PROPERTY $(\beta)_{\mathcal{E}}$ FOR TOEPLITZ OPERATORS WITH H^{∞} -SYMBOL

SEBASTIAN SANDBERG

ABSTRACT. Suppose that g is a tuple of bounded holomorphic functions on a strictly pseudoconvex domain D in \mathbb{C}^m with smooth boundary. Viewed as a tuple of operators on the Hardy space $H^p(D)$, $1 \leq p < \infty$, g is shown to have property $(\beta)_{\mathcal{E}}$ and therefore g possess Bishop's property (β) . In the case m=1 it is proved that the same result also holds when $p=\infty$.

1. Introduction

Suppose that X is a Banach space and that $a=(a_1,\ldots,a_n)$ is a commuting tuple of bounded linear operators on X. Let E be one of spaces X, $\mathcal{E}(\mathbb{C}^n,X)$ or $\mathcal{O}(U,X)$, where $U\subset\mathbb{C}^n$. Denote by $K_{\bullet}(z-a,E)$ the Koszul complex

$$0 \to \Lambda^n E \xrightarrow{\delta_{z-a}} \Lambda^{n-1} E \xrightarrow{\delta_{z-a}} \cdots \xrightarrow{\delta_{z-a}} \Lambda^0 E \to 0,$$

with boundary map

$$\delta_{z-a}(fs_I) = 2\pi i \sum_{k=1}^p (-1)^{k-1} (z_{i_k} - a_{i_k}) fs_{i_1} \wedge \dots \wedge \widehat{s}_{i_k} \wedge \dots \wedge s_{i_p},$$

where $I = (i_1, \ldots, i_p)$ and p is an integer. Let $H_{\bullet}(z - a, E)$ be the corresponding homology groups.

The Taylor spectrum of a, $\sigma(a)$, is defined as the set of all $z \in \mathbb{C}^n$ such that $K_{\bullet}(z-a,X)$ is not exact. If for all Stein open sets U in \mathbb{C}^n the natural quotient topology of $H_0(z-a,\mathcal{O}(U,X))$ is Hausdorff and $H_p(z-a,\mathcal{O}(U,X))=0$ for all p>0, then a is said to have Bishop's property (β) . It has property $(\beta)_{\mathcal{E}}$ if the natural quotient topology of $H_0(z-a,\mathcal{E}(\mathbb{C}^n,X))$ is Hausdorff and if $H_p(z-a,\mathcal{E}(\mathbb{C}^n,X))=0$ for all p>0.

By Theorem 6.2.4 in [9], the tuple a has Bishop's property (β) if and only if there exists a decomposable resolution, that is, if and only if there are Banach spaces X_i and decomposable tuples (see [9] for the definition) of operators a_i on X_i such that

$$0 \to X \xrightarrow{d} X_0 \xrightarrow{d} \cdots \xrightarrow{d} X_r \to 0$$

Date: February 9, 2001.

1991 Mathematics Subject Classification. 32A35, 47A11, 47A13.

Key words and phrases. Bishop's property (β) , Hardy space, H^p -corona problem.

is exact, $da = a_0 d$ and $da_i = a_{i+1} d$. Property $(\beta)_{\mathcal{E}}$ is equivalent to the existence of a resolution of Fréchet spaces with Mittag-Leffler inverse limit of generalized scalar tuples (that is tuples which admit a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus), see Theorem 6.4.15 in [9]. Property $(\beta)_{\mathcal{E}}$ implies Bishop's property (β) , see [9].

Suppose that D is a strictly pseudoconvex domain in \mathbb{C}^m with smooth boundary. We consider the tuple $T_g = (T_{g_1}, \ldots, T_{g_n}), g_k \in H^{\infty}(D)$, of operators on $H^p(D)$ defined by $T_{g_k}f = g_kf$, $f \in H^p(D)$. The main theorem of this paper is the following.

Theorem 1.1. Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^m with C^{∞} -boundary and that $g \in H^{\infty}(D)^n$. Then the tuple T_g of Toeplitz operators on $H^p(D)$, $1 \leq p < \infty$, satisfies property $(\beta)_{\mathcal{E}}$, and thus Bishop's property (β) .

In case g has bounded derivative this theorem has previously been proved in [14, 16, 17]. In case D is the unit disc in \mathbb{C} , Theorem 1.1 also holds when $p = \infty$; this is proved in Section 4. As a corollary to Theorem 1.1 we have that T_g on the Bergman space $\mathcal{O}L^p(D)$ has property $(\beta)_{\mathcal{E}}$, see Corollary 3.4.

Let us recall how one can prove that T_g on the Bergman space $\mathcal{O}L^2(D)$ has property $(\beta)_{\mathcal{E}}$ under the extra assumption that g has bounded derivative. Define the Banach spaces B_k as the spaces of locally integrable (0, k)-forms u such that

$$||u||_{B_k} := ||u||_{L^2(D)} + ||\bar{\partial}u||_{L^2(D)} < \infty.$$

Since g has bounded derivate we have the inequality

$$\|(\varphi \circ g)u\|_{B_k} \lesssim \sup_{z \in g(D)} \left(|\varphi(z)| + \left| \bar{\partial} \varphi(z) \right| \right) \|u\|_{B_k}$$

for all $\varphi \in C^{\infty}(\mathbb{C}^n)$. Hence $\varphi \mapsto T_{\varphi \circ g}$ is a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus, where $T_{\varphi \circ g}$ denotes multiplication by $\varphi \circ g$ on B_k . Since we have the resolution

$$0 \to \mathcal{O}L^2(D) \to B_0 \xrightarrow{\bar{\partial}} B_1 \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} B_m \to 0$$

by Hörmander's L^2 -estimate of the $\bar{\partial}$ equation, the tuple T_g on $\mathcal{O}L^2(D)$ has property $(\beta)_{\mathcal{E}}$ by the above mentioned Theorem 6.4.15 in [9].

To prove Theorem 1.1 we will construct a complex

$$(1) 0 \to H^p(D) \xrightarrow{i} B_0 \xrightarrow{\bar{\partial}} B_1 \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} B_m \to 0,$$

where B_k are Banach spaces of (0, k)-forms on D. The spaces B_k are defined in terms of tent norms. We prove that $\varphi \mapsto T_{\varphi \circ g}$ is a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus, where $T_{\varphi \circ g}$ denotes multiplication by $\varphi \circ g$ on B_k . If the complex (1) were exact the proof of Theorem 1.1 would be finished. As we can solve the $\bar{\partial}$ -equation with appropriate estimates we will be able to prove that T_g on H^p has property $(\beta)_{\mathcal{E}}$ anyway. More precisely (1) is exact at B_k , $k \geq 3$. If $f \in B_2$ and $\bar{\partial} f = 0$ then

there is a function u in another Banach space B'_1 such that $\bar{\partial}u = f$. Mutiplication by g is a bounded operator on B'_1 . If $f \in B_1$ and $f' \in B'_1$ such that $\bar{\partial}f + \bar{\partial}f' = 0$ then there is a solution $u \in L^p(\partial D)$ to the equation $\bar{\partial}_b u = f + f'$.

The construction of the complex (1) in the case $p < \infty$ is inspired by the construction in [5] and in the case $p = \infty$ and m = 1 it is inspired by Tom Wolff's proof of the corona theorem. Let us recall the proof of the H^p -corona theorem in the unit disc of \mathbb{C} . Suppose that $g = (g_1, \ldots, g_n) \in H^{\infty}(D)^n$, where D is the unit disc in \mathbb{C} , and that $0 \notin \overline{g(D)}$. Consider the complex (1); the definitions of the B_k -spaces can be found in the beginning of Section 3 and Section 4. Suppose that $f \in H^p(D)$. Then the equation $\delta_g u_1 = f$ has a solution in $K_1(g, B_0)$, namely $u_1 = \sum_k \overline{g}_k f s_k / |g|^2$. Hence $\delta_g \overline{\partial} u_1 = 0$ as δ_g and $\overline{\partial}$ anticommute, and we can solve the equation $\delta_g u_2 = \overline{\partial} u_1$ by defining $u_2 \in K_2(g, B_1)$ as $u_1 \wedge \overline{\partial} u_1$. Since u_2 satisfies the condition

$$\|(1-|z|) u_2\|_{T_2^p} + \|(1-|z|)^2 \partial u_2\|_{T_1^p} < \infty,$$

by a Wolff type estimate there is a solution v in $K_2(g, L^p(\partial D))$ to the equation $\bar{\partial}_b v = u_2$ (here T_2^p and T_1^p denote certain tent spaces). Let $u'_1 = u_1^* - \delta_g v \in K_1(g, L^p(\partial D))$, where u_1^* is the boundary values of u_1 . Since $\bar{\partial}_b u'_1 = 0$ there is a holomorphic extension U'_1 of u'_1 to D which satisfies the equation $\delta_g U'_1 = f$.

The above proof also yields that $\sigma(T_g) = \overline{g(D)}$; the exactness of higher order in the Koszul complex follows by similar resoning. That $\sigma(T_g) = \overline{g(D)}$ is proved in [5] for the case D strictly pseudoconvex and $p < \infty$. One main difference of the proof of that T_g has property $(\beta)_{\mathcal{E}}$ and the proof of that $\sigma(T_g) = \overline{g(D)}$ is the following. As a substitution of the explicit choices of u_1 and u_2 one uses the fact that T_g considered as an operator on B_k has property $(\beta)_{\mathcal{E}}$, which in turn follows from the fact that T_g on B_k has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

I would like to thank Mats Andersson, Jörg Eschmeier, Mihai Putinar and Roland Wolff for valuble discussions and comments on this paper.

2. Preliminaries

Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^m with C^{∞} -boundary given by a strictly plurisubharmonic defining function ρ . Let $r = -\rho$. All norms below are with respect to the metric

$$\Omega = ri\partial\bar{\partial}\log\left(1/r\right),\,$$

and we have

$$\left|f\right|^{2}\sim r^{2}\left|f\right|_{\beta}^{2}+r\left|f\wedge\partial r\right|_{\beta}^{2}+r\left|f\wedge\bar{\partial}r\right|_{\beta}^{2}+\left|f\wedge\partial r\wedge\bar{\partial}r\right|_{\beta}^{2},$$

where $\beta = i\partial \partial r$, which is equivalent to the Euclidean metric.

The Hardy space H^p is the Banach space of all holomorphic functions, f, on D such that

$$||f||_{H^p} = \sup_{\varepsilon>0} \int_{r(z)=\varepsilon} |f(z)|^p d\sigma(z) < \infty,$$

where σ is the surface measure. It is wellknown that a function u in $L^p(\partial D)$ is the boundary value of a function U in H^p if and only

$$\int_{\partial D} uh = 0$$

for all $h \in C_{n,n-1}^{\infty}(\bar{D})$ such that $\bar{\partial}h = 0$.

Let $d(\cdot, \cdot)$ be the Koranyi pseudometric on ∂D and let z' be the point on ∂D closest to $z \in D_{\varepsilon}$, where D_{ε} is a small enough neighbourhood of ∂D in D. For a point ζ on the boundary let

$$A_{\zeta} = \{ z \in D_{\varepsilon} : d(z', \zeta) < r(z) \} \cup (D \setminus D_{\varepsilon}) .$$

For a ball B defined by $B = \{z \in \partial D : d(z, \zeta) < t\}$ let, for small t,

$$\hat{B} = \{ z \in D_{\varepsilon} : d(z', \zeta) < t - r(z) \},$$

and for large t

$$\hat{B} = \{ z \in D_{\varepsilon} : d(z', \zeta) < t - r(z) \} \cup (D \setminus D_{\varepsilon}) .$$

A function f is in the tent space T_q^p , where $p < \infty$ and $q < \infty$, if

$$||f||_{T_q^p} := \left(\int_{\partial D} \left(\int_{z \in A_\zeta} |f(z)|^q r(z)^{-m-1} \right)^{p/q} d\sigma(\zeta) \right)^{1/p} < \infty.$$

The function f is in T^p_{∞} if f is continuous with limits along A_{ζ} at the boundary almost everywhere and such that

$$\|f\|_{T^p_\infty}:=\left(\int_{\partial D}\sup_{z\in A_\zeta}|f(z)|^p\,d\sigma(\zeta)\right)^{1/p}<\infty.$$

A function f is in T_q^{∞} if

$$||f||_{T_q^{\infty}} := \left\| \sup_{z \in B} \left(\frac{1}{|B|} \int_{z \in \hat{B}} |f(z)|^q r(z)^{-1} \right)^{1/q} \right\|_{L^{\infty}(\partial D)} < \infty.$$

Note that $f \in T_p^p$ if and only if $r^{-1/p}f \in L^p(D)$ by Fubini's theorem. From [8] we have the inequality

(2)
$$\int_{D} |fg| r^{-1} \lesssim ||f||_{T_{q}^{p}} ||g||_{T_{q'}^{p'}}$$

for $1 \leq p, q \leq \infty$, where p' and q' denote dual exponents. By [8] $T_{q'}^{p'}$, where $1 \leq p < \infty$ and $1 < q < \infty$, is the dual of T_q^p with respect to the

pairing

$$\langle f, g \rangle \to \int_D f g r^{-1}.$$

Suppose that $f \in T_{q_0}^p$, $g \in T_{q_1}^\infty$ and let $q = (q_0^{-1} + q_1^{-1})^{-1}$. Then for all $h \in T_{q'}^{p'}$ we have

$$\int_{D} |fgh| r^{-1} \lesssim \|fh\|_{T^{1}_{q'_{1}}} \|g\|_{T^{\infty}_{q'_{1}}} \leq \|f\|_{T^{p}_{q_{0}}} \|g\|_{T^{\infty}_{q'_{1}}} \|h\|_{T^{p'}_{q'}}$$

by (2) and Hölder's inequality. Thus by the duality for $T_{q'}^{p'}$ we get the inequality

(3)
$$||fg||_{T_q^p} \lesssim ||f||_{T_{q_0}^p} ||g||_{T_{q_1}^\infty}$$

for 1 < p and $1 < q < \infty$. Since the inequality (3) is equivalent to

$$||fg||_{T_{tq}^{tp}} \lesssim ||f||_{T_{tq_0}^{tp}} ||g||_{T_{tq_1}^{\infty}}$$

for $0 < t < \infty$, (3) holds if $0 < p, q_0, q_1$.

We will use the inequality (see [12])

(4)
$$||f||_{T_{\infty}^p} \lesssim ||f||_{H^p}, \quad p > 0$$

and (see e.g. [7] for $p < \infty$ and [3] for $p = \infty$)

(5)
$$||r^{1/2}\partial f||_{T_2^p} \lesssim ||f||_{H^p}, \quad p > 0.$$

Moreover, we use that $|\partial f| \lesssim r^{-1/2}$ if $f \in H^{\infty}_{-}$.

There is an integral operator $K: C^{\infty}_{0,q+1}(\bar{D}) \to C_{0,q}(\bar{D}), \ q \geq 0$, see [5], such that $\bar{\partial}Ku + K\bar{\partial}u = u, \ u \in C^{\infty}_{0,s}(\bar{D}), \ s \geq 1$,

(6)
$$||r^{\tau}Ku||_{T_1^p} \lesssim ||r^{\tau+1/2}u||_{T_1^p} \text{ and } ||Ku||_{L^p(\partial D)} \lesssim ||r^{1/2}u||_{T_1^p}$$

if $\tau > 0$ and $1 \le p < \infty$. Furthermore,

(7)
$$||Ku||_{L^p(\partial D)} \lesssim ||r^{1/2}u||_{T_2^p} + ||r\partial u||_{T_1^p}.$$

To see that the inequality (6) follows from [5], note that by the definition of $W^{1-1/p}$ in [1], $||ru||_{T_1^p} = ||u||_{W^{1-1/p}}$. By [4] the adjoint P of K satisfies

$$||P\psi||_{L^{\infty}(D)} \lesssim ||\psi||_{L^{\infty}(\partial D)}$$
 and $||r^{1/2}\mathcal{L}P\psi||_{L^{2}(D)} \lesssim ||\psi||_{L^{2}(\partial D)}$

(where \mathcal{L} is an arbitrary smooth (1,0)-vectorfield). The L^2 -result is proven by means of a T1-theorem of Christ and Journé. By [10] it now follows that

(8)
$$||P\psi||_{T_{\infty}^{p}} \lesssim ||\psi||_{L^{p}(\partial D)}, \quad p > 1,$$

and

(9)
$$||r\mathcal{L}P\psi||_{T_2^p} \lesssim ||\psi||_{L^p(\partial D)}, \quad p > 1.$$

The inequality (7) follows from (8) and (9).

In section 4 we use completed tensor products of locally convex Hausdorff spaces, see e.g. Appendix 1 in [9]. Suppose that E and F are locally convex Hausdorff spaces. We denote by L(E, F) the space of all continuous and linear maps from E to F. The topology π on $E \otimes F$ is defined as the finest locally convex topology such that the canonical bilinear map $E \times F \to E \otimes F$ is continuous. We denote by $E \otimes_{\pi} F$, the space $E \otimes F$ with the topology π and we denote the completion of $E \otimes_{\pi} F$ with $E \hat{\otimes}_{\pi} F$. There is another topology on $E \otimes F$, the topology ϵ ; in case E is nuclear this topology coincides with the topology π and we therefore omit the index π in this case. The Fréchet space $\mathcal{E}(\mathbb{C}^n)$ is nuclear and we have the isomorphism $\mathcal{E}(\mathbb{C}^n, E) \cong \mathcal{E}(\mathbb{C}^n) \hat{\otimes} E$.

3. Property $(\beta)_{\mathcal{E}}$ for Toeplitz operators with H^{∞} -symbol on H^p

First we need to define the sequence (1) and prove that there is a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus on each of the spaces B_k .

Define the norms $\|\cdot\|_{B_k}$, $k \geq 0$, by

on $C^{\infty}(\bar{D})$,

(11)
$$\|u\|_{B_1} = \|r^{1/2}u\|_{T_2^p} + \|rdu\|_{T_1^p}$$

on $C_{0.1}^{\infty}(\bar{D})$ and

(12)
$$\|u\|_{B_k} = \|r^{k/2}u\|_{T_1^p} + \|r^{k/2+1/2}\bar{\partial}u\|_{T_1^p}$$

on $C_{0,k}^{\infty}(\bar{D})$ for $k \geq 2$. Let B_k be the completion of $C_{0,k}^{\infty}(\bar{D})$ with respect to the norm $\|\cdot\|_{B_k}$. We also define B_1' as the completion of $C_{0,1}^{\infty}(\bar{D})$ with respect to the norm $\|\cdot\|_{B_1'}$, defined by

$$||u||_{B'_1} = ||r^{1/2}u||_{T^p_i} + ||r\bar{\partial}u||_{T^p_i}.$$

The injection $i: H^p \to B_0$ is well defined and continuous by (4) and (5). That $\bar{\partial}: B_k \to B_{k+1}, \ k \geq 0$ is continuous follows immediately from the definitions. Thus we have defined a complex

(13)
$$0 \to H^p(D) \xrightarrow{i} B_0 \xrightarrow{\bar{\partial}} B_1 \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} B_m \to 0.$$

Lemma 3.1. Suppose that $g \in H^{\infty}(D)^n$. Then one can define T_{g_i} : $B_k \to B_k$ by $T_{g_i}u = g_iu$, $1 \le i \le n$, for all $k \ge 0$. The tuple T_g on B_k , $k \ge 0$, has a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus and property $(\beta)_{\mathcal{E}}$.

Proof. That T_{g_i} can be defined on B_k follows from the calculation below (let $\varphi(z) = z_i$ below). We begin with the case k = 0. Suppose that $\varphi \in C^{\infty}(\mathbb{C}^n)$ and $u \in C^{\infty}(\bar{D})$. From (3) we have

$$\left\|r^{1/2}u\partial g\right\|_{T_2^p} \lesssim \left\|u\right\|_{T_\infty^p} \left\|r^{1/2}\partial g\right\|_{T_2^\infty},$$

$$\left\|r\left|du\right|\left|\partial g\right|\right\|_{T_{1}^{p}}\lesssim \left\|r^{1/2}du\right\|_{T_{2}^{p}}\left\|r^{1/2}\partial g\right\|_{T_{2}^{\infty}}$$

and

$$||ru|\partial g|^2||_{T_1^p} \lesssim ||u||_{T_\infty^p} ||r|\partial g|^2||_{T_1^\infty}.$$

Since $||r^{1/2}\partial g||_{T_2^{\infty}} < \infty$ by the inequality (5) we thus get

$$\|(\varphi \circ g)u\|_{B_0} \le \sup_{z \in g(D)} |\varphi(z)| \|u\|_{B_0} + \|r^{1/2}d(\varphi \circ g)u\|_{T_2^p} +$$

$$\left\|r\bar{\partial}(\varphi\circ g)\wedge\partial u\right\|_{T_1^p}+\left\|r\partial(\varphi\circ g)\wedge\bar{\partial} u\right\|_{T_1^p}+\left\|r\partial\bar{\partial}(\varphi\circ g)u\right\|_{T_1^p}\lesssim$$

$$\sup_{z \in g(D)} \left(\left| \varphi(z) \right| + \left| D\varphi(z) \right| + \left| D^2 \varphi(z) \right| \right) \left\| u \right\|_{B_0},$$

where $D\varphi$ and $D^2\varphi$ denotes all derivates of φ of order 1 and 2 respectively. Note that $(\varphi \circ g)u \notin C^{\infty}(\bar{D})$ in general. Let $g_l \in C^{\infty}(\bar{D})^n \cap \mathcal{O}(D)^n$ be such that $g_l \to g$ in $H^p(D)^n$ with g_l uniformly bounded as $l \to \infty$ and suppose that u is fixed. We have the equalities

$$d(\varphi \circ g_l - \varphi \circ g) = \sum_i \varphi_i \circ g_l \partial g_l^i - \varphi_i \circ g \partial g^i + \varphi_{\bar{i}} \circ g_l \overline{\partial g_l^i} - \varphi_{\bar{i}} \circ g \overline{\partial g^i}$$

and

$$\partial \bar{\partial} (\varphi \circ g_l - \varphi \circ g) = \sum_{i,j} \varphi_{\bar{i}j} \circ g_l \partial g_l^j \wedge \overline{\partial g_l^i} - \varphi_{\bar{i}j} \circ g \partial g^j \wedge \overline{\partial g^i},$$

where the index in φ_i denotes partial derivate and the upper index in g_l^i and g^i denotes i:th component. Hence we get

$$|d(\varphi \circ g_l - \varphi \circ g)| \le |D\varphi \circ g_l| |\partial g_l - \partial g| + |D\varphi \circ g_l - D\varphi \circ g| |\partial g|,$$

and

$$\left| \partial \bar{\partial} \left(\varphi \circ g_l - \varphi \circ g \right) \right| \le \left| D^2 \varphi \circ g_l \right| \left| \partial g_l - \partial g \right| \left(\left| \partial g_l \right| + \left| \partial g \right| \right) + \left| D^2 \varphi \circ g_l - D^2 \varphi \circ g \right| \left| \partial g \right|^2.$$

By (4) we have

$$\|(\varphi \circ g_l - \varphi \circ g) u\|_{T^p_{\infty}} + \|r^{1/2} (\varphi \circ g_l - \varphi \circ g) du\|_{T^p_{2}}$$

$$\|r (\varphi \circ g_l - \varphi \circ g) \partial \bar{\partial} u\|_{T^p_{1}} \lesssim \|\varphi \circ g_l - \varphi \circ g\|_{T^p_{\infty}} \lesssim \|g_l - g\|_{T^p_{\infty}} \lesssim$$

$$\|g_l - g\|_{H^p}.$$

We also have that

$$\begin{aligned} \left\| r^{1/2} d \left(\varphi \circ g_l - \varphi \circ g \right) u \right\|_{T_2^p} + \left\| r \left| d \left(\varphi \circ g_l - \varphi \circ g \right) \right| \left| du \right| \right\|_{T_1^p} &\lesssim \\ \left\| r^{1/2} d \left(\varphi \circ g_l - \varphi \circ g \right) \right\|_{T_2^p} &\lesssim \left\| r^{1/2} \left| D\varphi \circ g_l \right| \left| \partial g_l - \partial g \right| \right\|_{T_2^p} + \\ \left\| r^{1/2} \left| D\varphi \circ g_l - D\varphi \circ g \right| \left| \partial g \right| \right\|_{T_2^p} &\lesssim \left\| g_l - g \right\|_{H^p} \end{aligned}$$

by (3),(4) and (5). Furthermore,

$$\left\|r\partial\bar{\partial}\left(\varphi\circ g_{l}-\varphi\circ g\right)u\right\|_{T_{l}^{p}}\lesssim\left\|r\left|D^{2}\varphi\circ g_{l}\right|\left|\partial g_{l}-\partial g\right|\left(\left|\partial g_{l}\right|+\left|\partial g\right|\right)\right\|_{T_{l}^{p}}+$$

$$\left\| r \left| D^2 \varphi \circ g_l - D^2 \varphi \circ g \right| \left| \partial g \right|^2 \right\|_{T_l^p} \lesssim \|g_l - g\|_{H^p}$$

by (3),(4) and (5). Thus

$$\|(\varphi \circ g_l - \varphi \circ g) u\|_{B_0} \to 0$$

as $l \to \infty$ and therefore we have that $(\varphi \circ g)u$ is in the completion of $C^{\infty}(\bar{D})$ with respect to the norm $\|\cdot\|_{B_0}$. We extend the map

$$u \mapsto (\varphi \circ g)u : C^{\infty}(\bar{D}) \to B_0$$

to a continuous map $\varphi(T_g): B_0 \to B_0$, bounded by a constant times

$$\sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)| + |D^2\varphi(z)|).$$

Hence T_g on B_0 has a continuous $C^{\infty}\left(\mathbb{C}^n\right)$ -functional calculus.

Next we consider the case k=1. Suppose that $\varphi \in C^{\infty}(\mathbb{C}^n)$ and $u \in C^{\infty}_{0,1}(\bar{D})$. From (3) and (5) we have the inequality

$$\left\|r\left|\partial g\right|\left|u\right|\right\|_{T^p_1}\lesssim \left\|r^{1/2}\partial g\right\|_{T^\infty_2}\left\|r^{1/2}u\right\|_{T^p_2}\lesssim \left\|r^{1/2}u\right\|_{T^p_2}.$$

Hence we get

$$\|(\varphi\circ g)u\|_{B_1}\leq \sup_{z\in g(D)}|\varphi(z)|\,\|u\|_{B_1}+\|rd(\varphi\circ g)\wedge u\|_{T_1^p}\lesssim$$

$$\sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)|) \|u\|_{B_1}.$$

As in the case k=0 we prove that $(\varphi \circ g)u$ is in the completion of $C_{0,1}^{\infty}(\bar{D})$. When we extend the map

$$u \mapsto (\varphi \circ g)u : C^{\infty}(\bar{D}) \to B_1$$

by continuity to a map $\varphi(T_g): B_1 \to B_1$ bounded by

$$\sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)|)$$

and hence we have proved that T_g on B_1 has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

In case $k \geq 2$ we suppose that $\varphi \in C^{\infty}(\mathbb{C}^n)$ and $u \in C^{\infty}_{0,k}(\bar{D})$. Since $|\partial g| \lesssim r^{-1/2}$ we have

$$\|(\varphi\circ g)u\|_{B_k}\leq \sup_{z\in g(D)}|\varphi(z)|\,\|u\|_{B_k}+\big\|r^{k/2+1/2}\bar{\partial}(\varphi\circ g)\wedge u\big\|_{T^p_1}\lesssim$$

$$\sup_{z \in g(D)} \left(\left| \varphi(z) \right| + \left| D\varphi(z) \right| \right) \left\| u \right\|_{B_k}.$$

As in the case k = 0 it follows that T_g on B_k , $k \geq 2$, has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

That each of the tuples T_g has property $(\beta)_{\mathcal{E}}$ now follows from Proposition 6.4.13 in [9].

We can extend the integral operator $K: C^{\infty}_{0,k+1}(\bar{D}) \to C_{0,k}(\bar{D}), k \geq 1$, to a continuous operator $K: B_{k+1} \to B_k, k \geq 2$, and a continuous operator $K: B_2 \to B'_1$. This because

(14)
$$||r^{k/2}Ku||_{T_1^p} \lesssim ||r^{k/2+1/2}u||_{T_1^p} \leq ||u||_{B_{k+1}}$$

and

$$\left\| r^{k/2+1/2} \bar{\partial} K u \right\|_{T^p_1} = \left\| r^{k/2+1/2} (u - K \bar{\partial} u) \right\|_{T^p_1} \lesssim \left\| u \right\|_{B_{k+1}}$$

for all $u \in C^{\infty}_{0,k+1}(\bar{D})$ by (6), (12) and (14). Also observe that Ku is in the completion of $C^{\infty}_{0,k}(\bar{D})$ under the norm $\|\cdot\|_{B_k}$ (or $\|\cdot\|_{B'_1}$) by dominated convergence and the fact that one can find $f_l \in C^{\infty}_{0,k}(\bar{D})$ such that $f_l \to Ku, \bar{\partial} f_l \to \bar{\partial} Ku$ pointwise and $|f_l|, |\bar{\partial} f_l| \lesssim 1$ (as $Ku, \bar{\partial} Ku \in C(\bar{D})$). Approximation in B_{k+1} yields that $\bar{\partial} Ku + K\bar{\partial} u = u$ for all $u \in B_{k+1}, k \geq 1$. Thus the complex (13) is exact in higher degrees.

Extend $K: C_{0,1}^{\infty}(\bar{D}) \to C(\partial D)$ to continuous maps $K: B_1 \to L^p(\partial D)$ and $K: B'_1 \to L^p(\partial D)$, which is possible by (6) and (7). Define the (1,0)-vector field \mathcal{L} by the equation

$$\mathcal{L} = \chi \sum \left| \partial r \right|^{-2} \frac{\partial r}{\partial \bar{z}_k} \frac{\partial}{\partial z_k},$$

where χ is equal to 1 in a neighbourhood of ∂D and 0 on the set where $\partial r = 0$. Suppose that $u \in C^{\infty}(\bar{D})$ and let $f = \bar{\partial}u$. By integration by parts we have

$$\int_{\partial D} uh = \int_{D} f \wedge h =: V(f, h)$$

and

$$\int_{\partial D} uh = \int_{D} f \wedge h = \int_{D} O(r)f \wedge h + \int_{D} r\mathcal{L}(f \wedge h) =: W(f, h)$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$. We extend V to elements f in B'_1 and W to elements in B_1 . We say that the equation $\bar{\partial}_b u = f + f'$,

where $u \in L^p(\partial D)$, $f \in B_1$ and $f' \in B'_1$, holds if and only if

$$\int_{\partial D} uh = W(f, h) + V(f', h)$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$.

Lemma 3.2. If $f \in B_1$, $f' \in B'_1$ and $\bar{\partial} f + \bar{\partial} f' = 0$ then u = Kf + Kf' solves the equation $\bar{\partial}_b u = f + f'$. Moreover, if $\varphi \in H^{\infty}(D)$ then $\bar{\partial}_b(\varphi u) = T_{\varphi}f + T_{\varphi}f'$.

Proof. Suppose that $f, f' \in C_{0,1}^{\infty}(\bar{D})$. Since $\bar{\partial}K(f+f') + K\bar{\partial}(f+f') = f + f'$ we have

(15)
$$\int_{\partial D} (Kf + Kf')h = W(f, h) + V(f', h) - \int_{D} K(\bar{\partial}f + \bar{\partial}f') \wedge h$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$. For fixed h, we can estimate each term of the above equality by a constant times $||f||_{B_1} + ||f'||_{B_1'}$. Thus approximation in B_1 and B_1' yields that if $f \in B_1$ and $f' \in B_1'$ then

$$\int_{\partial D} uh = W(f, h) + V(f', h) - \int_{D} K(\bar{\partial}f + \bar{\partial}f') \wedge h$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$. Hence the equation $\bar{\partial}_b u = f + f'$ holds since we also have that $\bar{\partial}f + \bar{\partial}f' = 0$. Suppose that $\varphi_k \in C^{\infty}(\bar{D}) \cap \mathcal{O}(D)$ are chosen such that $\varphi_k \to \varphi$ in $H^1(D)$. Replace h in (15) by $\varphi_k h$ and approximate to get

$$\int_{\partial D} \varphi \left(Kf + Kf' \right) h = W(f, h\varphi) + V(f', h\varphi) - \int_{D} \varphi K(\bar{\partial}f + \bar{\partial}f') \wedge h$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$, if $f, f' \in C^{\infty}_{0,1}(\bar{D})$. We estimate the terms to the right,

$$|W(f,h\varphi)| \lesssim \int_{D} r^{3/2} |f| |\varphi| r^{-1} + \int_{D} r |\partial f| |\varphi| r^{-1} + \int_{D} r |f| |\partial \varphi| r^{-1} \lesssim$$

$$||f||_{B_1} ||\varphi||_{H^{p'}},$$

$$|V(f', h\varphi)| \lesssim \int_{D} r^{1/2} |f'| |\varphi| r^{-1} \lesssim ||f'||_{B'_{1}} ||\varphi||_{H^{p'}}$$

and

$$\left| \int_{D} \varphi K(\bar{\partial} f + \bar{\partial} f') \wedge h \right| \lesssim \left\| r^{1/2} K \left(\bar{\partial} f + \bar{\partial} f' \right) \right\|_{T_{1}^{p}} \left\| \varphi \right\|_{T_{\infty}^{p'}} \lesssim$$

$$\|\bar{\partial}f + \bar{\partial}f'\|_{B_2} \|\varphi\|_{H^{p'}} \lesssim (\|f\|_{B_1} + \|f'\|_{B_1'}) \|\varphi\|_{H^{p'}}$$

for fixed h by (2), (4) and (5). Hence approximation in B_1 and B'_1 yields that

$$\int_{\partial D} u\varphi h = W(T_{\varphi}f, h) + V(T_{\varphi}f', h)$$

for all $f \in B_1$, $f' \in B'_1$ such that $\bar{\partial} f + \bar{\partial} f' = 0$ and $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial} h = 0$.

Next we prove that functions in B_0 has boundary values in $L^p(\partial D)$.

Lemma 3.3. There is a continuous and linear operator $u \mapsto u^*$ from B_0 to $L^p(\partial D)$ such that u^* is the restriction of u to ∂D if $u \in C^{\infty}(\bar{D})$ and $(T_f u)^* = f^* u^*$ if $f \in H^{\infty}(D)$.

Proof. Suppose that $u \in C^{\infty}(\bar{D})$. Then $||u||_{L^p(\partial D)} \leq ||u||_{B_0}$ and hence the restriction operator can be extended to a continuous operator from B_0 to $L^p(\partial D)$. Suppose that $u \in B_0$ and $f \in H^{\infty}(D)$. Let $u_l \in C^{\infty}(\bar{D})$ and $f_k \in C^{\infty}(\bar{D}) \cap \mathcal{O}(D)$ be such that $u_l \to u$ in B_0 and $f_k \to f$ in $H^p(D)$ with f_k uniformily bounded. Then

$$||f^*u^* - (T_fu)^*||_{L^p(\partial D)} \lesssim ||f^*u^* - f^*u_l^*||_{L^p(\partial D)} + ||f^*u_l^* - f_k^*u_l^*||_{L^p(\partial D)} +$$

$$\|(f_k u_l)^* - (f u_l)^*\|_{L^p(\partial D)} + \|(f u_l)^* - (T_f u)^*\|_{L^p(\partial D)} \to 0$$

if one first let $k \to \infty$ and then $l \to \infty$.

Note that if $u \in B_0$ then

(16)
$$\int_{\partial D} u^* h = W(\bar{\partial} u, h)$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$ by approximation in B_0 and Lemma 3.3.

Proof of Theorem 1.1

We want to prove that the complex K_{\bullet} $(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ has vanishing homology groups of positive order and that

$$\sum_{i} (z_i - T_{g_i}) \mathcal{E} (\mathbb{C}^n, H^p)$$

is closed in $\mathcal{E}\left(\mathbb{C}^{n},H^{p}\right)$.

Suppose that $u^k \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ and that $\delta_{z-g}u^k \to u_0$ in $\mathcal{E}(\mathbb{C}^n, H^p)$. By Lemma 3.1 there is a $u_1 \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ such that $iu_0 = \delta_{z-T_g}u_1$. Again by Lemma 3.1 we can recursively find $u_i \in K_i(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-1}))$ such that $\delta_{z-T_g}u_{i+1} = \bar{\partial}u_i$ for $i \geq 1$. Then we have that $\bar{\partial}u_{m+1} = 0$. Define $v_{m+1} \in K_{m+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{m-2}))$ by $v_{m+1} = Ku_{m+1}$. Recursively define $v_i, i \geq 2$, by $v_i = Ku_i - K\delta_{z-T_g}v_{i+1}$. Thus $v_i \in K_i(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-2}))$ if $i \geq 4$, $v_3 \in \Lambda^3 \mathcal{E}(\mathbb{C}^n, B_1')$ and the equation $\bar{\partial}v_i = u_i - \delta_{z-T_g}v_{i+1}$ holds for $i \geq 3$. Furthermore

 $v_2 \in \Lambda^2 \mathcal{E}(\mathbb{C}^n, L^p(\partial D))$ satisfies the equation $\bar{\partial}_b v_2 = u_2 - \delta_{z-T_g} v_3$ by Lemma 3.2.

Let $u_1' = u_1^* - \delta_{z-g^*}v_2$. By Lemma 3.2 we have that $\bar{\partial}_b \delta_{z-g^*}v_2 = \delta_{z-T_g}u_2$ and thus

$$\int_{\partial D} \delta_{z-g^*} v_2 h = W(\delta_{z-T_g} u_2, h)$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$. Since by equation (16)

$$\int_{\partial D} u_1^* h = W(\bar{\partial} u_1, h)$$

we have proved that

$$\int_{\partial D} u_1' h = 0$$

for all $h \in C^{\infty}_{m,m-1}(\bar{D})$ such that $\bar{\partial}h = 0$. Thus $U'_1 \in K(z-T_g, \mathcal{E}(\mathbb{C}^n, H^p))$, where U'_1 is the unique holomorphic extension of u'_1 . Since $u_0 = \delta_{z-T_g}U'_1$ by Lemma 3.3 we have proved that

$$\sum_{i} (z_i - T_{g_i}) \mathcal{E} (\mathbb{C}^n, H^p)$$

is closed in $\mathcal{E}(\mathbb{C}^n, H^p)$.

Suppose that $u_k \in K_k(z-T_g, \mathcal{E}\left(\mathbb{C}^n, H^p\right))$ is δ_{z-T_g} -closed. Then there is a $u_{k+1} \in K_{k+1}(z-T_g, \mathcal{E}\left(\mathbb{C}^n, B_0\right))$ such that $u_k = \delta_{z-T_g}u_{k+1}$. Let $u_{i+1} \in K_{i+1}\left(z-T_g, \mathcal{E}\left(\mathbb{C}^n, B_{i-k}\right)\right)$ solve the equation $\delta_{z-T_g}u_{i+1} = \bar{\partial}u_i$. Then we have that $\bar{\partial}u_{m+k+1} = 0$. Let $v_{m+k+1} = Ku_{m+k+1}$ and $v_i = Ku_i - K\delta_{z-T_g}v_{i+1}$. Thus $\bar{\partial}v_i = u_i - \delta_{z-T_g}v_{i+1}$ and $\bar{\partial}_b v_{k+2} = u_{k+2} - \delta_{z-T_g}v_{k+3}$ since $\bar{\partial}\left(u_i - \delta_{z-T_g}v_{i+1}\right) = 0$. Define u'_{k+1} by the equation $u'_{k+1} = u^*_{k+1} - \delta_{z-T_g}v_{k+2}$. As in the case above we see that U'_{k+1} is a solution of the equation $u_k = \delta_{z-T_g}U'_{k+1}$, and hence the theorem is proved.

We now prove the analogue of Theorem 1.1 with the Hardy space replaced by the Bergman space. In the case of when g has bounded derivate this is proved in Theorem 8.1.5 in [9].

Corollary 3.4. Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^m with C^{∞} -boundary and that $g \in H^{\infty}(D)^n$. Then the tuple T_g of Toeplitz operators on the Bergman space $\mathcal{O}L^p(D)$, $1 \leq p < \infty$, satisfies property $(\beta)_{\mathcal{E}}$ and Bishop's property (β) .

Proof. Let ρ be a strictly plurisubharmonic defining function for D and let $\tilde{D} = \{(v, w) \in \mathbb{C}^{m+1} : \rho(v) + |w|^2 < 0\}$. Define the operators $P: H^p(\tilde{D}) \to \mathcal{O}L^p(D)$ and $I: \mathcal{O}L^p(D) \to H^p(\tilde{D})$ by Pf(v) = f(v, 0) and If(v, w) = f(v) respectively. The operator P is continuous by the Carleson-Hörmander inequality since the measure with mass uniformly

distributed on $\tilde{D} \cap \{w=0\}$ is a Carleson measure. The operator I is continuous since

$$\int_{\partial \tilde{D}} \left| f(v) \right|^p \sigma(v,w) \sim \lim_{\varepsilon \to 0} \varepsilon \int_{\tilde{D}} \left(-\rho(v) - |w|^2 \right)^{\varepsilon - 1} \left| f(v) \right|^p \sim$$

$$\lim_{\varepsilon \to 0} \int_{D} \left(-\rho(v) \right)^{\varepsilon} |f(v)|^{p} = \int_{D} |f(v)|^{p},$$

where σ is the surface measure. Let $\tilde{g}(v,w)=g(v)$. Then $T_{\tilde{g}}$ has property $(\beta)_{\mathcal{E}}$ and since $PI=id, T_{\tilde{g}}I=IT_g$ and $PT_{\tilde{g}}=T_gP$ it is easy to see that T_g has property $(\beta)_{\mathcal{E}}$.

4. Property $(\beta)_{\mathcal{E}}$ for Toeplitz operators with H^{∞} -symbol on the unit disc

In this section we will use the Euclidean norm. Let $r(w) = 1 - |w|^2$ and let D be the unit disc in \mathbb{C} . Let B_0 be the Banach space of all functions $u \in L^{\infty}(D)$ such that

$$||u||_{B_0} = ||u||_{L^{\infty}(D)} + ||rdu||_{L^{\infty}(D)} + ||rdu||_{T_2^{\infty}} + ||r^2\partial \bar{\partial} u||_{T_1^{\infty}} < \infty.$$

Since $||rdu||_{L^{\infty}(D)} < \infty$, B_0 consists of continuous functions on D. We define B_1 as the Banach space of all locally integrable (0,1)-forms u such that

$$||u||_{B_1} = ||ru||_{L^{\infty}(D)} + ||ru||_{T_2^{\infty}} + ||r^2 \partial u||_{T_1^{\infty}} < \infty.$$

Suppose that $u \in C^{\infty}(\bar{D})$ and $h \in C^{\infty}(\partial D)$. Then the Wolff trick (see the proof of Theorem 1.1) yields

$$\int_{\partial D} uhdw = \int_{D} \bar{\partial}(uPhdw) =$$

$$\int_{D} O(r)\bar{\partial}(uPhdw) + \int_{D} r\mathcal{L}\bar{\partial}(uPhdw) := S(u,h),$$

where Ph is the Poisson integral of h.

As in Section 3 we need to know that functions in B_0 has well defined boundary values.

Lemma 4.1. If $u \in B_0$ then there is a $u^* \in L^{\infty}(\partial D)$ such that

$$\int_{\partial D} u^* h dw = S(u, h)$$

for all $h \in L^2(\partial D)$ and $(fu)^* = f^*u^*$ if $f \in H^{\infty}(D)$.

Proof. We have the estimate

$$|S(u,h)| \lesssim ||u||_{B_0} ||h||_{L^2(\partial D)}.$$

Hence there is a function $u^* \in L^2(\partial D)$ such that

$$\int_{\partial D} u^* h dw = S(u, h)$$

for all $h \in L^2(\partial D)$. Suppose that $h \in C^{\infty}(\partial D)$. Let u_t be the dilation $u_t(w) = u(tw)$. Since

$$|S(u_t - u, h)| \lesssim \int_D |u_t - u| + \int_D r |d(u_t - u)|^2 + \int_D r |\partial \bar{\partial}(u_t - u)|$$

for fixed h we have that

$$\int_{\partial D} u_t^* h dw \to \int_{\partial D} u^* h dw$$

as $t \nearrow 1$. Therefore $||u^*||_{L^{\infty}(\partial D)} \le ||u||_{B_0}$ since u_t^* is uniformly bounded by $||u||_{L^{\infty}(D)}$. Let $f_s(w) = f(sw)$ be the dilation of f. Then we have that

$$\int_{\partial D} f_s^* u_t^* h dw = \int_{\partial D} (f_s^* - f^*) u_t^* h dw + \int_{\partial D} f^* u_t^* h dw \rightarrow \int_{\partial D} f^* u^* h dw$$

as $s, t \nearrow 1$, by dominated convergence. Since we also have

$$\int_{\partial D} (fu)_t^* h dw \to \int_{\partial D} (fu)^* h dw$$

as $t \nearrow 1$ we see that $(fu)^* = f^*u^*$.

Let

$$W(u,h) = \int_{D} O(r)u \wedge hdw + \int_{D} r\mathcal{L}(u \wedge hdw)$$

for $u \in B_1$ and $h \in H^1$, where O(r) is the same O(r) as in the definition of S(u, h).

Lemma 4.2. If $f \in \mathcal{E}(\mathbb{C}^n, B_1)$ then there is a $u \in \mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D))$ such that $\bar{\partial}_b u = f$, that is

$$\int_{\partial D} u(z)hdw = W(f(z), h)$$

for all $h \in H^1(D)$ and $z \in \mathbb{C}^n$.

Proof. Consider the bilinear map $W: B_1 \times H^1 \to \mathbb{C}$. This map is continuous since we have the estimate

$$|W(f,h)| \lesssim ||u||_{B_1} ||h||_{H^1},$$

which is used in Wolff's proof of the corona theorem. By the universal property for π -tensor products (see 41.3.(1) in [13]) there is a corresponding linear and continuous map W_1 from $B_1 \hat{\otimes}_{\pi} H^1$ to \mathbb{C} . Since

$$\mathcal{E}(\mathbb{C}^n, B_1) \cong \mathcal{E}(\mathbb{C}^n) \hat{\otimes} B_1 \cong L(\mathcal{E}'(\mathbb{C}^n), B_1)$$

by Appendix 1 in [9], $f \otimes id$ is a continuous map $\mathcal{E}'(\mathbb{C}^n) \hat{\otimes} H^1 \to B_1 \hat{\otimes}_{\pi} H^1$. Compose with the map W_1 to get a continuous functional on

 $\mathcal{E}'(\mathbb{C}^n)\hat{\otimes}H^1$. The injection $\mathcal{E}'(\mathbb{C}^n)\hat{\otimes}H^1\to \mathcal{E}'(\mathbb{C}^n)\hat{\otimes}L^1(\partial D)$ is a topological monomorphism, and hence we can extend with Hahn-Banach Theorem to a continuous functional on $\mathcal{E}'(\mathbb{C}^n)\hat{\otimes}L^1(\partial D)$. Since the dual of $\mathcal{E}'(\mathbb{C}^n)\hat{\otimes}L^1(\partial D)$ is isomorphic to $\mathcal{E}(\mathbb{C}^n,L^\infty(\partial D))$ by Theorem A1.12 in [9] we have a $u\in\mathcal{E}(\mathbb{C}^n,L^\infty(\partial D))$. If $h\in H^1$ then

$$\int u(z)hdw = W(f(z),h)$$

and thus u is a solution to the equation $\bar{\partial}_b u = f$ in the sense of this lemma.

Theorem 4.3. Let D be the unit disc in \mathbb{C} and suppose that $g \in H^{\infty}(D)^n$. Then the tuple T_g of Toeplitz operators on $H^{\infty}(D)$ satisfies property $(\beta)_{\mathcal{E}}$, and thus Bishop's property (β) .

Proof. The tuple T_g considered as operators on B_0 or B_1 has a $C^{\infty}(\mathbb{C}^n)$ functional calculus (the proof of this is similar to Lemma 3.1). Hence
they satisfies property $(\beta)_{\mathcal{E}}$ by Proposition 6.4.13 in [9]. Consider the
well-defined complex

$$(17) 0 \to H^{\infty} \to B_0 \xrightarrow{\bar{\partial}} B_1 \to 0.$$

Suppose that $u^k \in \sum_i (z_i - T_{g_i}) \mathcal{E}(\mathbb{C}^n, H^{\infty})$ and $u^k \to u_0$ in $\mathcal{E}(\mathbb{C}^n, H^{\infty})$. As T_g on B_0 has property $(\beta)_{\mathcal{E}}$ there is a $u_1 \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ such that $u_0 = \delta_{z - T_g} u_1$. Since T_g on B_1 has property $(\beta)_{\mathcal{E}}$, there is a $u_2 \in K_2(z - T_g, \mathcal{E}(\mathbb{C}^n, B_1))$ such that $\delta_{z - T_g} u_2 = \bar{\partial} u_1$. By Lemma 4.2 there is a $v \in \Lambda^2 \mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D))$ such that

$$\int_{\partial D} vhdw = W(u_2, h)$$

for all $h \in H^1(D)$. Therefore we have that

$$\int_{\partial D} \delta_{z-g^*} v h dw = W(\delta_{z-T_g} u_2, h)$$

for all $h \in H^1(D)$. Define $u_1' \in K_1(z - g^*, \mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D)))$ by the equation $u_1' = u_1^* - \delta_{z-g^*}v$. Then

$$\int_{\partial D} u_1' h dw = 0$$

for all $h \in H^1$ since

$$\int_{\partial D} u_1^*hdw = S(u_1,h) = W(\bar{\partial}u_1,h)$$

by Lemma 4.1. Thus $U_1' \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, H^{\infty}))$, where U_1' is the holomorphic extension. Since $u_0 = \delta_{z-T_g}U_1'$ by Lemma 4.1 we have proved that $\delta_{z-T_g}K_1(z-g, \mathcal{E}(\mathbb{C}^n, H^{\infty}))$ is closed.

Suppose that $u_k \in K_k(z - T_g, \mathcal{E}(\mathbb{C}^n, H^{\infty}))$ is δ_{z-T_g} -closed. Then there is a solution $u_{k+1} \in K_{k+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ to the equation $\delta_{z-T_g}u_{k+1} = u_k$ since T_g on B_0 has property $(\beta)_{\mathcal{E}}$. Continuing in exactly

the same way as above we see that we can replace u_{k+1} with $U'_{k+1} \in K_{k+1}(z-T_g,\mathcal{E}(\mathbb{C}^n,H^{\infty}))$ such that $\delta_{z-T_g}U'_{k+1}=u_k$. Thus the theorem is proved.

REFERENCES

- [1] Amar, E. and Bonami, A., Mesures de Carleson d'ordre α et solutions au bord de l'équation $\bar{\partial}$, Bull. Soc. Math. France 107, 23-48 (1979).
- [2] Andersson, M., A division problem for ∂_b -closed forms, Journal d'Analyse Math., **68**, 39-58 (1996).
- [3] Andersson, M. and Carlsson, H., Wolff-type estimates for $\bar{\partial}_b$ and the H^p corona problem in strictly pseudoconvex domains, Ark. Mat. **32**, 255-276
 (1994).
- [4] Andersson, M. and Carlsson, H., H^p -estimates of holomorphic division formulas, Pacific J. of Math. 173, 307-335 (1996).
- [5] Andersson, M. and Carlsson, H., Estimates of the solutions of the H^p and BMOA corona problem, Math. Ann., **316**, 83-102 (2000).
- [6] Ahern, P., Bruna, B. and Cascante, C., H^p -theory for generalized M-harmonic functions in the unit ball, Indiana Univ. Math. J., 45, 103-135 (1996).
- [7] Cohn, W., Weighted Bergman projections and tangential area integrals, Studia Math. 106, no. 1 59-76 (1993).
- [8] Coifman, R. R., Meyer, Y. and Stein E. M., Some new function spaces and their applications to harmonic analysis, J. Funct. Analysis, 62, 304-335 (1985).
- [9] Eschmeier, J. and Putinar, M., Spectral decompositions and analytic sheaves, London Mathematical Society monographs; new ser. 10, Oxford University Press, Clarendon Press, Oxford (1996).
- [10] Harboure, E., Torrea, J. L. and Viviani, B. E., A vector-valued approach to tent space, Journal d'Analyse Math., 56, 125-140 (1991).
- [11] Hörmander, L., Generators for some rings of analytic functions, Bull. Amer. Math. Soc., 73, 943-949 (1967).
- [12] Hörmander, L., L^p -estimates for (pluri-)subharmonic functions, Math. Scand. **20**, 65-78 (1967).
- [13] Köthe, G., Topological vector spaces II, Springer-Verlag (1979).
- [14] Putinar, M. and Wolff, R., A natural localization of Hardy spaces in several complex variables, Ann. Polon. Math. 66, 183-201 (1997).
- [15] Stout, E. L., H^p -functions on strictly pseudoconvex domains, Amer. J. Math. 98, 821-852 (1976).
- [16] Wolff, R., Spectral theory on Hardy spaces in several complex variables, PhD thesis (1996).
- [17] Wolff, R., Quasi-coherence of Hardy spaces in several complex variables, Integr. equ. oper. theory 38 (1) 120-127 (2000).

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY AND THE UNIVERSITY OF GÖTEBORG, SE-412 96 GÖTEBORG, SWEDEN

 $E ext{-}mail\ address: sebsand@math.chalmers.se}$