PROPERTY \((\beta)\epsilon\) FOR TOEPLITZ OPERATORS WITH \(H^{\infty}\)-SYMBOL

SEBASTIAN SANDBERG

ABSTRACT. Suppose that \(g\) is a tuple of bounded holomorphic functions on a strictly pseudoconvex domain \(D\) in \(\mathbb{C}^m\) with smooth boundary. Viewed as a tuple of operators on the Hardy space \(H^p(D), 1 \leq p < \infty\), \(g\) is shown to have property \((\beta)\epsilon\) and therefore \(g\) possess Bishop’s property \((\beta)\). In the case \(m = 1\) it is proved that the same result also holds when \(p = \infty\).

1. INTRODUCTION

Suppose that \(X\) is a Banach space and that \(a = (a_1, \ldots, a_n)\) is a commuting tuple of bounded linear operators on \(X\). Let \(E\) be one of spaces \(X, \mathcal{E}(\mathbb{C}^n, X)\) or \(\mathcal{O}(U, X)\), where \(U \subset \mathbb{C}^n\). Denote by \(K_{\bullet}(z-a, E)\) the Koszul complex

\[0 \rightarrow \Lambda^r E \xrightarrow{\delta_{z-a}} \Lambda^{r-1} E \xrightarrow{\delta_{z-a}} \cdots \xrightarrow{\delta_{z-a}} \Lambda^0 E \rightarrow 0, \]

with boundary map

\[\delta_{z-a}(f s_I) = 2\pi i \sum_{k=1}^{p} (-1)^{k-1}(z_{i_k} - a_{i_k}) f s_{i_1} \wedge \cdots \wedge s_{i_k} \wedge \cdots \wedge s_{i_p}, \]

where \(I = (i_1, \ldots, i_p)\) and \(p\) is an integer. Let \(H_{\bullet}(z-a, E)\) be the corresponding homology groups.

The Taylor spectrum of \(a, \sigma(a)\), is defined as the set of all \(z \in \mathbb{C}^n\) such that \(K_{\bullet}(z-a, X)\) is not exact. If for all Stein open sets \(U\) in \(\mathbb{C}^n\) the natural quotient topology of \(H_0(z-a, \mathcal{O}(U, X))\) is Hausdorff and \(H_p(z-a, \mathcal{O}(U, X)) = 0\) for all \(p > 0\), then \(a\) is said to have Bishop’s property \((\beta)\). It has property \((\beta)\epsilon\) if the natural quotient topology of \(H_0(z-a, \mathcal{E}(\mathbb{C}^n, X))\) is Hausdorff and if \(H_p(z-a, \mathcal{E}(\mathbb{C}^n, X)) = 0\) for all \(p > 0\).

By Theorem 6.2.4 in [9], the tuple \(a\) has Bishop’s property \((\beta)\) if and only if there exists a decomposable resolution, that is, if and only if there are Banach spaces \(X_i\) and decomposable tuples (see [9] for the definition) of operators \(a_i\) on \(X_i\) such that

\[0 \rightarrow X \xrightarrow{d} X_0 \xrightarrow{d} \cdots \xrightarrow{d} X_r \rightarrow 0 \]

\date{February 9, 2001.
1991 Mathematics Subject Classification. 32A35, 47A11, 47A13.
Key words and phrases. Bishop’s property \((\beta)\), Hardy space, \(H^p\)-corona problem.
is exact, \(da = a_0 d \) and \(da_i = a_{i+1} d \). Property \((\beta)_{\xi}\) is equivalent to the existence of a resolution of Fréchet spaces with Mittag-Leffler inverse limit of generalized scalar tuples (that is tuples which admit a continuous \(C^\infty(C^n)\)-functional calculus), see Theorem 6.4.15 in [9]. Property \((\beta)_{\xi}\) implies Bishop’s property \((\beta)\), see [9].

Suppose that \(D \) is a strictly pseudoconvex domain in \(C^n \) with smooth boundary. We consider the tuple \(T_g = (T_{g_1}, \ldots, T_{g_n}), \ g_k \in H^\infty(D) \), of operators on \(H^p(D) \) defined by \(T_{g_k}f = g_k f, \ f \in H^p(D) \). The main theorem of this paper is the following.

Theorem 1.1. Suppose that \(D \) is a bounded strictly pseudoconvex domain in \(C^n \) with \(C^\infty \)-boundary and that \(g \in H^\infty(D)^n \). Then the tuple \(T_g \) of Toeplitz operators on \(H^p(D) \), \(1 \leq p < \infty \), satisfies property \((\beta)_{\xi}\), and thus Bishop’s property \((\beta)\).

In case \(g \) has bounded derivative this theorem has previously been proved in [14, 16, 17]. In case \(D \) is the unit disc in \(\mathbb{C} \), Theorem 1.1 also holds when \(p = \infty \); this is proved in Section 4. As a corollary to Theorem 1.1 we have that \(T_g \) on the Bergman space \(OL^p(D) \) has property \((\beta)_{\xi}\), see Corollary 3.4.

Let us recall how one can prove that \(T_g \) on the Bergman space \(OL^2(D) \) has property \((\beta)_{\xi}\) under the extra assumption that \(g \) has bounded derivative. Define the Banach spaces \(B_k \) as the spaces of locally integrable \((0, k)\)-forms \(u \) such that

\[
\|u\|_{B_k} := \|u\|_{L^2(D)} + \|\bar{\partial}u\|_{L^2(D)} < \infty.
\]

Since \(g \) has bounded derivate we have the inequality

\[
\|(\varphi \circ g) u\|_{B_k} \lesssim \sup_{z \in g(D)} \left(|\varphi(z)| + |\bar{\partial}\varphi(z)| \right) \|u\|_{B_k}
\]

for all \(\varphi \in C^\infty(C^n) \). Hence \(\varphi \mapsto T_{\varphi g} \) is a continuous \(C^\infty(C^n)\)-functional calculus, where \(T_{\varphi g} \) denotes multiplication by \(\varphi \circ g \) on \(B_k \).

Since we have the resolution

\[
0 \rightarrow OL^2(D) \rightarrow B_0 \overset{\delta}{\rightarrow} B_1 \overset{\delta}{\rightarrow} \cdots \overset{\delta}{\rightarrow} B_m \rightarrow 0
\]

by Hörmander’s \(L^2 \)-estimate of the \(\bar{\partial} \) equation, the tuple \(T_g \) on \(OL^2(D) \) has property \((\beta)_{\xi}\) by the above mentioned Theorem 6.4.15 in [9].

To prove Theorem 1.1 we will construct a complex

\[
(1) \quad 0 \rightarrow H^p(D) \overset{i}{\rightarrow} B_0 \overset{\delta}{\rightarrow} B_1 \overset{\delta}{\rightarrow} \cdots \overset{\delta}{\rightarrow} B_m \rightarrow 0,
\]

where \(B_k \) are Banach spaces of \((0, k)\)-forms on \(D \). The spaces \(B_k \) are defined in terms of tent norms. We prove that \(\varphi \mapsto T_{\varphi g} \) is a continuous \(C^\infty(C^n)\)-functional calculus, where \(T_{\varphi g} \) denotes multiplication by \(\varphi \circ g \) on \(B_k \). If the complex \((1)\) were exact the proof of Theorem 1.1 would be finished. As we can solve the \(\bar{\partial} \)-equation with appropriate estimates we will be able to prove that \(T_g \) on \(H^p \) has property \((\beta)_{\xi}\) anyway. More precisely \((1)\) is exact at \(B_k \), \(k \geq 3 \). If \(f \in B_2 \) and \(\bar{\partial}f = 0 \) then
there is a function u in another Banach space B'_1 such that $\tilde{\partial} u = f$. Multiplication by g is a bounded operator on B'_1. If $f \in B_1$ and $f' \in B'_1$ such that $\tilde{\partial} f + r \tilde{\partial} f' = 0$ then there is a solution $u \in L^p(\partial D)$ to the equation $\tilde{\partial} u = f + f'$.

The construction of the complex (1) in the case $p < \infty$ is inspired by the construction in [5] and in the case $p = \infty$ and $m = 1$ it is inspired by Tom Wolff’s proof of the corona theorem. Let us recall the proof of the H^p-corona theorem in the unit disc of \mathbb{C}. Suppose that $g = (g_1, \ldots, g_n) \in H^\infty(D)^n$, where D is the unit disc in \mathbb{C}, and that $0 \not\in g(D)$. Consider the complex (1); the definitions of the B_k-spaces can be found in the beginning of Section 3 and Section 4. Suppose that $f \in H^p(D)$. Then the equation $\delta g u_1 = f$ has a solution in $K_1(g, B_0)$, namely $u_1 = \sum_k \tilde{g}_k s_k / |g|^2$. Hence $\delta g \partial u_1 = 0$ as δg and ∂ anticommutate, and we can solve the equation $\delta g u_2 = \partial u_1$ by defining $u_2 \in K_2(g, B_1)$ as $u_1 \wedge \partial u_1$. Since u_2 satisfies the condition

$$\|(1 - |z|) u_2\|_{T_p^2} + \|(1 - |z|)^2 \partial u_2\|_{T_p^2} < \infty,$$

by a Wolf type estimate there is a solution v in $K_2(g, L^p(\partial D))$ to the equation $\tilde{\partial} u_2 = v$ (here T_p^2 and T_1^p denote certain tent spaces). Let $u_1' = u_1^* - \delta g v \in K_1(g, L^p(\partial D))$, where u_1^* is the boundary values of u_1. Since $\tilde{\partial} u_1' = 0$ there is a holomorphic extension U_1' of u_1' to D which satisfies the equation $\delta g U_1' = f$.

The above proof also yields that $\sigma(T_g) = \overline{g(D)}$; the exactness of higher order in the Koszul complex follows by similar reasoning. That $\sigma(T_g) = \overline{g(D)}$ is proved in [5] for the case D strictly pseudoconvex and $p < \infty$. One main difference of the proof of that T_g has property $(\beta)_\varepsilon$ and the proof of that $\sigma(T_g) = \overline{g(D)}$ is the following. As a substitution of the explicit choices of u_1 and u_2 one uses the fact that T_g considered as an operator on B_k has property $(\beta)_\varepsilon$, which in turn follows from the fact that T_g on B_k has a $C^\infty(\mathbb{C}^n)$-functional calculus.

I would like to thank Mats Andersson, Jörg Eschmeier, Mihai Putinar and Roland Wolff for valuable discussions and comments on this paper.

2. Preliminaries

Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^n with C^∞-boundary given by a strictly plurisubharmonic defining function ρ. Let $r = -\rho$. All norms below are with respect to the metric

$$\Omega = r i \partial \bar{\partial} \log (1/r),$$

and we have

$$|f|^2 \sim r^2 \int_g |f|^2 + r |f \wedge \partial r|_g^2 + r |f \wedge \partial r|^2 + |f \wedge \partial r \wedge \partial r|^2,$$

where $\beta = i \partial \bar{\partial} r$, which is equivalent to the Euclidean metric.
The Hardy space H^p is the Banach space of all holomorphic functions, f, on D such that

$$\|f\|_{H^p} = \sup_{\varepsilon > 0} \int_{|z| = \varepsilon} |f(z)|^p \, d\sigma(z) < \infty,$$

where σ is the surface measure. It is wellknown that a function u in $L^p(\partial D)$ is the boundary value of a function U in H^p if and only if

$$\int_{\partial D} uh = 0$$

for all $h \in C^\infty_{\text{c}, n-1}(\bar{D})$ such that $\overline{\partial} h = 0$.

Let $d(\cdot, \cdot)$ be the Koranyi pseudometric on ∂D and let z' be the point on ∂D closest to $z \in D_\varepsilon$, where D_ε is a small enough neighbourhood of ∂D in D. For a point ζ on the boundary let

$$A_\zeta = \{z \in D_\varepsilon : d(z', \zeta) < r(z)\} \cup (D \setminus D_\varepsilon).$$

For a ball B defined by $B = \{z \in \partial D : d(z, \zeta) < t\}$ let, for small t,

$$\bar{B} = \{z \in D_\varepsilon : d(z', \zeta) < t - r(z)\},$$

and for large t

$$\bar{B} = \{z \in D_\varepsilon : d(z', \zeta) < t - r(z)\} \cup (D \setminus D_\varepsilon).$$

A function f is in the tent space T^p_q, where $p < \infty$ and $q < \infty$, if

$$\|f\|_{T^p_q} := \left(\int_{\partial D} \left(\int_{z \in A_\zeta} |f(z)|^q \, r(z)^{-m-1} \right)^{p/q} \, d\sigma(\zeta) \right)^{1/p} < \infty.$$

The function f is in T^p_{∞} if f is continuous with limits along A_ζ at the boundary almost everywhere and such that

$$\|f\|_{T^p_{\infty}} := \left(\int_{\partial D} \sup_{z \in A_\zeta} |f(z)|^p \, d\sigma(\zeta) \right)^{1/p} < \infty.$$

A function f is in T^∞_q if

$$\|f\|_{T^\infty_q} := \left\| \sup_{z \in A_\zeta} \left(\frac{1}{|B|} \int_{z \in B} |f(z)|^q \, r(z)^{-1} \right)^{1/q} \right\|_{L^\infty(\partial D)} < \infty.$$

Note that $f \in T^p_q$ if and only if $r^{-1/p} f \in L^p(D)$ by Fubini’s theorem. From [8] we have the inequality

(2) \[\int_D |fg| r^{-1} \lesssim \|f\|_{T^p_q} \|g\|_{T^{p'}_{q'}} \]

for $1 \leq p, q \leq \infty$, where p' and q' denote dual exponents. By [8] $T^p_{q'}$, where $1 \leq p < \infty$ and $1 < q < \infty$, is the dual of T^p_q with respect to the
pairing
\[\langle f, g \rangle \rightarrow \int_D f g r^{-1}. \]

Suppose that \(f \in T^p_{q_0}, \ g \in T^q_{q_1} \) and let \(q = (q_0^{-1} + q_1^{-1})^{-1} \). Then for all \(h \in T^q_{q'} \) we have
\[\int_D |fg h| r^{-1} \lesssim \|fh\|_{T_{q_1}^q} \|g\|_{T_{q_1}^q} \leq \|f\|_{T_{q_1}^{q_0}} \|g\|_{T_{q_1}^{q_1}} \|h\|_{T_{q'}^{q'}} \]
by (2) and Hölder's inequality. Thus by the duality for \(T^q_{q'} \) we get the inequality
\[\|fg\|_{T^p_{q_0}} \lesssim \|f\|_{T^p_{q_0}} \|g\|_{T^q_{q_1}} \]
for \(1 < p \) and \(1 < q < \infty \). Since the inequality (3) is equivalent to
\[\|fg\|_{T^p_{q_0}} \lesssim \|f\|_{T^p_{q_0}} \|g\|_{T^q_{q_1}} \]
for \(0 < t < \infty \), (3) holds if \(0 < p, q_0, q_1 \).

We will use the inequality (see [12])
\[\|f\|_{T^p_{q_0}} \lesssim \|f\|_{H^p}, \ p > 0 \]
and (see e.g. [7] for \(p < \infty \) and [3] for \(p = \infty \))
\[\|r^{1/2} \partial f\|_{T^p_{q_0}} \lesssim \|f\|_{H^p}, \ p > 0. \]
Moreover, we use that \(\|\partial f\| \lesssim r^{-1/2} \) if \(f \in H^{\infty} \).

There is an integral operator \(K : C_0^{\infty}(\bar{D}) \rightarrow C_{0,q}(\bar{D}), q \geq 0, \) see [5], such that \(\partial K u + K \partial u = u, \ u \in C_0^{\infty}(\bar{D}), s \geq 1, \)
\[\|ru\|_{T^p_{q_0}} \lesssim \|ru\|_{T^p_{q_0}} \quad \text{and} \quad \|K u\|_{L^p(\partial D)} \lesssim \|r^{1/2} u\|_{T^p_{q_0}} \]
if \(\tau > 0 \) and \(1 \leq p < \infty \). Furthermore,
\[\|K u\|_{L^p(\partial D)} \lesssim \|r^{1/2} u\|_{T^p_{q_0}} + \|ru\|_{T^p_{q_0}}. \]
To see that the inequality (6) follows from [5], note that by the definition of \(W^{1-1/p} \) in [1], \(\|ru\|_{T^p_{q_0}} = \|u\|_{W^{1-1/p}}. \) By [4] the adjoint \(P \) of \(K \)
satisfies
\[\|P \psi\|_{L^\infty(D)} \lesssim \|\psi\|_{L^\infty(\partial D)} \quad \text{and} \quad \|r^{1/2} \mathcal{L} P \psi\|_{L^2(\partial D)} \lesssim \|\psi\|_{L^2(\partial D)} \]
(whence \(\mathcal{L} \) is an arbitrary smooth \((1,0)\)-vectorfield). The \(L^2 \)-result is proven by means of a \(T1 \)-theorem of Christ and Journé. By [10] it now follows that
\[\|P \psi\|_{T^p_{q_0}} \lesssim \|\psi\|_{L^p(\partial D)}, \quad p > 1, \]
and
\[\|ru\|_{T^p_{q_0}} \lesssim \|\psi\|_{L^p(\partial D)}, \quad p > 1. \]
The inequality (7) follows from (8) and (9).
In section 4 we use completed tensor products of locally convex Hausdorff spaces, see e.g. Appendix 1 in [9]. Suppose that E and F are locally convex Hausdorff spaces. We denote by $L(E, F)$ the space of all continuous and linear maps from E to F. The topology π on $E \otimes F$ is defined as the finest locally convex topology such that the canonical bilinear map $E \times F \to E \otimes F$ is continuous. We denote by $E \otimes_{\pi} F$, the space $E \otimes F$ with the topology π and we denote the completion of $E \otimes_{\pi} F$ with $E \otimes_{\pi} F$. There is another topology on $E \otimes F$, the topology c; in case E is nuclear this topology coincides with the topology π and we therefore omit the index π in this case. The Fréchet space $\mathcal{E}(\mathbb{C}^n)$ is nuclear and we have the isomorphism $\mathcal{E} (\mathbb{C}^n, E) \cong \mathcal{E} (\mathbb{C}^n) \hat{\otimes} E$.

3. PROPERTY (β)ξ FOR TOEPLITZ OPERATORS WITH H^∞-SYMBOL ON H^p

First we need to define the sequence (1) and prove that there is a continuous $C^\infty (\mathbb{C}^n)$-functional calculus on each of the spaces B_k.

Define the norms $\| \cdot \|_{B_k}$, $k \geq 0$, by

$$\| u \|_{B_0} = \| u \|_{L^\infty} + \| r^{1/2} du \|_{L^p_{\bar{\partial}}} + \| r \bar{\partial} u \|_{L^p_{\partial}}$$

on $C^\infty (\bar{D})$,

$$\| u \|_{B_1} = \| r^{1/2} u \|_{L^p_{\bar{\partial}}} + \| r du \|_{L^p_{\partial}}$$

on $C^\infty_{0,1} (\bar{D})$ and

$$\| u \|_{B_k} = \| r^{k/2} u \|_{L^p_{\bar{\partial}}} + \| r^{k/2+1/2} \bar{\partial} u \|_{L^p_{\partial}}$$

on $C^\infty_{0,k} (\bar{D})$ for $k \geq 2$. Let B_k be the completion of $C^\infty_{0,k} (\bar{D})$ with respect to the norm $\| \cdot \|_{B_k}$. We also define B'_k as the completion of $C^\infty_{0,1} (\bar{D})$ with respect to the norm $\| \cdot \|_{B'_k}$, defined by

$$\| u \|_{B'_k} = \| r^{1/2} u \|_{L^p_{\bar{\partial}}} + \| r \bar{\partial} u \|_{L^p_{\partial}}$$

The injection $i : H^p \to B_0$ is well defined and continuous by (4) and (5). That $\bar{\partial} : B_k \to B_{k+1}$, $k \geq 0$ is continuous follows immediately from the definitions. Thus we have defined a complex

$$0 \to H^p (D) \overset{i}{\to} B_0 \overset{\bar{\partial}}{\to} B_1 \overset{\bar{\partial}}{\to} \cdots \overset{\bar{\partial}}{\to} B_m \to 0.$$

Lemma 3.1. Suppose that $g \in H^\infty (D)^n$. Then one can define $T_{g_1} : B_k \to B_k$ by $T_{g_i} u = g_i u$, $1 \leq i \leq n$, for all $k \geq 0$. The tuple T_g on B_k, $k \geq 0$, has a continuous $C^\infty (\mathbb{C}^n)$-functional calculus and property (β)ξ.
Proof. That \(T^u_\alpha \) can be defined on \(B_k \) follows from the calculation below (let \(\varphi(z) = z_i \) below). We begin with the case \(k = 0 \). Suppose that \(\varphi \in C^\infty(\mathbb{C}^n) \) and \(u \in C^\infty(\bar{D}) \). From (3) we have
\[
\left\| r^{1/2} u \partial g \right\|_{T^p_\infty} \lesssim \left\| u \right\|_{T^p_\infty} \left\| r^{1/2} \partial g \right\|_{T^p_\infty},
\]
\[
\left\| r \left| du \right| \partial g \right\|_{T^p_\infty} \lesssim \left\| r^{1/2} \left| du \right| \right\|_{T^p_\infty} \left\| r^{1/2} \partial g \right\|_{T^p_\infty}
\]
and
\[
\left\| ru \partial g \right\|_{T^p_\infty} \lesssim \left\| u \right\|_{T^p_\infty} \left\| r \partial g \right\|^2_{T^p_\infty}.
\]
Since \(\left\| r^{1/2} \partial g \right\|_{T^p_\infty} < \infty \) by the inequality (5) we thus get
\[
\left\| (\varphi \circ g) u \right\|_{B_0} \leq \sup_{z \in g(D)} |\varphi(z)| \left\| u \right\|_{B_0} + \left\| r^{1/2} d(\varphi \circ g) u \right\|_{T^p_\infty} + \left\| r \partial(\varphi \circ g) \right\|_{T^p_\infty} + \left\| r \partial \overline{\partial}(\varphi \circ g) u \right\|_{T^p_\infty} \lesssim \sup_{z \in g(D)} \left(|\varphi(z)| + |D\varphi(z)| + |D^2 \varphi(z)| \right) \left\| u \right\|_{B_0},
\]
where \(D\varphi \) and \(D^2 \varphi \) denotes all derivates of \(\varphi \) of order 1 and 2 respectively. Note that \((\varphi \circ g) u \notin C^\infty(\bar{D}) \) in general. Let \(g_l \in C^\infty(\bar{D}) \) be such that \(g_l \to g \) in \(H^p(D)^n \) with \(g_l \) uniformly bounded as \(l \to \infty \) and suppose that \(u \) is fixed. We have the equalities
\[
d(\varphi \circ g_l - \varphi \circ g) = \sum_i \varphi_i \circ g_l \partial g_l^i - \varphi_i \circ g \partial g^i + \varphi_i \circ g_l \overline{\partial} g_l^i - \varphi_i \circ g \overline{\partial} g^i
\]
and
\[
\partial \overline{\partial}(\varphi \circ g_l - \varphi \circ g) = \sum_{i,j} \varphi_{ij} \circ g_l \partial g_l^i \partial g_l^j - \varphi_{ij} \circ g \partial g^i \partial g^j,
\]
where the index in \(\varphi_i \) denotes partial derivate and the upper index in \(g_l^i \) and \(g^i \) denotes \(i \)th component. Hence we get
\[
\left| d(\varphi \circ g_l - \varphi \circ g) \right| \leq |D\varphi \circ g_l| \left| \partial g_l - \partial g \right| + |D\varphi \circ g_l - D\varphi \circ g| \left| \partial g \right|,
\]
and
\[
\left| \partial \overline{\partial}(\varphi \circ g_l - \varphi \circ g) \right| \leq |D^2 \varphi \circ g_l| \left| \partial g_l - \partial g \right| \left(\left| \partial g_l \right| + \left| \partial g \right| \right) + |D^2 \varphi \circ g_l - D^2 \varphi \circ g| \left| \partial g \right|^2.
\]
By (4) we have
\[
\left\| (\varphi \circ g_l - \varphi \circ g) u \right\|_{T^p_\infty} + \left\| r^{1/2} (\varphi \circ g_l - \varphi \circ g) du \right\|_{T^p_\infty} + \left\| r (\varphi \circ g_l - \varphi \circ g) \partial \overline{\partial} u \right\|_{T^p_\infty} \lesssim \left\| \varphi \circ g_l - \varphi \circ g \right\|_{T^\infty_\infty} \lesssim \left\| g_l - g \right\|_{T^\infty_\infty} \lesssim \left\| g_l - g \right\|_{H^p}.
\]
We also have that
\[
\|r^{1/2}d(\varphi \circ g_l - \varphi \circ g)\|_{\mathcal{T}_2^p} + \|r |d(\varphi \circ g_l - \varphi \circ g)| |du|\|_{\mathcal{T}_2^p} \lesssim \\
\|r^{1/2}d(\varphi \circ g_l - \varphi \circ g)\|_{\mathcal{T}_2^p} \lesssim \|r^{1/2}|D\varphi \circ g_l| |\vartheta g_l| - \vartheta g|\|_{\mathcal{T}_2^p} + \|r^{1/2}|D\varphi \circ g_l - D\varphi \circ g| |\vartheta g|\| \lesssim \|g_l - g\|_{H^p}
\]
by (3),(4) and (5). Furthermore,
\[
\|r\vartheta (\varphi \circ g_l - \varphi \circ g)\|_{\mathcal{T}_2^p} \lesssim \|r|D^2\varphi \circ g_l| |\vartheta g_l - \vartheta g|/(|\vartheta g_l| + |\vartheta g|)|\|_{\mathcal{T}_2^p} + \|r|D^2\varphi \circ g_l - D^2\varphi \circ g| |\vartheta g|^2\|_{\mathcal{T}_2^p} \lesssim \|g_l - g\|_{H^p}
\]
by (3),(4) and (5). Thus
\[
\|(\varphi \circ g_l - \varphi \circ g)\|_{B_0} \to 0
\]
as \(l \to \infty\) and therefore we have that \((\varphi \circ g)u\) is in the completion of \(C^\infty(\bar{D})\) with respect to the norm \(\|\cdot\|_{B_0}\). We extend the map
\[
u \mapsto (\varphi \circ g)u : C^\infty(\bar{D}) \to B_0
\]
to a continuous map \(\varphi(T_g) : B_0 \to B_0\), bounded by a constant times
\[
\sup_{z \in \Sigma(D)} (|\varphi(z)| + |D\varphi(z)| + |D^2\varphi(z)|).
\]
Hence \(T_g\) on \(B_0\) has a continuous \(C^\infty(\mathbb{C}^n)\)-functional calculus.

Next we consider the case \(k = 1\). Suppose that \(\varphi \in C^\infty(\mathbb{C}^n)\) and \(u \in C^\infty_{0,1}(\bar{D})\). From (3) and (5) we have the inequality
\[
\|r |\vartheta g| |u|\|_{\mathcal{T}_2^p} \lesssim \|r^{1/2}\vartheta g\|_{\mathcal{T}_2^{1,\infty}} \|r^{1/2}u\|_{\mathcal{T}_2^p} \lesssim \|r^{1/2}u\|_{\mathcal{T}_2^p}.
\]
Hence we get
\[
\|(\varphi \circ g)u\|_{B_1} \leq \sup_{z \in \Sigma(D)} |\varphi(z)| \|u\|_{B_1} + \|r\vartheta (\varphi \circ g) \wedge u\|_{\mathcal{T}_2^p} \lesssim \sup_{z \in \Sigma(D)} (|\varphi(z)| + |D\varphi(z)|) \|u\|_{B_1}.
\]
As in the case \(k = 0\) we prove that \((\varphi \circ g)u\) is in the completion of \(C^\infty_{0,1}(\bar{D})\). When we extend the map
\[
u \mapsto (\varphi \circ g)u : C^\infty(\bar{D}) \to B_1
\]
by continuity to a map \(\varphi(T_g) : B_1 \to B_1\) bounded by
\[
\sup_{z \in \Sigma(D)} (|\varphi(z)| + |D\varphi(z)|)
\]
and hence we have proved that \(T_g\) on \(B_1\) has a \(C^\infty(\mathbb{C}^n)\)-functional calculus.
In case $k \geq 2$ we suppose that $\varphi \in C^\infty(\mathbb{C}^n)$ and $u \in C^\infty_{0,k}(\bar{D})$. Since $|\partial g| \preceq r^{-1/2}$ we have
\[
\| (\varphi \circ g)u \|_{B_k} \leq \sup_{z \in g(D)} |\varphi(z)| \| u \|_{B_k} + \| r^{k/2+1/2} \tilde{\partial}(\varphi \circ g) \wedge u \|_{\mathcal{T}_q} \preceq \\
\sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)|) \| u \|_{B_k}.
\]
As in the case $k = 0$ it follows that T_g on B_k, $k \geq 2$, has a $C^\infty(\mathbb{C}^n)$-functional calculus.

That each of the tuples T_g has property $(\beta)_\mathcal{C}$ now follows from Proposition 6.4.13 in [9].

We can extend the integral operator $K : C^\infty_{0,k+1}(\bar{D}) \rightarrow C_{0,k}(\bar{D})$, $k \geq 1$, to a continuous operator $K : B_{k+1} \rightarrow B_k$, $k \geq 2$, and a continuous operator $K : B_2 \rightarrow B'_1$. This because
\[
\| r^{k/2} Ku \|_{\mathcal{T}_q} \preceq \| r^{k/2+1/2} u \|_{\mathcal{T}_q} \leq \| u \|_{B_{k+1}}
\]
and
\[
\| r^{k/2+1/2} \tilde{\partial} Ku \|_{\mathcal{T}_q} = \| r^{k/2+1/2} (u - K\tilde{\partial} u) \|_{\mathcal{T}_q} \preceq \| u \|_{B_{k+1}}
\]
for all $u \in C^\infty_{0,k+1}(\bar{D})$ by (6), (12) and (14). Also observe that Ku is in the completion of $C^\infty_{0,k}(\bar{D})$ under the norm $\| \cdot \|_{B_k}$ (or $\| \cdot \|_{\mathcal{T}_q}$) by dominated convergence and the fact that one can find $f_1 \in C^\infty(\bar{D})$ such that $f_1 \rightarrow Ku$, $\tilde{\partial} f_1 \rightarrow \tilde{\partial} Ku$ pointwise and $|f_1|, |\tilde{\partial} f_1| \leq 1$ (as $Ku, \tilde{\partial} Ku \in C(\bar{D})$). Approximation in B_{k+1} yields that $\tilde{\partial} Ku + K\tilde{\partial} u = u$ for all $u \in B_{k+1}$, $k \geq 1$. Thus the complex (13) is exact in higher degrees.

Extend $K : C^\infty(\bar{D}) \rightarrow C(\partial D)$ to continuous maps $K : B_1 \rightarrow L^p(\partial D)$ and $K : B'_1 \rightarrow L^p(\partial D)$, which is possible by (6) and (7).

Define the $(1,0)$-vector field \mathcal{L} by the equation
\[
\mathcal{L} = \chi \sum \frac{|\partial r|^{-2} \partial r \partial}{\partial z_k \partial \bar{z}_k},
\]
where χ is equal to 1 in a neighbourhood of ∂D and 0 on the set where $\partial r = 0$. Suppose that $u \in C^\infty(\bar{D})$ and let $f = \tilde{\partial} u$. By integration by parts we have
\[
\int_{\partial D} uh = \int_D f \wedge h =: V(f, h)
\]
and
\[
\int_{\partial D} uh = \int_D f \wedge h = \int_D O(r) f \wedge h + \int_D r \mathcal{L}(f \wedge h) =: W(f, h)
\]
for all $h \in C^\infty_{m,m-1}(\bar{D})$ such that $\tilde{\partial} h = 0$. We extend V to elements f in B'_1 and W to elements in B_1. We say that the equation $\tilde{\partial} hu = f + f'$,
where \(u \in L^p(\partial D) \), \(f \in B_1 \) and \(f' \in B'_1 \), holds if and only if
\[
\int_{\partial D} uh = W(f, h) + V(f', h)
\]
for all \(h \in C^\infty_{m,m-1}(\bar{D}) \) such that \(\bar{\partial} h = 0 \).

Lemma 3.2. If \(f \in B_1 \), \(f' \in B'_1 \) and \(\bar{\partial} f + \bar{\partial} f' = 0 \) then \(u = K f + K f' \) solves the equation \(\bar{\partial} u = f + f' \). Moreover, if \(\varphi \in H^\infty(D) \) then \(\bar{\partial} (\varphi u) = T_\varphi f + T_\varphi f' \).

Proof. Suppose that \(f, f' \in C^\infty_0(\bar{D}) \). Since \(\bar{\partial} K(f + f') + K \bar{\partial}(f + f') = f + f' \), we have
\[
\int_{\partial D} (K f + K f') h = W(f, h) + V(f', h) - \int_D K(\bar{\partial} f + \bar{\partial} f') \wedge h
\]
for all \(h \in C^\infty_{m,m-1}(\bar{D}) \) such that \(\bar{\partial} h = 0 \). For fixed \(h \), we can estimate each term of the above equality by a constant times \(\|f\|_{B_1} + \|f'\|_{B'_1} \).

Thus approximation in \(B_1 \) and \(B'_1 \) yields that if \(f \in B_1 \) and \(f' \in B'_1 \) then
\[
\int_{\partial D} uh = W(f, h) + V(f', h) - \int_D K(\bar{\partial} f + \bar{\partial} f') \wedge h
\]
for all \(h \in C^\infty_{m,m-1}(\bar{D}) \) such that \(\bar{\partial} h = 0 \). Hence the equation \(\bar{\partial} h u = f + f' \) holds since we also have that \(\bar{\partial} f + \bar{\partial} f' = 0 \). Suppose that \(\varphi_k \in C^\infty(\bar{D}) \cap \mathcal{O}(D) \) are chosen such that \(\varphi_k \to \varphi \) in \(H^1(D) \). Replace \(h \) in (15) by \(\varphi_k h \) and approximate to get
\[
\int_{\partial D} \varphi (K f + K f') h = W(f, h\varphi) + V(f', h\varphi) - \int_D \varphi K(\bar{\partial} f + \bar{\partial} f') \wedge h
\]
for all \(h \in C^\infty_{m,m-1}(\bar{D}) \) such that \(\bar{\partial} h = 0 \), if \(f, f' \in C^\infty_0(\bar{D}) \). We estimate the terms to the right,
\[
|W(f, h\varphi)| \lesssim \int_D r^{3/2} |f| |\varphi| r^{-1} + \int_D r |\bar{\partial} f| |\varphi| r^{-1} + \int_D r |f| |\partial \varphi| r^{-1} \lesssim \|f\|_{B_1} \|\varphi\|_{H^p'}
\]
and
\[
|V(f', h\varphi)| \lesssim \int_D r^{1/2} |f'| |\varphi| r^{-1} \lesssim \|f'\|_{B'_1} \|\varphi\|_{H^p'}
\]
and
\[
\left| \int_D \varphi K(\bar{\partial} f + \bar{\partial} f') \wedge h \right| \lesssim \|r^{1/2} K(\bar{\partial} f + \bar{\partial} f')\|_{T_1} \|\varphi\|_{T_{2\infty}'} \lesssim \|\bar{\partial} f + \bar{\partial} f'\|_{B_2} \|\varphi\|_{H^p'} \lesssim \left(\|f\|_{B_1} + \|f'\|_{B'_1} \right) \|\varphi\|_{H^p'}
\]
for fixed h by (2), (4) and (5). Hence approximation in B_1 and B'_1 yields that

$$\int_{\partial D} u \varphi h = W(T_\varphi f, h) + V(T_\varphi f', h)$$

for all $f \in B_1, f' \in B'_1$ such that $\bar{\partial} f + \bar{\partial} f' = 0$ and $h \in C^\infty_{m,m-1}(\bar{D})$ such that $\bar{\partial} h = 0$. □

Next we prove that functions in B_0 have boundary values in $L^p(\partial D)$.

Lemma 3.3. There is a continuous and linear operator $u \mapsto u^*$ from B_0 to $L^p(\partial D)$ such that u^* is the restriction of u to ∂D if $u \in C^\infty(\bar{D})$ and $(T_f u)^* = f^* u^*$ if $f \in H^\infty(D)$.

Proof. Suppose that $u \in C^\infty(\bar{D})$. Then $\|u\|_{L^p(\partial D)} \leq \|u\|_{B_0}$ and hence the restriction operator can be extended to a continuous operator from B_0 to $L^p(\partial D)$. Suppose that $u \in B_0$ and $f \in H^\infty(D)$. Let $u_l \in C^\infty(\bar{D})$ and $f_k \in C^\infty(\bar{D}) \cap \mathcal{O}(D)$ be such that $u_l \to u$ in B_0 and $f_k \to f$ in $H^\infty(D)$ with f_k uniformly bounded. Then

$$\|f^* u^* - (T_f u)^*\|_{L^p(\partial D)} \leq \|f^* u_l^* - f^* u^*\|_{L^p(\partial D)} + \|f^* u_l^* - f_k^* u^*\|_{L^p(\partial D)} + \|(f_k u_l)^* - (f u_l)^*\|_{L^p(\partial D)} + \|(f u_l)^* - (T_f u)^*\|_{L^p(\partial D)} \to 0$$

if one first let $k \to \infty$ and then $l \to \infty$. □

Note that if $u \in B_0$ then

$$\int_{\partial D} u^* h = W(\bar{\partial} u, h)$$

for all $h \in C^\infty_{m,m-1}(\bar{D})$ such that $\bar{\partial} h = 0$ by approximation in B_0 and Lemma 3.3.

Proof of Theorem 1.1

We want to prove that the complex $K_\bullet(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ has vanishing homology groups of positive order and that

$$\sum_i (z_i - T_{g_i}) \mathcal{E}(\mathbb{C}^n, H^p)$$

is closed in $\mathcal{E}(\mathbb{C}^n, H^p)$.

Suppose that $u^k \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ and that $\delta_{z-g} u^k \to u_0$ in $\mathcal{E}(\mathbb{C}^n, H^p)$. By Lemma 3.1 there is a $u_1 \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ such that $i u_0 = \delta_{z-g} u_1$. Again by Lemma 3.1 we can recursively find $u_i \in K_i(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-1}))$ such that $\delta_{z-g} u_{i+1} = \bar{\partial} u_i$ for $i \geq 1$. Then we have that $\bar{\partial} u_{m+1} = 0$. Define $v_{m+1} \in K_{m+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{m-2}))$ by $v_{m+1} = K u_{m+1}$. Recursively define $v_i, i \geq 2$, by $v_i = K u_i - K \delta_{z-g} v_{i+1}$. Thus $v_i \in K_i(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-2}))$ if $i \geq 4$, $v_3 \in \Lambda^3 \mathcal{E}(\mathbb{C}^n, B'_1)$ and the equation $\bar{\partial} v_i = u_i - \delta_{z-g} v_{i+1}$ holds for $i \geq 3$. Furthermore
\(v_2 \in \Lambda^2 \mathcal{E}(\mathbb{C}^n, L^p(\partial D)) \) satisfies the equation \(\tilde{\partial}_b v_2 = u_2 - \delta_{z_{-g}} v_3 \) by Lemma 3.2.

Let \(u_1' = u_1' - \delta_{z_{-g}} v_2 \). By Lemma 3.2 we have that \(\tilde{\partial}_b \delta_{z_{-g}} v_2 = \delta_{z_{-T_g}} u_2 \) and thus

\[
\int_{\partial D} \delta_{z_{-g}} v_2 h = W(\delta_{z_{-T_g}} u_2, h)
\]

for all \(h \in C_{m,m-1}^\infty(\bar{D}) \) such that \(\tilde{\partial} h = 0 \). Since by equation (16)

\[
\int_{\partial D} u_1' h = W(\tilde{\partial} u_1, h)
\]

we have proved that

\[
\int_{\partial D} u_1' h = 0
\]

for all \(h \in C_{m,m-1}^\infty(\bar{D}) \) such that \(\tilde{\partial} h = 0 \). Thus \(U_1' \in K(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p)) \), where \(U_1' \) is the unique holomorphic extension of \(u_1' \). Since \(u_0 = \delta_{z_{-T_g}} U_1' \) by Lemma 3.3 we have proved that

\[
\sum_i (z_i - T_{g_i}) \mathcal{E}(\mathbb{C}^n, H^p)
\]

is closed in \(\mathcal{E}(\mathbb{C}^n, H^p) \).

Suppose that \(u_k \in K_k(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p)) \) is \(\delta_{z_{-T_g}} \) closed. Then there is a \(u_{k+1} \in K_{k+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0)) \) such that \(u_k = \delta_{z_{-T_g}} u_{k+1} \). Let \(u_{i+1} \in K_{i+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-k})) \) solve the equation \(\delta_{z_{-T_g}} u_{i+1} = \tilde{\partial} u_i \).

Then we have that \(\tilde{\partial} u_{m+k+1} = 0 \). Let \(v_{m+k+1} = K u_{m+k+1} \) and \(v_i = K u_i - K \delta_{z_{-T_g}} v_{i+1} \). Thus \(\tilde{\partial} v_i = u_i - \delta_{z_{-T_g}} v_{i+1} \) and \(\tilde{\partial} u_{k+2} = u_{k+2} - \delta_{z_{-T_g}} v_{k+3} \) since \(\tilde{\partial}(u_i - \delta_{z_{-T_g}} v_{i+1}) = 0 \). Define \(u_{k+1}' \) by the equation

\[
u_{k+1}' = u_{k+1}' - \delta_{z_{-T_g}} v_{k+2} \]

As in the case above we see that \(U_{k+1}' \) is a solution of the equation \(u_k = \delta_{z_{-T_g}} U_{k+1}' \), and hence the theorem is proved.

\[\square \]

We now prove the analogue of Theorem 1.1 with the Hardy space replaced by the Bergman space. In the case of when \(g \) has bounded derivative this is proved in Theorem 8.1.5 in [9].

Corollary 3.4. Suppose that \(D \) is a bounded strictly pseudoconvex domain in \(\mathbb{C}^n \) with \(C^\infty \) boundary and that \(g \in H^\infty(\bar{D})^n \). Then the tuple \(T_g \) of Toeplitz operators on the Bergman space \(\mathcal{O}L^p(D) \), \(1 \leq p < \infty \), satisfies property \((\beta) \) and Bishop’s property \((\beta) \).

Proof. Let \(\rho \) be a strictly plurisubharmonic defining function for \(D \) and let \(\tilde{D} = \{(v,w) \in \mathbb{C}^{m+1} : \rho(v) + |w|^2 < 0 \} \). Define the operators \(P : H^p(\bar{D}) \rightarrow \mathcal{O}L^p(D) \) and \(I : \mathcal{O}L^p(D) \rightarrow H^p(\bar{D}) \) by \(P f(v) = f(v,0) \) and \(I f(v,w) = f(v) \) respectively. The operator \(P \) is continuous by the Carleson-Hörmander inequality since the measure with mass uniformly
distributed on \(\tilde{D} \cap \{ w = 0 \} \) is a Carleson measure. The operator \(I \) is continuous since
\[
\int_{\partial \tilde{D}} |f(v)|^p \sigma(v, w) \sim \lim_{\varepsilon \to 0} \int_D \left(-\rho(v) - |w|^2 \right)^{\varepsilon-1} |f(v)|^p \sim \\
\lim_{\varepsilon \to 0} \int_D \left(-\rho(v) \right)^{\varepsilon} |f(v)|^p = \int_D |f(v)|^p ,
\]
where \(\sigma \) is the surface measure. Let \(\tilde{g}(v, w) = g(v) \). Then \(T_{\tilde{g}} \) has property \((\beta)_{\varepsilon} \) and since \(PI = id, T_{\tilde{g}} I = IT_{\tilde{g}} \) and \(PT_{\tilde{g}} = T_{\tilde{g}} P \) it is easy to see that \(T_{\tilde{g}} \) has property \((\beta)_{\varepsilon} \).

4. **Property \((\beta)_{\varepsilon} \) for Toeplitz Operators with \(H^\infty \)-Symbol on the Unit Disc**

In this section we will use the Euclidean norm. Let \(r(w) = 1 - |w|^2 \) and let \(D \) be the unit disc in \(\mathbb{C} \). Let \(B_0 \) be the Banach space of all functions \(u \in L^\infty(D) \) such that
\[
\| u \|_{B_0} = \| u \|_{L^\infty(D)} + \| ru \|_{L^\infty(D)} + \| r^2 \partial u \|_{T^\infty} + \| r^2 \partial \bar{u} \|_{T^\infty} < \infty.
\]
Since \(\| ru \|_{L^\infty(D)} < \infty \), \(B_0 \) consists of continuous functions on \(D \). We define \(B_1 \) as the Banach space of all locally integrable \((0, 1)\)-forms \(u \) such that
\[
\| u \|_{B_1} = \| ru \|_{L^\infty(D)} + \| r^2 \partial u \|_{T^\infty} + \| r^2 \partial \bar{u} \|_{T^\infty} < \infty.
\]

Suppose that \(u \in C^\infty(\overline{D}) \) and \(h \in C^\infty(\partial D) \). Then the Wolff trick (see the proof of Theorem 1.1) yields
\[
\int_{\partial D} uhdw = \int_D \tilde{\partial}(uP hdw) = \\
\int_D O(r) \tilde{\partial}(uP hdw) + \int_D r \mathcal{L} \tilde{\partial}(uP hdw) := S(u, h),
\]
where \(Ph \) is the Poisson integral of \(h \).

As in Section 3 we need to know that functions in \(B_0 \) has well defined boundary values.

Lemma 4.1. If \(u \in B_0 \) then there is a \(u^* \in L^\infty(\partial D) \) such that
\[
\int_{\partial D} u^* hdw = S(u, h)
\]
for all \(h \in L^2(\partial D) \) and \((fu)^* = f^*u^* \) if \(f \in H^\infty(D) \).

Proof. We have the estimate
\[
|S(u, h)| \lesssim \| u \|_{B_0} \| h \|_{L^2(\partial D)}.
\]
Hence there is a function \(u^* \in L^2(\partial D) \) such that
\[
\int_{\partial D} u^* \operatorname{hdw} = S(u, h)
\]
for all \(h \in L^2(\partial D) \). Suppose that \(h \in C^\infty(\partial D) \). Let \(u_t \) be the dilation
\(u_t(w) = u(tw) \). Since
\[
|S(u_t - u, h)| \lesssim \int_D |u_t - u| + \int_D r |d(u_t - u)|^2 + \int_D r |\partial \bar{\partial}(u_t - u)|
\]
for fixed \(h \) we have that
\[
\int_{\partial D} u^*_t \operatorname{hdw} \rightarrow \int_{\partial D} u^* \operatorname{hdw}
\]
as \(t \nearrow 1 \). Therefore \(\|u^*\|_{L^\infty(\partial D)} \leq \|u\|_{B_1} \) since \(u^*_t \) is uniformly bounded by \(\|u\|_{L^\infty(D)} \). Let \(f_s(w) = f(sw) \) be the dilation of \(f \). Then we have that
\[
\int_{\partial D} f^*_s u^*_t \operatorname{hdw} = \int_{\partial D} (f^*_s - f^*) u^*_t \operatorname{hdw} + \int_{\partial D} f^* u^*_t \operatorname{hdw} \rightarrow \int_{\partial D} f^* u^* \operatorname{hdw}
\]
as \(s, t \nearrow 1 \), by dominated convergence. Since we also have
\[
\int_{\partial D} (f u)^*_t \operatorname{hdw} \rightarrow \int_{\partial D} (f u)^* \operatorname{hdw}
\]
as \(t \nearrow 1 \) we see that \((f u)^* = f^* u^* \).

Let
\[
W(u, h) = \int_D O(r) u \wedge \operatorname{hdw} + \int_D r \mathcal{L}(u \wedge \operatorname{hdw})
\]
for \(u \in B_1 \) and \(h \in H^1 \), where \(O(r) \) is the same \(O(r) \) as in the definition of \(S(u, h) \).

Lemma 4.2. If \(f \in \mathcal{E}(\mathbb{C}^n, B_1) \) then there is a \(u \in \mathcal{E}(\mathbb{C}^n, L^\infty(\partial D)) \) such that \(\partial \bar{\partial} u = f \), that is
\[
\int_{\partial D} u(z) \operatorname{hdw} = W(f(z), h)
\]
for all \(h \in H^1(D) \) and \(z \in \mathbb{C}^n \).

Proof. Consider the bilinear map \(W : B_1 \times H^1 \rightarrow \mathbb{C} \). This map is continuous since we have the estimate
\[
|W(f, h)| \lesssim \|u\|_{B_1} \|h\|_{H^1},
\]
which is used in Wolff’s proof of the corona theorem. By the universal property for \(\pi \)-tensor products (see 41.3.1(1) in [13]) there is a corresponding linear and continuous map \(W_1 \) from \(B_1 \otimes_{\pi} H^1 \) to \(\mathbb{C} \). Since
\[
\mathcal{E}(\mathbb{C}^n, B_1) \equiv \mathcal{E}(\mathbb{C}^n) \otimes B_1 \equiv L(\mathcal{E}(\mathbb{C}^n), B_1)
\]
by Appendix 1 in [9], \(f \otimes \operatorname{id} \) is a continuous map \(\mathcal{E}(\mathbb{C}^n) \otimes H^1 \rightarrow B_1 \otimes_{\pi} H^1 \). Compose with the map \(W_1 \) to get a continuous functional on
$E'(\mathbb{C}^n) \otimes H^1$. The injection $E'(\mathbb{C}^n) \otimes H^1 \to E'(\mathbb{C}^n) \otimes L^1(\partial D)$ is a topological monomorphism, and hence we can extend with Hahn-Banach Theorem to a continuous functional on $E'(\mathbb{C}^n) \otimes L^1(\partial D)$. Since the dual of $E'(\mathbb{C}^n) \otimes L^1(\partial D)$ is isomorphic to $E(\mathbb{C}^n, L^\infty(\partial D))$ by Theorem A1.12 in [9] we have a $u \in E(\mathbb{C}^n, L^\infty(\partial D))$. If $h \in H^1$ then
\[
\int u(z)h\,dw = W(f(z), h)
\]
and thus u is a solution to the equation $\overline{\partial} u = f$ in the sense of this lemma.

Theorem 4.3. Let D be the unit disc in \mathbb{C} and suppose that $g \in H^\infty(D)^n$. Then the tuple T_g of Toeplitz operators on $H^\infty(D)$ satisfies property $(\beta)_\varepsilon$, and thus Bishop’s property (β).

Proof. The tuple T_g considered as operators on B_0 or B_1 has a $C^\infty(\mathbb{C}^n)$-functional calculus (the proof of this is similar to Lemma 3.1). Hence they satisfies property $(\beta)_\varepsilon$ by Proposition 6.4.13 in [9]. Consider the well-defined complex
\[
0 \to H^\infty \to B_0 \xrightarrow{\delta} B_1 \to 0.
\]
Suppose that $u^k \in \sum_i(z_i - T_{g_i})E(\mathbb{C}^n, H^\infty)$ and $u^k \to u_0$ in $E(\mathbb{C}^n, H^\infty)$. As T_g on B_0 has property $(\beta)_\varepsilon$ there is a $u_1 \in K_1(z - T_g, E(\mathbb{C}^n, B_0))$ such that $u_0 = \delta_{z - T_g}u_1$. Since T_g on B_1 has property $(\beta)_\varepsilon$, there is a $u_2 \in K_2(z - T_g, E(\mathbb{C}^n, B_1))$ such that $\delta_{z - T_g}u_2 = \overline{\partial} u_1$. By Lemma 4.2 there is a $v \in L^2 E(\mathbb{C}^n, L^\infty(\partial D))$ such that
\[
\int_{\partial D} v\,hdw = W(u_2, h)
\]
for all $h \in H^1(D)$. Therefore we have that
\[
\int_{\partial D} \delta_{z - g*}v\,hdw = W(\delta_{z - T_g}u_2, h)
\]
for all $h \in H^1(D)$. Define $u'_1 \in K_1(z - g^*, E(\mathbb{C}^n, L^\infty(\partial D)))$ by the equation $u'_1 = u_1^* - \delta_{z - g^*}v$. Then
\[
\int_{\partial D} u'_1\,hdw = 0
\]
for all $h \in H^1$ since
\[
\int_{\partial D} u'_1\,hdw = S(u_1, h) = W(\overline{\partial} u_1, h)
\]
by Lemma 4.1. Thus $U'_1 \in K_1(z - T_g, E(\mathbb{C}^n, H^\infty))$, where U'_1 is the holomorphic extension. Since $u_0 = \delta_{z - T_g}u'_1$ by Lemma 4.1 we have proved that $\delta_{z - T_g}K_1(z - g^*, E(\mathbb{C}^n, H^\infty))$ is closed.

Suppose that $u_k \in K_k(z - T_g, E(\mathbb{C}^n, H^\infty))$ is $\delta_{z - T_g}$-closed. Then there is a solution $u_{k+1} \in K_{k+1}(z - T_g, E(\mathbb{C}^n, B_0))$ to the equation $\delta_{z - T_g}u_{k+1} = u_k$ since T_g on B_0 has property $(\beta)_\varepsilon$. Continuing in exactly
the same way as above we see that we can replace u_{k+1} with $U'_{k+1} \in K_{k+1}(z - T_g, E(\mathbb{C}^n, H^\infty))$ such that $\delta_{z-T_g} U'_{k+1} = u_k$. Thus the theorem is proved.

REFERENCES

Department of Mathematics, Chalmers University of Technology and the University of Göteborg, SE-412 96 Göteborg, Sweden

E-mail address: sebsand@math.chalmers.se