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Abstract

The probability of undetected error after using a linear code to correct
errors is investigated. Sufficient conditions for a code to be t-good or
t-proper for error correction are derived. Applications to various classes of
codes are discussed.

Index terms: error correcting codes, probability of undetected error

I Introduction

Let C be a linear [n, k, d; q] code which is used to correct t or less errors, where
d > 2t + 1. We shall consider a discrete memoryless channel with ¢ inputs and
q outputs. Any transmitted symbol has a probability 1 — ¢ of being received
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correctly and a probability /(g — 1) of being transformed into each of the ¢ — 1
other symbols. We assume that 0 < e < q;ql

Let qufz) (C, ) denote the probability of undetected error after t-error correc-
tion and Pj(c) denote the probability that an undetectable error pattern in a
coset of weight h occurs, 0 < h <t. Let Q4 be the number of vectors of weight
¢ in the cosets of weight h, excluding the coset leaders. Then (see [1] and [2])

n V4
£) = ZQM (q i 1) 1—e)" (1)
and
P (Ce) =" Pule). (2)

The code C' is called t-proper if P (C ¢) is monotonous and t-good if

-1
PY(c,e) < PY(C, QT)

for all € € [0 7 ] It is easy to check that

PO (C, %) = ("B — V), 3)

where V,(t) is the volume of the ¢g-nary sphere of radius ¢ in the n-dimensional
vector space over GF(q).

In this paper we first derive unified representation of P (C’ ¢) as a function
of z = qiql, 0 < z < 1. Using this representation we obtaln then sufficient
conditions for a code to be t-good or t-proper. In the last section of the paper we
list some applications of our sufficient conditions, leading to examples of t-good
and t-proper error-correcting codes. For all notions which are not defined here

we refer to [3].

IT Unified representation of PJZ)(C, €)

For z € [0, 1] introduce the functions

Re(2) = (2’) A1-2)" L e=1,2,... ,n (4)
and
Li(z) = iRj(z), (=1,2,...,n (5)



Let C be a linear [n, k, d; q] block code with weight distribution {4; : 0 < i < n}.

We will express the probability of undetected error after error correction P (C £)
in (2) in terms of either the functions (4) or the functions (5) and the Welght
distribution

t
{Agt)lAgt):ZQh,i;i:t+1""’n} (6)

h=0

of the vectors in the cosets of weight at most ¢ excluding the leaders. For brevity,
denote for /=t +1,....,n

£
Ly
* (t) * *
A(Z,t = E Az ) Ae,o = Aea (7)

imt11 00
where

mg =m(m—1)...(m—i+1) for any integer m > 1.

Lemma 1. The probability of undetected error P(d (C,¢) has the following rep-
resentations:

PA(C.e) = P(C.2), 2= =4 (8)
where
2)= Y q A Ri(z) (9)
(=t+1
=4 (Hl)At 1l (2 Z q Aet qAj_1 ) Le(2). (10)
(=t+2

Proof. Let 0 < h <t. Then Q=0 for h < ¢ < ¢+ 1. The functions P(¢) in
(1) can be written as

= Z Qh,i(]_i(qq_—gl)i(l — )"
i=0
= Z Qniq '2'(1—z+2/q)""

i= t-|—1

= Z Qnid~ ZZZZ( )( ) (1—z)""d
1= t—|—1

_ Z thzq z+a)< ) 21— Z)n—(iﬂ')_
1=t+1



Put ¢ =7+ j above and use the identity

n—1y _(n @
t—i)  \« (3)

to get
—eti)
; Qi Zq n(z
i=t+1
n E )
> qf[z Qn,i] o)

e=t+1 imr1 1)

Then by (2)

h= 0

-y o ou]no

{=t+1 = t+1

n 2
=> ¢ LZ i()A(t)} Z ¢ A Ra(2)

{=t+1 i=t+1

which shows (8) with P (C z) as in (9). We show now (10):

PY(C,2) Z G A [Le(2) = Loyt (2)] + 4" A% Lo (2)

=t+1
Z qiertLé z g “ Az 1, Le(2)
(=t+1 t=t+2
=4q (t+1)At+1tLt+1 Z q Au qAy_1 ) Le(?).

{=t+2

Remark. In the case of ¢t = 0, Pég)(C’, g) = P,y(C,¢), the probability of unde-
tected error when C' is used for error detection only. The unified representation
of Puy(C,¢) in terms of the functions Ry(z) and L,(z) were found earlier in [4].

Lemma 2. The functions Ly(z), £ =1,2,... ,n are strictly increasing in
z € [0,1].

Proof. For the proof see [4].



IIT t#good error correcting codes

Let C be an [n, k,d; q| code over a finite field of ¢ elements GF(q) with weight
distribution {A; : 0 < ¢ < n}. As before, let V,(t) denote the volume of the
g-nary sphere of radius ¢ in the n-dimensional vector space over GF(gq). Next
theorem gives sufficient conditions for the code C' to be t-good.

Theorem 1. If for{=t+1,...,n

%
(q—(n—k) _ q—n)%(t) > q—é Z n(_)AZ(t) (11)
i=t1 (@)

then C' is t-good.

Proof. Note first that

n t n
A:L,t = Z Agt) = Z Z Qh,ia

which is the number of all vectors in the cosets of weight at most ¢, excluding the
leaders. The number of these cosets is 3 )_, (3)(g — 1)" and every such a coset
has ¢* elements with one leader among them. Then

t
n
A= =Y (7) - 0" = - DV (12)
h=0
and thus the left-hand side of (11) is equal to g™ A}, ;. Then (11) can be written
as

q_nA;,t > q_eAZt- (13)

The theorem now follows from (8)-(9) and the chain of simple relations

PO(Ce)= Y q7'A;,Ri(2)

{=t+1

S q_"AZ,t Z RIZ('Z) =
=t+1

=q "AL L (2) < ¢ AL (1)

where we have used (13), (5), Lemma 2 and the fact that L;,(1) = 1, (12), and
finally (3).



Remark. Ift=0, (11) becomes

and by Theorem 1 the above conditions must be sufficient for the code C to be
good for error detection. This result was obtained earlier in [4].

IV  tproper error correcting codes

Again, let C' be an [n, k, d; g] code with weight distribution
{4;,0 < i < n}. Next theorem gives sufficient conditions for the code to be
t-proper.

Theorem 2. If fori=t+2,...,n

Lo 40 =D 4
E A > E —A 14
£ n 2 — q ) 7 ( )

then C' s t-proper.
Proof. In terms of (7), (14) is written as
Ap,—qA; 1, >0,0=t+2,...,n

Using the above and Lemma 2 in the representation (10) of the probability of
undetected error we see that Pufz (C, z) is non-decreasing in z € [0,1]. Since

Pétd) (C, z) is a polynomial, it must strictly increase in z. Thus p o (C’ g) is strictly
increasing in ¢, too.

Remark. Ift=0, (14) becomes

14

2.,

i=d

B

’)A >qZ (’AZ,K_d+1

Z

and by Theorem 2 the above conditions must be sufficient for C' to be proper for
error detection. This result was obtained earlier in [4].

V  Applications

Although the problem of finding the weight distribution of a code is known to be
NP hard (see [7]), it is often solvable for codes with relatively small parameters.
It turns out that for such codes Theorems 1 and 2 are quite effective. Below we
refer to some applications.



(i) In [5] the performance of the ternary [13, 7, 5] quadratic-residue code was
investigated. Using Theorem 2 it was shown that this code is t-proper for
error correction, t = 0,1, 2.

(ii) In [6] the performance of all binary cyclic codes of lengths up to 31 and
ternary cyclic and negacyclic codes of length up to 20 were systematically
investigated. Applying Theorems 1 and 2 a large amount of t-good and
t-proper codes have been found. For more details we refer to [6].

(iii) In [8-10] the corresponding versions of Theorems 1 and 2 for the case of
error detection, presented in [4], were used to analyze the performance of
CRC-codes of 8-bit and 16-bit redundancy. Many examples of CRC-codes
which perform better than the standardized ones were found.

For complete information we refer to [11].
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