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Abstract

For each d > 2, we give examples of d-dimensional periodic lattices on which
the hard-core and Widom—Rowlinson models exhibit a phase transition which is
monotonic, in the sense that there exists a critical value A. for the activity param-
eter A, such that there is a unique Gibbs measure (resp. multiple Gibbs measures)
whenever A < A, (resp. A > A.). This contrasts with earlier examples of such
lattices, where the phase transition failed to be monotonic. The case of the cubic
lattice Z? remains an open problem.

1 Introduction

This paper is concerned with Gibbs measures for hard-core and Widom—-Rowlinson
lattice gas models; we refer to Georgii, Higgstrom and Maes [2] for a gentle introduction
to these models, and (unless otherwise indicated) for the known results quoted in this
section.

In the hard-core lattice gas model, 0’s and 1’s are assigned randomly to the vertices
of a graph G, in such a way that pairs of adjacent 1’s do not occur. This is supposed to
model a gas where particles have non-negligible radii and cannot overlap. When G is
finite, the hard-core model arises by first letting each vertex inpedendently take value
0 or 1 with probabilities A%—l and /\%_1, where A > 0 is the so-called activity parameter,
and then conditioning on the event that no two vertices sharing an edge both take value
0. When the graph is infinite, the corresponding event to condition on has probability
0, so we instead apply the standard DLR (Dobrushin-Lanford—Ruelle) definition of

infinite-volume Gibbs measures:

Definition 1.1 Let G = (V, E) be a finite or countably infinite locally finite graph, and
fix A > 0. A probability measure v on {0,1}V is said to be a Gibbs measure for the
hard-core model on G at activity A, if it admits conditional probabilities such that
forallv € V and all € € {0,1}VM?}] 4 {0, 1}V -valued random object X with distribution
v satisfies

v(X(v) =1[X(V\{v}) =& =1 A

Ao if E(w) =0 for all w € V with (v,w) € E
otherwise.
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It is easy to see that the definition agrees with the decription above in the case of finite
graphs. For infinite graphs, it follows from standard compactness arguments that at
least one Gibbs measure exists for a given G and a given A. The obvious next question
is the following: For given G and X\, can there be more than one Gibbs measure?

Consider the important special case G = Z%, d > 2, which we write as short for the
graph with vertex set Z? and edges connecting Euclidean nearest neighbors. For this
graph, it is known that there exist constants 0 < A\; < A2 < 0o (depending on d), such
that the hard-core model on Z¢ at activity A has

a unique Gibbs measure if A < A; (1)
multiple Gibbs measures if A > As.

Furthermore, there exist, in the Gibbs measure multiplicity region of the parameter
space, two particular Gibbs measures v),,,, and v\, which arise as perturbations of the
even and odd “checkerboard patterns” (the even checkerboard pattern is obtained by
placing 1’s precisely at those vertices whose Cartesian coordinates sum to 0 mod 2, and
similarly for the odd checkerboard pattern). From (1), it is tempting to conjecture the
stronger statements that there exists a critical value A, (again depending on d) such

that the hard-core model on Z< has

a unique Gibbs measure if A < A, )
multiple Gibbs measures if A > A..

However, no proof of the monotonicity statement contained in (2) — that multiple Gibbs
measures at activity A implies the same thing at all higher values of the activity — is
known. In our first main result of this paper, we obtain the threshold behavior in (2),
not for Z¢, but for certain other lattices in d-dimensional Euclidean space.

Theorem 1.2 For each d > 2, there exists a d-dimensional periodic lattice G, and a
Ac > 0, such that the hard-core model on G has

(3)

a unique Gibbs measure for all A < A,
multiple Gibbs measures for all A > A..

For the definition of a “d-dimensional periodic lattice”, see Definition 2.1.

A statement analogous to that in Theorem 1.2 has previously been obtained only for
the hard-core model on regular trees, whose recursive structure allow exact calculation
of A¢; see Kelly [5]. Ours is the first example where the desired behavior is obtained
for lattices that can be embedded in a nice way in Euclidean space, and is also the
first example where (3) is obtained by more abstract arguments that do not involve
calculating the critical value.

Let us now move on to the Widom—Rowlinson model. This is a lattice gas model
where vertices take values in {—1,0,1}. For a finite graph, the model at activity A arises
by letting each vertex independently take value —1, 0 or +1 with respective probabilities
ﬁ, Tlﬂ’ and ﬁ, and then conditioning on the event that no —1 shares an edge
with a +1 anywhere in the graph. We may think of 4+1’s and —1’s as two types of
particles that cannot coexist at close distance. The corresponding DLR definition is as
follows.

Definition 1.3 Fiz A > 0 and a finite or countably infinite locally finite graph G =
(V,E). A probability measure u on {—1,0,1}" is said to be a Gibbs measure for the



Widom—Rowlinson model on G at activity A, if it admits conditional probabilities
such that the following holds for allv € V and all € € {—1,0,1}V\M}. For a {—1,0,1}V-
valued random object X with distribution p, the conditional distribution of X (v) on
{-1,0,1}, given that X(V \ {v}) =¢&, is

(0,1,0) ifée At £ e A™
(0, 511> x37) if¢e At e A
(%1 3417 0) ifeg At e A
(2)\/:—1’ 2,\1+1’ 2)?%1) ifEFZAT EZ A

Here At (resp. A™) is the set of configurations in {—1,0,1}V\M} in which at least one
neighbor of v in G take value +1 (resp. —1).

As for the hard-core model, the existence of some Gibbs measure for the Widom—
Rowlinson model for given G and A is standard, and the main question is whether or
not it is unique. For G = Z¢, d > 2, it is known that we have a unique Gibbs measure for
A sufficiently small but not for A sufficiently large. In particular, for large A, there exists
a Gibbs measure uj‘_ which is concentrated on the event that the limiting large-scale
fraction of +1’s is strictly greater than that of —1’s (thus breaking the +1 symmetry
of the model), and an analogous Gibbs measure y* in which the —1’s form a majority
over the +1’s. Again, it is natural to expect that the threshold phenomenon in (2)
should hold, but just like for the hard-core model this has not been demonstrated for
any other graphs than regular trees, for which the critical value A\; has been calculated
(see Wheeler and Widom [6]). We shall prove the following Widom—-Rowlinson analogue
of Theorem 1.2.

Theorem 1.4 For each d > 2, there exists a d-dimensional periodic lattice G, and a
Ae > 0, such that the Widom—Rowlinson model on G has

a unique Gibbs measure for all A < A,
multiple Gibbs measures for all X > A..

It is interesting to compare this result to the (somewhat surprising) result of Brightwell,
Higgstrom and Winkler [1, p 428] that there are other d-dimensional periodic lattices
for which having multiple Gibbs measures at some A does not imply the same property
for higher values of A. Similar examples (contrasting Theorem 1.2) for the hard-core
model are also easily obtained by the ideas reviewed in Section 2. Hence, different
periodic lattices in d dimensions give rise to qualitatively quite different behavior, both
in the hard-core model and in the Widom—Rowlinson model. This is perhaps a bit
surprising, and in any case it demonstrates that these models do not exhibit the sort
of “universality” — that qualitative features of the model should only depend on the
dimension d and not on the details of the lattice — that is generally expected to hold in,
for instance, the Ising model and Bernoulli percolation (see, e.g., Grimmett [3]).

The rest of this paper is devoted to proving Theorems 1.2 and 1.4. In Section 2, we
show how the task of proving Theorem 1.2 can de reduced to that of proving Theorem
1.4. After reviewing some necessary background on the Widom—Rowlinson model in
Section 3, we go on in Section 4 to prove Theorem 1.4.



2 Reduction of the hard-core result

We first need to make Theorems 1.2 and 1.4 precise by defining the class of lattices
referred to in the theorems.

Definition 2.1 An infinite locally finite graph G = (V, E) is said to be a d-dimen-
sional periodic lattice if the following conditions hold:

(A) V={v+z:v€{vL,...,m}, z € Z%} for some finite set {v1,...,v,} C R%,

B) E={(z+2zy+2): (,9) € {{z1,11), (x2,92), - -, (Tm,Ym)}, 2 € Z%} for some
ﬁmte set {(wlayl)a HE ) (xmaym)} C de;

(C) G is connected.

Conditions (A) and (B) capture the intuitive meaning of a periodic lattice. Condition
(C) is included to avoid examples such as the graph obtained by taking the 3-dimensional
cubic lattice Z% and deleting all vertical edges: the resulting graph decomposes into
infinitely many connected components, each of which is essentially 2-dimensional.
Brightwell et al [1, Section 5] noted the following connection between the hard-core
and Widom-Rowlinson models. Let G = (V,E) be any finite or countably infinite
locally finite graph, and construct another graph G* = (V*, E*) as follows. Let V* =
V x {—1,1}, and let two vertices (z,7) and (y,j) be linked by an edge in E* if either

(a) z=yandi=—j,or
(b) (z,y) € E and i = —j.

Suppose now that the {0, 1}V*—va1ued random object X is distributed according to a
Gibbs measure for the hard-core model on G* at activity A, and define Y € {—1,0,+1}V
by setting

~1 if X(z,-1) =1

Y(z)=< +1 if X(z,+1) =1

0 otherwise,
for each x € V. A direct calculation using Definitions 1.1 and 1.3 shows tht the dis-
tribution of Y then becomes a Gibbs measure for the Widom—Rowlinson model on G
at the same activity A\. Conversely, if Y € {—1,0,+1}" is distributed according to any
Gibbs measure for the Widom-Rowlinson model on G, and X € {0,1}V" is obtained by
setting
1 ifY(z)=1
0 otherwise

X(a:,i):{

for each (z,i) € V*, then X is distributed according to the hard-core model on G* at
the same activity. It is easy to see that these mappings between Gibbs measures for
the Widom—Rowlinson model on G and Gibbs measures for the hard-core model on G*
form a bijection. This is what we need in order to reduce the proof of Theorem 1.2 to
that of Theorem 1.4:

Proof of Theorem 1.2 from Theorem 1.4: Fix the dimension d, and let G and
Ac be as in Theorem 1.4. Construct G* from G as above. Clearly, by relabelling the
vertices of G*, we can represent it as a d-dimensional periodic lattice. Furthermore, by
the above bijection between Gibbs measures, the hard-core model on G* at activity A
has a unique Gibbs measure whenever A < A., and multiple Gibbs measures whenever
A> A O



3 Background on the Widom—Rowlinson model

In this section we review some background on the Widom—Rowlinson model; all of it
can be found in more detail in [2].

Let G = (V,E) be countably infinite and locally finite. In the introduction we
mentioned the Gibbs measures p* and ui for the Widom—Rowlinson model on G at
activity A; these can be constructed as follows. Let V3 C Vo C ... be an increasing
sequence of finite subsets of V', converging to V in the sense that each v € V is in all
but finitely many of the V,,’s. Define the (inner) boundary of V,, as

oV, ={z € V,: Jy € V\V, such that (z,y) € E}.
Also define the graphs G,, = (V,,, E,,) where
E,={(z,y) e E: z,y € V,,}.

Let the probability measure ,uq\_,n on {—1,0,+1}"* be given by the Widom-Rowlinson
model on G, with so-called “plus boundary condition”, meaning that we condition on
the event that all vertices on the boundary dV,, take value +1. More precisely, ui’n is
the probability measure which to each ¢ € {—1,0,+1}"" assigns probability

1 v
wh (€)= Z g N )|I{§(m)§(y)20 for all (zg)emn} {e(@)=+1 for all zeav,y (4

where 4 denotes the indicator function of the event A, and Z, is a normalizing constant.
We will also identify pi‘_m with the probability measure on {—1,0,+1}" that corresponds
to setting X (z) = +1 for all z € V'\ V,, and picking X (V) according to (4). With this
interpretation in mind, it is well-known (and can be shown by standard stochastic
monotonicity arguments) that the measures Hil\—,n converge to a limiting probability
measure u:‘L on {—1,0,+1}V as n — oo, in the sense that
lim 2 (4) = pi(4)

for any cylinder event A. Moreover, the limiting measure does not depend on the choice
of the vertex sets {V,,}22,, and it is a Gibbs measure for the Widom—Rowlinson model
on G at activity .

Analogously, the measure u} on {—1,0,41}" is obtained as a limit of measures y* no
which are defined as ui,n except that we put —1’s instead of +1’s on the boundary.
The following statements are known to be equivalent.

(i) The Widom-Rowlinson model on G has a unique Gibbs measure.

(iii) p}(X(z) =+1) =p}(X(z) =-1) forallz € V.

In order to analyze when (i)—(iii) hold, it is useful to consider the projection from
{—1,0,+1}"» to {0,1}"» obtained by taking absolute values at each vertex: Suppose
that we pick X € {—1,0,+1}"* according to u2,+ and obtain Y € {0,1}"» by setting

Y(z)=|X(z)| foreachzeV,.



The distribution of Y on {0,1}"» is denoted ¢;}, and is called the wired site-random-
cluster measure for G,, at activity A\. (Readers familiar with random-cluster analysis
of Potts models may note below that site-random-cluster measures play a similar role
for the Widom-Rowlinsons as the usual (Fortuin-Kasteleyn) random-cluster measures
do for Potts models.) A direct calculation shows that ¢p(n) for n € {0,1}"» is given by

9k(n) ()
7\ H A I{n(x):l for all zeov,,} (5)

n eV,

where k(n) is the number of connected components not intersecting 0V;, of the set of
I’s in ), and Z,) is as in (4). Furthermore, the conditional distribution of X given Y’
can be described as follows. X has 0’s at precisely the same vertices as Y, and +1’s at
all vertices that take value 1 in Y and sit in a connected component of 1’s intersecting
OVy; all other connected components of 1’s in Y are independently assigned “all +1’s”
or “all —1’s” with probability % each. Hence, for x € V,,,

1 (X (2) = +1) — 1} (X (2) = —1) = ¢ (z © OVp)

where {z <> 0V, } is the event that there is a connected component of 1’s containing z
and intersecting V. It follows that conditions (i)—(iii) above are equivalent to

(iv) limp oo @)z 3 OV) =0 forallz € V

and this is the condition that we will analyze directly in the next section.

4 Proof of the Widom—Rowlinson result

The purpose of this section is to prove Theorem 1.4. What we need to show is that if
condition (iv) above fails for A = A; for some given A1, then it fails for all A > A;. The
natural way to try to do this is to show that the measures {¢;} >0 are stochastically
increasing in ), so we need to recall the concept of stochastic domination. For 7,7’ €
{0,1}%, where S is an arbitrary finite set, we write n < 1’ if 5(s) < 7/(s) for all s € S.
A function f : {0,1}® — R is said to be increasing if f(n) < f(n') whenever n < 5'. For
two probability measures 7 and 7’ on {0, 1}, we say that 7 is stochastically dominated

D
by =, writing w < «/, if
dr < / dn’ 6
/{0,1}5f B {0,1}5f ©
for all increasing f : {0,1}° — R.
A standard tool for establishing stochastic domination is the following result; see,

e.g., [2] for a proof.

Lemma 4.1 (Holley’s inequality) Let S be a finite set and let m and 7' be probability
measures on {0,1}° that both put positive probability on all elements of {0,1}°. Let X
and X' be {0,1}°-valued random elements with distributions = and ='. If, for all s € S
and all n,n’ € {0,1}5M5} such that n < 7', we have

m(X(s) = 1| X(S\{s}) =n) <7'(X'(s) = 1| X"(S\ {s}) =)

D
then ™ < 7'.



Consider now the wired site-random-cluster measure ¢;) in condition (iv). Suppose that
we could establish, for any z € V,;, that

$n(Y (2) = 1Y (Vo \ {z}) =) (7)

is increasing both in A and in 5. Then Lemma 4.1 would show that ¢! g #)? whenever
A1 < Xo. Applying (6) with f = Ir;v,) (which is obviously an increasing function)
would then give that

N (x> OV,) < 2 (x <> OV,)

so that by letting n — oo and using the equivalence between (iv) and (i)—(iii), we would
arrive at the desired conclusion: if there are multiple Gibbs measures at A = Ay, then
this is the case at A = Ay as well, whenever A9 > Aq.

Unfortunately this approach does not quite work, due to the fact that although
the expression (7) is always increasing in ), it is sometimes not increasing in 7. This
feature of the site-random-cluster model (which is discussed further in [2]) distinguishes
it from the ordinary (Fortuin—-Kasteleyn) random-cluster model, for which the above-
sketched monotonicity argument does work. Since the latter model lives on the edges of
a graph, rather than on the vertices, this immediately suggests the following approach in
searching for a lattice that will exemplify Theorem 1.4: Given a d-dimensional periodic
lattice G = (V, E), consider its covering lattice (also known as the line graph) G' =
(E',V') defined by V' = E and

E' ={{z,y): z,y € V', the edges = and y share a vertex in G} .

Unfortunately, the site-random-cluster model on G’ does not work quite the same as
the Fortuin—Kasteleyn random-cluster model on G, because it turns out that whereas
the latter gives the same weighting factor 2 to all connected components (relative to
i.i.d. measure; cf the factor 25(" in (5)), the former gives a different weighting factor
for isolated vertices. To deal with this problem, we introduce a variation of a covering
lattice which is tailored for our purposes. For a graph G = (V, E), define another graph
G* = (V*, E¥) by setting
Vi =V UV

where V(i) = E and Vi) =V X {1,2}, and
B = Ep) U B
where
EEkl) ={(z,y): z,y € Va), the edges = and y share a vertex in G}
and
Eiyy = {{z,(y,9)) : € V{3), (y,1) € V[3), the edge z is incident to the vertex y in G}.

In other words, G* is obtained by first taking the covering graph G' = (V', E'), and
then adding two extra vertices corresponding to each vertex z in G, where each such
extra vertex gets an edge in G* to each vertex y € V' that correspond to an edge in G
that is incident to z.



The following result is a more specific variant of Theorem 1.4. For an infinite graph
G, we let p.(G,bond) denote the critical value for i.i.d. bond percolation on G, i.e.,

pc(G,bond) = inf{p € [0,1] : ii.d. bond percolation on G with retention para-

meter p produces an infinite cluster with positive probability.}

The critical value p.(G, site) for site percolation is defined analogously.

Proposition 4.2 Let d > 2, let G = (V,E) be a d-dimensional periodic lattice such
that v/2 — 1 < p.(G,bond) < 1, and define G* = (V*, E*) from G as above. Then there
exists a A > 0 such that the Widom—Rowlinson model on G has
a unique Gibbs measure for all A < A, (8)
multiple Gibbs measures for all X > A..

Remark. The requirement that p.(G,bond) < 1 is in fact superfluous; it is possible
to show, by a standard renormalization argument, that p.(G,bond) < 1 holds for any
d-dimensional periodic lattice with d > 2. This observation is, however, not needed in
our proof of Theorem 1.4.

Before proving Proposition 4.2, we first show how it implies Theorem 1.4.

Proof of Theorem 1.4 from Proposition 4.2: It is easy to see that if G is a
d-dimensional periodic lattice, then we can relabel the vertices of G* to make it a d-
dimensional periodic lattice as well. It therefore only remains to show that for each d
there exists a d-dimensional periodic lattice with p.(G,bond) € [v/2 —1,1). For d = 2,
we may take G = Z2, because p.(Z2, bond) = %; see, e.g., [3]. For d > 3, we have
pc(Z%, bond) € (0,1); see [3] again. If we now let Gy, denote the lattice obtianed by
replacing each edge in Z¢ by n edges in series, then, clearly,

Pe(Gan,bond) = (pc(Zd, bond))l/”.

This critical value tends to 1 as n — oo, whence we may take G = G4, with n large
enough so that (p.(Z?, bond))l/" > /2 - 1. O

For the proof of Proposition 4.2, it is useful to isolate the following lemma.

Lemma 4.3 Let d > 2, let G = (V, E) be a d-dimensional periodic lattice satisfying
p.(G,bond) € [V2—1,1), and define G* from G as above. Then the Widom-Rowlinson
model on G* has

a) a unique Gibbs measure for all X < -, and
V2

(b) multiple Gibbs measures for all sufficiently large .

Proof: We begin with part (b). From the construction of G*, it is clear that i.i.d. site
percolation on G* with parameter p produces an infinite cluster with positive probability
if and only if the same holds for i.i.d. bond percolation on G at the same parameter value.
Hence p.(G*, site) = p.(G,bond) € [v/2 —1,1). In particular, p.(G*,site) < 1, which,
in combination with the observation that G* has bounded degree (by the definition of
a d-dimensional periodic lattice), allows us to invoke [4, Theorem 1.1] to deduce that
(b) holds.



Moving on to (a), take A < %, and consider the conditional distribution of the
+1-particles given the positions of the —1-particles. Under any Gibbs measure for the
Widom-Rowlinson model on G at activity A — specifically, the plus measure ui‘L — this
conditional distribution is simply that each vertex that is not occupied by or adjecent
to a —1 independently takes value 0 or +1 with respective probabilities A—+1 and 537 +1
Hence the (unconditional) distribution of the -|-1 particles is stochastically dominated

by i.i.d. site percolation on G with parameter A—+1 Since

1

A < 1% =2 -1 < p.(G*, site),
A1 T

we get that the i.d.d. site percolation forms no infinite cluster almost surely, and there-
fore there are ,uq\_-a.s. no infinite clusters of +1’s. Reversing the roles of +1’s and —1’s
in this argument shows that there are also no infinite clusters of —1’s uq\_—a.s., so that
in fact all connected components of +1’s or —1’s are finite. This implies condition (iii),
which in turn implies that there is only one Gibbs measure. O

Proof of Proposition 4.2: Fix a G* as in the proposition. In view of Lemma 4.3, we
only need to show the monotonicity part of (8) — that having multiple Gibbs measure
at some activity A implies the same thing at all higher activities.

Define a sequence {G;, = (V,5, E;;)}22; of finite subgraphs of G* in the same manner
as the sequence {Gp,}22; was defined in Section 3, but with the additional requirement
that OV,; C V(‘i) for each n. Let ,ui,n denote the probability measure on {—1,0, +1}V=
corresponding to the Widom-Rowlinson model on G, with avtivity A and plus boundary

condition; hence uﬁ‘r n 18 given by (4) with E* and dV;f in place of E,, and 0V,,. Also let

7, denote the projection of u} ,, on {—1,0, —|—1}V” DV

Given a configuration ¢ € {—1,0, —I—l}V ﬁV(l) call a vertex z € V;y NV3, isolated if
E(y) =0forally e Vn V(*i) such that (z,y) € E;'; Note that all neighbors y of z are
neighbors of each other (see the definition of G*), so that if any of the neighbors take
value +1, then none of them take value —1, and vice versa. Hence, the set of possible

values of X (z) given X (V,* N V(’;)) =¢is

{-1,0,+1} if z is isolated
{0,+1} if z is not isolated, and has a neighbor with value +1
{-1,0} if z is not isolated, and has a neighbor with value —1,

irrespective of the values of all other vertices in V' N V(’g) We can therefore integrate
out {X (v) }zev v, in ui,n, and using (4) we get that ﬁj\r,n is given by

1
A
M+,n(§) = ﬁ H e H (’\ +1+ /\I{v is isolated w.r.t. 5})
noweVrnvy, VeV NV
xI {€(@)e(y)>0 for all (zy)eE,} {f(w):—}—l for all zeav;,} (9)

for each ¢ € {—1,0, —I—1}V W

Next let ¢\ be the wired site-random-cluster measure for G}, at activity A, and let 5:;

VﬂV

be the projection of ¢\ on {0,1} ™ . By (9), we have that the probability assigned



by 52 to each n € {0, 1}V"*m/(*1) is given by

9k(n)

52(77) - H A1) H (/\ +1+ )\I{v is isolated w.r.t. g})

n * *
VeV NV, VeV NV,

xI {n(z)=1 for all zeov,,} (10)

where k(n) is the number of connected components not intersecting 0V,* of the set of

1’s in 5. It is to this probability measure 52 that we will now be able to apply Holley’s
inequality (Lemma 4.1) to obtain a useful stochastic comparison between the behaviors
at different values of .

Fix an z € V' N V \8V Write y; and yo for the two vertices in G that x
connect when viewed as an edge in G, and write By (resp. Bg) for the set of vertices
in V. N V() \ {z} whose corresponding edge in G has y (resp. y2) as an endpoint. For

n € {0, 1}V nVl)\{x} consider the connected components of 1’s in 7, and note that at
most one such component intersects By (because all pairs of vertices in By share an
edge in G}). We define C;(n) to be this connected component if it exists; otherwise we
set C1(n) = 0. Cy(n) is defined analogously. Finally in this long sequence of definitions,

we partition {0, l}V” VMo into four subsets A, A", A" and A" as follows. Let

4 = {ne {00 0yn) = o) = 0},
A = {ne{0,1}" VoM exactly one of the components C; (1) and Cy(n)
is empty},
A" = {ne{o}"” WMol neither C1(n) nor Cy(n) is empty, Ci(n) # Ca(n),
and at most one of them intersects oV},
A" = {ne/{o, 1}V" WM neither ¢4 (n) nor Cy(n) is empty, and we have
either that Ci(n) = Ca(n) or that both components intersect oV} .

Let Y be a {0, l}V"*nV(*l) valued random object with distribution 5;: By direct applica-
Vi ﬂV \{z}
1)

tion of (10), we get, for any = € VN V{3 \ 9V, and any 5 € {0,1} such that
n(0V,) =1, that
4 4 .
B ity e s
—A . AQFD? .
$(Y(z) =1|Y(VinViy\{e) =n) | Gre ifned
?a%)—oyawnv )=n "
n T) = | \{.’L‘} n % if’f]EA”
N ifgean.

A crucial observation now is that if we increase 1 (meaning that we change some of the
0’s in 7 to 1’s), then we can only move down the list of events in (11) — from A towards

2
A" — but not the other way around. For \ > % we have (%) > 2, so that

4 2
2A(A+1)*  A(A+1) <3<)\
Cx+1)* — 2Ax+1)2 — 2 —

10



and we can deduce that the left-hand-side of (11) is increasing in  whenever A > % A
straightforward calculation also shows that all four expressions in the right-hand-side of
(11) are increasing in A for all positive A\. Hence, the left-hand-side of (11) is increasing
both in 7 and in A as long as A > % It follows that

EQ(Y(:I:) =1[Y(Vy n Vi \ {z}) = n) is increasing

. . 1 (12)
in n and in A, whenever A\ > 7

We now claim that for all A\, Ao € [%, o0), we have

—\ D —2

2o, (13)
To see this, first note that both measures put probability one on the “all 1’s” configu-
ration on the boundary dV,*, and then note that Lemma 4.1 in combination with (12)
shows that the projection of 521 on {0, l}V“*n‘/(*l)\aV”*
same projection of 522 Hence, (13) is established.

To finish the proof, we need to show (recall condition (iv) in Section 3) that if
)\1 S )\2 and

is stochastically dominated by the

limsup ¢! (z <> OV;¥) > 0 for some z € V*, (14)
n—oQ
then also
lim sup ¢)2 (z < V,*) > 0 for some z € V*, (15)
n—r0oQ

To this end, suppose that A\; < A2 and that (14) holds. By Lemma, 4.3, we have \; > %
We may assume that = € V(*i), because if not (i.e., if z € Vé)), then it is easy to see that
(14) holds for some nearest neighbor of z, which is necessarily in V(‘i) Having made

this assumption, note that if ¢ € {0,1}"» contains a path of 1’s from z to V¥, then it
also contains such a path with the additional property that all vertices on the path are
in V(*i) (such a path can be obtained by just skipping the vertices in Vé) from the first

path). Hence 521 (z < OV¥) = M (z > OVF), so that

limsup%’;1 (z > 0V,) >0.

n—oo
Furthermore, (13) implies that 521 (z < 0V)) < 522 (z <> 0V,F), so that

limsupa;\l2 (z < 0V,) > 0.

n—oo

This implies (15), so the proof is complete. O
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