove that for any
l1, 19,13 € g7,

<l1 ® lg ® l3, CYB(S) — Alt(5 ® 1d)(8)> = Q([ll + S(ll), lg + S(lg)], l3 + S(lg))
Let us verify that, for instance,

(L@l ®ls, (s, s"]) = Q([l1, S(I2)], S(ls))-
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Indeed, if s =), s} ® s}, then we have

512, s1%] = Z[s;, il ® s @ s
and
(1@ b @ s, 5%, 97)) = (1, YOl sy s )i =
0 Sl (5 2 = 1, S0, ) =
= QU IS(2), 8s)) = QUL S, S(s))
Similarly,

(L ®l®l3, (0®id)(s)) = —([h,lo] ® 13, 5) = ([l1, l2], S(I3)) = Q([lh, o], S (1)),

and so on. Since Q([l1,1s],13) and Q([S(l1), S(l2)], S(I3)) vanish, the identity is
proved.

Now it follows that Q([l1+S(l1),la+S(l2)], l3+S(l3)) = 0 for any 1y, o, I3 € g*.
Since [ is Lagrangian, we conclude that [l; + S(l1),ls + S(l)] € [ and hence [ is
a subalgebra. Clearly, [ defines ¢’ :== § + ds, and this completes the proof of the
theorem. O

Remark 8. If we consider our Lie bialgebra (g, ) as a Lie quasibialgebra, then
(g,d+ds) is called “twisting via s”. The notions of Lie quasibialgebra and twisting
via s was introduced by Drinfeld in [6]. The theorem above can be also deduced
from results of [6].

Further, we are going to examine the effect of the twisting on Poisson homo-
geneous spaces. First we recall some definitions and rather well-known results.

Let G be a connected complex Poisson-Lie group, (g,d) its Lie bialgebra,
and D(g) = D(g,d) the corresponding classical double of g with the canonical
invariant form ().

Recall that an action of G' on a Poisson manifold M is called Poisson if the
defining map G x M — M is a Poisson map, where G x M is equipped with the
product Poisson structure. If the action is transitive, we say that M is a Poisson
homogeneous G-space.

Let M be a homogeneous G-space, and let m be any bivector field on M. For
any x € M let us consider the map

e TEM = ToM, m,(1) = (1 @ id) (n(z)).

On the other hand, M = G/H, and T,M = g/b,, T:M = (g/b,)* = bt C g*,
where h, = Lie H,. Therefore we can consider 7, as a map m, : f)j — 9/bs.



Now let us consider the following set of subspaces in D(g) = g ® g*:
,={a+l|acg l€br, m(l)=a}, (4)

where @ is the image of a in g/b,. Observe that [, are Lagrangian (i.e., maximal
isotropic) subspaces, and [, N g = bh,. The following result was obtained in [7].

Theorem 9 (Drinfeld [7]). (M, n) is a Poisson homogeneous G-space if and
only if for any v € M |, is a subalgebra of D(g), and (4, = Adyl, for all g € G.
U

Now set §' = §+ds, where s € A?g satisfies (2). Then we have two Poisson-Lie
groups, (G, m5) and (G, 7y ), whose Lie bialgebras are (g, §) and (g, §’) respectively.
Let (M, 7) be a Poisson homogeneous (G, 7s)-space. Consider a bivector field £
on M defined by the formula £(x) = the image of s in A*(g/b,) = AT, M. Set
=7 —¢&.

Proposition 10. (M,n') is a Poisson homogeneous (G,mg)-space, and thus
one obtains a bijection between the sets of all Poisson (G,ws)- and (G, 7s)-
homogeneous structures on M.

Proof. Theorem 7 allows one to identify D(g,d) and D(g,d’). It is easy to verify
that under this identification the sets of Lagrangian subspaces that correspond to
(M, ) and (M, n") are the same. This completes the proof, according to Theorem
9. ]

Finally, we are going to generalize the main result of the previous section
to the twisted case. Assume that (g,0) is a quasitriangular Lie bialgebra, i.e.,
d = dp, where p € g® g and CYB(p) = 0. It is easy to verify that the condition
(2) for an element s € A?g is equivalent to

CYB(s) + [p, 5] + [, 0] = 0, ()

where for a,b € g% we set [a,b] = [a'?,b3] + [a'%,0%] + [a'?,0%] € ¢*° (i.e,
CYB(a) = [a,a]).

Fix Q € (52g)? and assume that p € 2 +A%g. As before, consider the Poisson-
Lie group (G, ms), where 75 = m, = 7 — ‘0. Suppose s € A%g satisfies (5). Set
' =0+ds = d(p+ s); then 1y = 1, := p+4—p+s, and (G,m,s) is a
Poisson-Lie group.

Let U be a connected Lie subgroup in G, and u = LieU. Consider
r € Dynr(g,u, Q). As usually, set 7, = r(0) — %o and denote by 7, the natural
projection of 7, on G/U. By Proposition 1, (G/U,n,) is a Poisson homogeneous
(G,7,)-space. Set also 7, s = 7, — 5 =1r(0 —,<0T9 and denote by 7, s its projec-
tion on G/U. According to Proposition 10, (G/U, ;) is a Poisson homogeneous
(G,m,,s)-space.

Moreover, if we combine Theorem 4 and Proposition 10, we get the following
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Theorem 11. Assume that u, Q, and p satisfy the conditions (a), (b), and (c)
from the previous section. Then the correspondencer — 7, is a bijection between

M(g,u,2) and the set of all Poisson (G, ,)-homogeneous structures on G/U.
[l

Clearly, this can be reformulated as follows:

Theorem 12. Assume that u and Q satisfy the conditions (a) and (b) from the
previous section. Suppose also that there exists s € A’g such that (5) holds, and
p+s e % + (A>’m)¥. Then the correspondence r — m, is a bijection between
M(g,u,2) and the set of all Poisson (G, 7,)-homogeneous structures on G/U. O

Let us apply our previous results to the triangular case.

Corollary 13. Assume that u satisfies the condition (a) from the previous sec-
tion. Set Q = 0. Consider any p € A?g that satisfies the CYBE. Then the
correspondence T +— T, s a bijection between M(g,u, Q) and the set of all Pois-
son (G, m,)-homogeneous structures on G/U.

Proof. Set s = —p and apply Theorem 12. O

4 Poisson homogeneous structures in triangular
case

Now assume that g is semisimple. Fix a Cartan subalgebra h C g and denote
by R the corresponding root system. In this section we apply the results of the
previous sections to the case u is reductive Lie subalgebra in g containing b,
Q2 =0, and p € A?g such that CYB(p) = 0.

To be more precise, consider U C R, and suppose u = b @ (P, oy 9a) is
a reductive Lie subalgebra in g. If this is the case, then we say that a subset
U C R is reductive (i.e., (U+U)NR C U and —U = U; see [14, Ch. 6, §1.2]).
Condition (a) is satisfied since m = @D, cg\y o is an w-invariant complement to
uin g.

Applying Corollary 13 (and results of Etingof and Schiffmann cited in Section
2), we get:

1. Any structure of a Poisson homogeneous (G, 7,)-space on G/U is of the
form p, (2 — p), where z € Mq.

2. If x € Mg, then there exists (a unique up to the Map,(D, G)"-action)
r € Dynr(g,u, ) such that r(0) = z.

Let us now describe Mg and thus get an explicit description of all G-invariant
Poisson structures on G/U. Recall that in our case by definition

Mg = {x e (A2m)*

CYB(z) = 0 in A3 (g/u)}.
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We need to fix some notation. Fix a nondegenerate invariant bilinear form
(invariant scalar product) {-,-) on g. For any o € R choose E, € g, such that
(Ea, E_4) = 1. Further, suppose N is a reductive subset which contains U. We
say that h € b is (N, U)-regular if a(h) = 0 for all a € U, and «a(h) # 0 for all
aeN\U.

Proposition 14. =z € Mg iff

1
T=TNp= Z mEa(gE—aa (6)
aeN\U

where N is a reductive subset in R containing U, and h € b is (N, U)-regular.

Proof. First we calculate (A*m)*. It is easy to see that x € A*m is h-invariant iff
it is of the form

T = Z xa'Ea®Efa:
acR\U

where z_, = —z,.
Define c,p by the formula [E,, Eg] = capEaip for o, ,a+ 3 € R.
Furthermore, suppose v € U. One can easily verify that the condition
adg, (z) = 0 is equivalent to the following statement: for all o, 3 € R\ U such
that o + 3+ v = 0 we have ¢y, T, = c3,28.

Lemma 15. Suppose o, 3,7y € R, a+ +v=0. Then coy + csy = 0.

Proof. cay = cay(E_g, Eg) = ([Ea, E,], Eg) = (Eq, [E,, Egl) = —gy(Ea, E_o) =
—CpBry- ]

Therefore we obtain
Lemma 16. z € (A’m)* iff
Tr = Z xa'Ea®E—aa

acR\U

where T_o = —q, and for all o, € R\U, v € U, a+ 3+ v =0, we have
ZTo +xg=0. g

Lemma 17. Suppose

T = Z To - Eq® E_q € (N’m)",
acR\U

Then x € Mg iff the following condition holds: for all o, 3,y € R\U, a+f+y =
0, we have T,Tg + TaTy + TyTo = 0.
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Proof. One can check directly (using Lemma 15) that the image of CYB(z) in
A3(g/u) = A’m is equal to

Z Coa,—p (TaZp + TpTy + TyTo) Eq @ Eg @ E,.
a,ﬁ”ye R\U,
a+p+y=0

This immediately proves the lemma. ]
Now consider the following properties of the function R\ U — C, a — z,:
(d) o =—z4 foralla € R\ U.
(e) Ifa,Be R\U,y€e U, a+B+v=0, then 2, + 25 = 0.
(f) fa,B,y e R\ U, a+ f+v =0, then 2425 + 252, + 2,24 = 0.
Lemma 18. z, satisfies (d)-(f) iff

1/a(h), ifa e N\ U
"’”a:{ 0, ifaeR\N, (M)

for a certain reductive subset N C R such that N D U, and (N, U)-reqular
element h € .

Proof. Suppose x, satisfies (d)—(f). Set N=UU {a € R\ U |z, # 0}. Let us
prove that N is reductive. Using (d), we see that —N = N. Further, suppose
a,€N,v€R, a++v=0. We have to verify that v € N. If a, 3 € U, then
also v € U C N (since U is reductive). If « € U, § € N\ U, then vy € R\ U.
Applying (e), we see that zg + =, = 0. Since z5 # 0, we have z, # 0, i.e.,
v € N\ U. Finally, let o, 8 € N\ U. Assume also that v € R\ U (we have
nothing to prove in the case v € U). Using (f), we see that z, # 0, 3 # 0 imply
that z, #0, i.e.,, y € N\ U.

Furthermore, set y, = 1/z, for « € N\ U. Suppose «, 3,7 € N\ U,
a+p+v =0. Then y, + ys + y, = 0 according to (f). This means that
Yo = a(h) for some h € b.

Finally, we prove that A is (N, U)-regular. By construction, a(h) # 0 for
all « € N\ U. Now assume that v € U. Take any @ € N\ U (note that if
N = U, then we have nothing to prove here), and set § = —(a + ). Obviously,
B € N\ U. By (e), we have 0 =z, + 23 = 1/a(h) + 1/6(h), i.e., y(h) = 0.

Conversely, if z, is of the form (7), then the conditions (e)—(f) can be verified
without difficulties. 0

The last lemma proves the proposition. O
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Remark 19. We note that Lemmas 16, 17, and 18 are essentially contained in
(3]

In [3], among other results, the symplectic G-invariant structures on G/U
are classified if U is a Levi subgroup of G. Actually, in this case there exists a
G-equivariant symplectomorphism from G/U to a semisimple coadjoint G-orbit
equipped with the Kirillov-Kostant-Souriau bracket.

Moreover, it is easy to show that if G/U has a G-invariant symplectic struc-
ture, then U is a Levi subgroup. Indeed, let p.Zn/ (where zn j is defined by
(6)) be a G-invariant Poisson structure on G/U. Obviously, it is symplectic iff
N = R. Since h is (R, U)-regular, i.e., a(h) = 0 for all @ € SpanU and a(h) # 0
for all &« € R\ U, we see that (SpanU)NR = U. It is well known that the latter
condition is equivalent to the fact that U is a Levi subgroup.

Let us also remark that the existence of reductive non-Levi subgroups is the
main difference between the triangular and the strictly quasitriangular cases.
Indeed, suppose U is a Cartan subgroup. Then in the triangular case the Poisson
homogeneous structures on G /U relate to all reductive subgroups of G, while
in the strictly quasitriangular case they relate to the Levi subgroups only (see
(17, 18]).

Now we are going to describe the Lagrangian subalgebras corresponding to
the Poisson (G, 7,)-homogeneous structures on G/U. Since the Lie bialgebras
corresponding to (G, m,) are all in the same class, we may assume without loss
of generality that p = 0. It is clear that the double of our Lie bialgebras is
gle] = g @ ge, where €2 = 0 (see Appendix for details).

Suppose p = 0. Assume that N and h are as in Proposition 14. Set 7w, =
p*m, where zn 5 is defined by (6). By In,  denote the Lagrangian subalgebra
corresponding to (G/U, 7N, ) at the base point e.

Proposition 20. I, = u & (@aeR\Naga) ) (@aeN\U(l—a(h)e)ga>
(cf. Proposition 26 below).

Proof. By definition (see (4)),
[N,h = {a+b€\a € g,b € uL =m, (b® 1)(37N,h) = 6},
where @ is the image of a in g/u = m. Suppose b = E,, where & € R\ U. Then

LF,, ifaeN\U

_{ =
(& 1)) { 0, ifacR\N.

This completes the proof. O
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5 Appendix: Lagrangian subalgebras in gl¢]|

Let g be a semisimple complex Lie algebra, G a connected Lie group such that
Lie G = g. Fix an invariant scalar product (-,-) on g. Consider the complex Lie
algebra gle] = g ®¢ Cle] = g @ ge, where Cle] = Clz]/(z?) is the algebra of dual
numbers. We identify g with g ® 1 C gle]. Equip gle| with the invariant scalar
product defined by

(a+ be,c+de) = {a,d) + (b, c).

Then the pair (g[¢], g) is a Manin pair.

Recall that a Lie subalgebra [ C g[e] is called Lagrangian if it is a maximal
isotropic subspace in g[e].

Let n C g be a Lie subalgebra, B be a C-valued 2-cocycle on n. By Pairs(g)
denote the set of all such pairs (n, B). Define f : n — n* by

(f(z),y) = B(z,y) (8)

(here we identify n* with g/nt via (-,-)). One can easily see that f is a skew-
symmetric 1-cocycle (with respect to the coadjoint action of n on n*). Set

[(n,B)={a+bc|acnbeg fla)=>0}C gl

where b is the image of b in n* = g/n’. Obviously, u := Ker B = Ker f is a Lie
subalgebra in n.

We denote by Lagr(g) the set of all Lagrangian subalgebras in g. Note that
G acts naturally on Pairs(g) and on Lagr(g).

Theorem 21. 1. I(n, B) is a Lagrangian subalgebra in gle] and [(n, B) N g = u.
2. The mapping (n,B) — I(n,B) is a G-equivariant bijection between
Pairs(g) and Lagr(g).

Proof. Suppose | € Lagr(g). Denote by n the projection of [ onto g along ge.
Since [ C n @ ge, we have [ = [+ O (n® ge)' = nte. Consider

[:==1/(n"e) C (n®ge)/(nTe) = nDn'e.

Since dim [ = dim [ — dimnt = dim g — (dim g — dimn) = dimn, we see that [ is
the graph of a linear map f : n — n*, i.e.,

I={a+ f(a)e|a € n}.
This yields that
[={a+belacnbeg, fla)=0b}C g,

where b is the image of b in n* = g/n*.
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Now let a + be,c+de € I (i.e., a,c € n, f(a) = b, f(c) = d). Since [ is a Lie
subalgebra, we have

[3 [a+ be,c+de] = [a,c] + ([a,d] + [b, c])e.

Therefore
f([a'7 C]) = [a'7 d] + [b7 C] = [aa f(C)] + [f(a)v C]a

i.e., f is a 1-cocycle. Since [ is isotropic, we have
0= (a+be,c+de) = (a,d) + (b,c) = {a, f(c)) + (f(a), 0,

i.e., f is skew-symmetric. Finally, define B by (8). It is easy to check that B is
a 2-cocycle.

Conversely, [(n, B) is a Lie subalgebra since n is a Lie subalgebra and f is a
1-cocycle (recall that f and B are connected via (8)); I(n, B) is isotropic since
f is skew-symmetric; finally, [(n, B) is Lagrangian since dim[(n, B) = dimn +
dimn* = dim g.

The fact that I(n, B) N g = u is obvious. O

Now fix a Lie subalgebra u C g. Set
Pairs(g,u) = {(n, B) € Pairs(g) |n D u,Ker B = u},

Lagr(g,u) = {l € Lagr(g) [[Ng = u}.
Denote by N(u) the normalizer of u in G. Clearly, N(u) acts on Pairs(g,u) and
Lagr(g, u).

Corollary 22. The mapping (n,B) — [(n,B) is a N(u)-equivariant bijection
between Pairs(g,u) and Lagr(g, u). O

As before, fix a Cartan subalgebra h C g, and denote by R the corresponding
root system. Consider a reductive subset U C R and set u = h @ (P,.y 8a)-
We would like to describe more explicitly the set Lagr(g,u) or in other words
Lagrangian subalgebras [ C g[e] such that [N g = u. By Corollary 22, it is
sufficient to describe the set Pairs(g, u).

Theorem 23. Suppose (n,B) € Pairs(g). Then (n,B) € Pairs(g,u) if and
only if n =h @ (B, en 9a) s a reductive Lie subalgebra in g that contains u, and
B(z,y) = {h,|z,y]) (i.e., B is a 2-coboundary), where h € b is (N, U)-regular
(for definition see the previous section).

Remark 24. Suppose h € h. It is clear that B(z,y) = (h, [z,y]|) depends only
on the image of h in h/3(n), where 3(n) is the center of n. Note also that 3(n) =
{h € bh|a(h) =0 for all « € N}.

Proof of Theorem 23. Suppose (n, B) € Pairs(g,u), i.e., n D u, Ker B = u.
Since n D b, we see that n = h @ (P, en 9o) for some N C R. Clearly, U C N.
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Lemma 25. Ifa,f €N, a+ 3 #0, then B(z,y) =0 for all x € g, y € gs-

Proof. If x € ga, y € gg, h € b, then, since B is a 2-cocycle, we have B([z, y], h)+
B(ly, h],z) + B([h,z],y) = 0, ie, B(h,[z,y]) = (a + B)(h) - B(z,y). Since
Ker B D h and a + 3 # 0, we see that B(z,y) = 0. O

Now we continue the proof of the theorem. If & € N, but —a ¢ N, then,
by Lemma 25, we see that g, C Ker B = u. Then +a € U C N because U is
reductive. This contradiction proves that —IN = N, i.e., n is reductive.

Let us prove that B is a 2-coboundary. Recall that H?(n,C) = A%3(n) (see
[11]). To be more precise, any 2-cocycle B can be presented uniquely in the form
B’ + B", where B' is a 2-coboundary, and B"(z,y) = (u,z ® y) for u € A?3(n).
Assume that B"” # 0. Then there exists a € 3(n) C b such that a ¢ Ker B". Since
B’ is a 2-coboundary, we see that a € Ker B'. Therefore a ¢ Ker B, and we get
a contradiction. This means that B(z,y) = (h, [z,y]), where h € n.

It remains to prove that A is a (N, U)-regular element of h. Suppose a € N,
T € go, B € b. Since Ker B D h, we have 0 = B(h',z) = (h, [V, z]) = a(h')-(h, x).
Therefore h is orthogonal to g, for all & € N. This implies that h € b.

If « € N, z € gqo, y €0, then B(z,y) = {[h,z],y) = a(h) - (x,y). This shows
that g, C Ker B iff a(h) = 0. Therefore Ker B = u iff h is (N, U)-regular.

The converse statement of the theorem can be verified directly. O

Suppose N is a reductive subset in R containing U. By n denote the reductive
Lie subalgebra in g that corresponds to N. Consider a (N, U)-regular element
h € B. Denote by B the 2-coboundary which corresponds to h (see Theorem 23).

Proposition 26. [(n,B) =h & (@QER\N sga) @ (@aEN(l + oz(h)a)ga) =ud
(®a€R\N 59a> @ (@aeN\U(l + a(h)5)9a>-

Proof. Direct calculations. O
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