PROPERTY (8)s FOR TOEPLITZ OPERATORS WITH
H*-SYMBOL

SEBASTIAN SANDBERG

ABSTRACT. Suppose that g is a tuple of bounded holomorphic
functions on a strictly pseudoconvex domain D in C™ with smooth
boundary. Viewed as a tuple of operators on the Hardy space
H?(D), 1 < p < 00, g is shown to have property (3)¢ and therefore
g possess Bishop’s property (3). In the case m = 1 it is proved
that the same result also holds when p = oco.

1. INTRODUCTION

Suppose that X is a Banach space and that a = (ay,...,a,) is a
commuting tuple of bounded linear operators on X. Let E be one of
spaces X, £(C", X) or O(U, X ), where U C C". Denote by K,(z—a, E)
the Koszul complex

0= A"E 2o Anlp %o L e pop ),

with boundary map
p
ool fsr) = 20 3 (~1) (z, = a3) iy Ao ATy Ave Ay,
k=1

where I = (i1,...,4,) and p is an integer. Let H,(z — a, E) be the
corresponding homology groups.

The Taylor spectrum of a, o(a), is defined as the set of all z € C"
such that K,(z — a, X) is not exact. If for all Stein open sets U in C"
the natural quotient topology of Hy(z — a, O(U, X)) is Hausdorff and
H,(z —a,0(U, X)) = 0 for all p > 0, then a is said to have Bishop’s
property (). It has property ()¢ if the natural quotient topology of
Hy(z —a,&(C", X)) is Hausdorff and if H,(z — a,&(C*, X)) = 0 for all
p > 0.

By Theorem 6.2.4 in [9], the tuple a has Bishop’s property (£3) if and
only if there exists a decomposable resolution, that is, if and only if
there are Banach spaces X; and decomposable tuples (see [9] for the
definition) of operators a; on X; such that
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is exact, da = aod and da; = a;11d. Property (8)¢ is equivalent to the
existence of a resolution of Fréchet spaces with Mittag-Leffler inverse
limit of generalized scalar tuples (that is tuples which admit a contin-
uous C*°(C")-functional calculus), see Theorem 6.4.15 in [9]. Property
(B)e implies Bishop’s property (53), see [9].

Suppose that D is a strictly pseudoconvex domain in C™ with smooth
boundary. We consider the tuple T, = (Ty,,...,Ty,), g € H*(D), of
operators on H?(D) defined by Ty, f = gxf, f € HP(D). The main
theorem of this paper is the following.

Theorem 1.1. Suppose that D is a bounded strictly pseudoconvez do-
main in C™ with C*®-boundary and that g € H*®(D)". Then the tuple
T, of Toeplitz operators on H?(D), 1 < p < oo, satisfies property (3)s,
and thus Bishop’s property (/).

In case g has bounded derivative this theorem has previously been
proved in [14, 16, 17]. In case D is the unit disc in C, Theorem 1.1
also holds when p = oo; this is proved in Section 4. As a corollary
to Theorem 1.1 we have that 7, on the Bergman space OLP(D) has
property (3)e, see Corollary 3.4.

Let us recall how one can prove that 7, on the Bergman space
OL%*(D) has property ()¢ under the extra assumption that g has
bounded derivative. Define the Banach spaces By as the spaces of
locally integrable (0, k)-forms u such that

lullg, = llullp2p) + ngHL2(D) < 0.
Since g has bounded derivate we have the inequality

[(@ogullg, S sup (lp(2)| + |9¢p(2)]) llull,
z€g9(D)

for all ¢ € C>(C"). Hence ¢ +— Ty, is a continuous C*°(C")-
functional calculus, where 7T,,,, denotes multiplication by ¢ o g on B.
Since we have the resolution

0= OL*D)— B, %8B, %--- %8, >0

by Hérmander’s L?-estimate of the 0 equation, the tuple T, on OL*(D)
has property (3)¢ by the above mentioned Theorem 6.4.15 in [9].
To prove Theorem 1.1 we will construct a complex

(1) 0— H?(D) 5B, 2B, % ... 5B, -0,

where By are Banach spaces of (0, k)-forms on D. The spaces By, are
defined in terms of tent norms. We prove that ¢ — T, is a continuous
C>(C")-functional calculus, where T, denotes multiplication by ¢og
on By. If the complex (1) were exact the proof of Theorem 1.1 would
be finished. As we can solve the 0-equation with appropiate estimates
we will be able to prove that 7, on H? has property (3)s anyway.
More precisely (1) is exact at By, k > 3. If f € By and 0f = 0 then
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there is a function u in another Banach space B such that ou = f.
Mutiplication by ¢ is a bounded operator on Bj. If f € B, and f' € B}
such that 0f + 0f' = 0 then there is a solution v € LP(dD) to the
equation Oyu = f + f'.

The construction of the complex (1) in the case p < oo is inspired
by the construction in [5] and in the case p = oo and m = 1 it is
inspired by Tom Wolff’s proof of the corona theorem. Let us recall
the proof of the HP-corona theorem in the unit disc of C. Suppose
that ¢ = (g1,--. ,9,) € H*®(D)", where D is the unit disc in C, and
that 0 ¢ g(D). Consider the complex (1); the definitions of the Bj-
spaces can be found in the beginning of Section 3 and Section 4. Sup-
pose that f € HP(D). Then the equation d,u; = f has a solution in
Ki(g, By), namely u; = 3, g fsk/ |g°. Hence 6,0u; = 0 as §, and 0
anticommute, and we can solve the equation dyuy = Ou; by defining
uy € Ky(g, B1) as uy A Ouy. Since uy satisfies the condition

11— [21) wallgy + [|(1 = [2])” Bua | < o0,

by a Wolff type estimate there is a solution v in Ky(g, L?(0D)) to the
equation Jyv = uy (here 7% and 77 denote certain tent spaces). Let
uy = uj — 6,0 € Ky(g, LP(0D)), where u} is the boundary values of u;.
Since Gyu} = 0 there is a holomorphic extension U] of v} to D which
satisfies the equation 6,U] = f.

The above proof also yields that o(T,;) = g¢(D); the exactness of
higher order in the Koszul complex follows by similar resoning. That
o(T,) = g(D) is proved in [5] for the case D strictly pseudoconvex and
p < 0o. One main difference of the proof of that T, has property (§)¢
and the proof of that o(T,) = ¢g(D) is the following. As a substitution
of the explicit choices of u; and us one uses the fact that 7, considered
as an operator on By has property ()¢, which in turn follows from the
fact that T, on By has a C°°(C")-functional calculus.

I would like to thank Mats Andersson, Jorg Eschmeier, Mihai Puti-
nar and Roland Wolff for valuble discussions and comments on this

paper.

2. PRELIMINARIES

Suppose that D is a bounded strictly pseudoconvex domain in C™
with C'*°-boundary given by a strictly plurisubharmonic defining func-
tion p. Let r = —p. All norms below are with respect to the metric

Q =riddlog (1/r),
and we have
\f\z~r2\f|?3+T|f/\8r|;+r|f/\5r|;+‘f/\ar/\gr‘;,

where 8 = i00r, which is equivalent to the Euclidean metric.



The Hardy space H? is the Banach space of all holomorphic func-
tions, f, on D such that

Il =sp [ IfE)Pdotz) < o

£>

where o is the surface measure. It is wellknown that a function w« in
LP(0D) is the boundary value of a function U in H? if and only

/ uh =0
oD

for all h € C35,_,(D) such that Oh = 0.

Let d(-, -) be the Koranyi pseudometric on 0D and let 2’ be the point
on 0D closest to z € D,, where D, is a small enough neighbourhood
of 0D in D. For a point ¢ on the boundary let

Ac={z€ D.:d(z,{) <r(z)}U(D\D.).
For a ball B defined by B = {z € 0D : d(z,() < t} let, for small ¢,
B={zeD.:d(,¢) <t—r(2)},
and for large ¢
B={zeD,:d(?,¢)<t—r(z)}u(D\D,).
A function f is in the tent space T}, where p < oo and ¢ < oo, if

1/p

P/q
= { [ (/ |f(z>|qr<z>—m—1) do(Q)| <o

The function f is in T? if f is continuous with limits along A, at the
boundary almost everywhere and such that

1/p
1 llzz, == (/6 sup | f(z )\pdG(C)) < 0.

D z€EA ¢

A function f is in T2° if
< oQ.

sup ([ iser) »

Note that f € TP if and only if 7~'/7f € LP(D) by Fubini’s theorem.
From [8] we have the inequality

(2) [falr™ S A1 F g gl
D q q

1l =

for 1 < p,q < 0o, where p’ and ¢’ denote dual exponents. By [8] Tg,
where 1 < p < oo and 1 < ¢ < o0, is the dual of T with respect to the



pairing
-1
(f,9) — /D for™".

Suppose that f € TP, g € To° and let ¢ = (o' + ql_l)*l. Then for all
h e Tg we have

-1 < .
/D|f9h|7“ S ||fh||qu,1 lgllrze < 11F iz, llgllzge 117l s
by (2) and Hélder’s inequality. Thus by the duality for Tg we get the
inequality
3) £l S 171, gl
for 1 < pand 1 < ¢ < co. Since the inequality (3) is equivalent to
Ifallzs < 1flln s

for 0 < ¢t < o0, (3) holds if 0 < p, qo, ¢1.
We will use the inequality (see [12])

(4) [ fllzz, S W llge, 2 >0
and (see e.g. [7] for p < oo and [3] for p = o)
5) 17201 |4p S Wfllws 2> 0.

Moreover, we use that [0f| < 7 /2 if f € H®. )
There is an integral operator K : C§5 (D) — Cyq(D), ¢ > 0, see
[5], such that OKu + Kdu = u, u € Cg5(D), s > 1,

(6) ”TTKU”TIP S HTTH/QUHT{H and ||Ku||LP(8D) S HTI/QUHT{t7
if 7> 0and 1 < p< oco. Furthermore,
(7) ||K“||Lp(aD) S HTI/QUHT; + ||7'8“||T{'-

To see that the inequality (6) follows from [5], note that by the defini-
tion of W=1/7 in [1], Irullze = llullyi-1p- By [4] the adjoint P of K
satisfies

1Pl oy S Wl eomy and [P 2LPE] o) S 2oy

(where £ is an arbitrary smooth (1,0)-vectorfield). The L2-result is
proven by means of a T'1-theorem of Christ and Journé. By [10] it now
follows that

(8) ||P¢||Tg° S ”w“Lp(()D)a p>1,
and
(9) I[rLPY||7e S ¥l roony, P> 1.

The inequality (7) follows from (8) and (9).



In section 4 we use completed tensor products of locally convex Haus-
dorff spaces, see e.g. Appendix 1 in [9]. Suppose that E and F' are
locally convex Hausdorff spaces. We denote by L(E, F') the space of
all continuous and linear maps from E to F. The topology m on E Q@ F
is defined as the finest locally convex topology such that the canonical
bilinear map EF X F' — E ® F' is continuous. We denote by F ®, F,
the space E ® F' with the topology m and we denote the completion of
E®, F with E®.F. There is another topology on E® F', the topology
€; in case E is nuclear this topology coincides with the topology 7 and
we therefore omit the index 7 in this case. The Fréchet space £(C") is
nuclear and we have the isomorphism & (C*, E) & £ (C*) ®E.

3. PROPERTY (f3)¢ FOR TOEPLITZ OPERATORS WITH H*-SYMBOL
ON HP?

First we need to define the sequence (1) and prove that there is a
continuous C*°(C")-functional calculus on each of the spaces B.
Define the norms ||-|| 5., k > 0, by

(10) lull g, = llullzz, + [|r*/2dul 7y + |r00u|
on C*®(D),
(11) lull g, = |7/ p + lirdull

on C§5 (D) and
(12) lull s, = [|7*"2ull p + ||/ 20,

on C§5(D) for k > 2. Let By be the completion of C§5, (D) with
respect to the norm ||-||5 . We also define Bj as the completion of
C§3 (D) with respect to the norm ||| 5> defined by

1/2

[ull g = |7 uHT{’ + HT&L”Tf"

The injection 7 : H? — By is well defined and continuous by (4) and
(5). That O : By — Byy1, k > 0 is continuous follows immediately
from the definitions. Thus we have defined a complex

(13) 0— H?(D) 5B, 2B, %... 5 B,, 0.

Lemma 3.1. Suppose that g € H*(D)". Then one can define T,, :
By — By by Ty,u = giu, 1 <1 < n, for all k > 0. The tuple Ty on
By, k >0, has a continuous C*°(C")-functional calculus and property

(B)e-
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Proof. That T,, can be defined on By, follows from the calculation below
(let ¢(z) = z below). We begin with the case £ = 0. Suppose that
o € C®(C") and u € C*°(D). From (3) we have

HrlﬂuagHTg, 5 HUHT& ”Tl/ZagHT;o ’

7 dul 9glllrp < [|r?dul|zy [|7/*0g]| e
and
[ruldg|l 7 S Nullzg, |7 1991 [|7oc -

Since ||r'/20g|| ;. < oo by the inequality (5) we thus get
2

(o g)ullg, < sup |e(2)]llullg, + ||r'/?d(¢ o g)ul|,» +
zeg(D) ?

~J

[rd(¢ o g) A GUHT{, + ||[ré(p o g) A (%HTf + ||rod (e o Q)UHT{“ <
sup (le(2)| + |Do(2)| + | D*0(2)]) lulls, »
2€9(D)

where Dy and D?¢ denotes all derivates of ¢ of order 1 and 2 respec-
tively. Note that (¢ o g)u & C®°(D) in general. Let g, € C*®(D)" N
O(D)™ be such that g, — ¢g in H?(D)™ with g, uniformly bounded as
[ — oo and suppose that u is fixed. We have the equalities

dpog—pog) =Y pioqdg— ¢iogdg + ;0 gdgi — ;o gdg'
1

and

09(pog—pog) = ¢i0adg AOgi — ¢y 0999’ Ay,
(2%
where the index in ¢; denotes partial derivate and the upper index in
g; and g* denotes i:th component. Hence we get

ld(pog—¢og)| <|Dpogl||dg —dg|+ |Dyog — Dyog||dygl,

and

100 (9 0 g, — pog)| < |D*¢ogl|0g — 0g| (|09, + |09]) +

|D*p o0 g — D*pog|og]*.
By (4) we have
0o —pog)ullyy +[r'"(wog—y¢og)dul,

|7 (0091 —¢o09)00ullm Slleog—voglle Slla— gl <

190 = 9lls» -
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We also have that
Hrl/zd (pogi—@og) UHsz +rld(pog —pog) |du|||T{’ S

1/2

Ir2d (9o gi =90 9)lzy S |77 D o g1l 199 = D91 rp +

1/2

I/ 1D 0 g = Do © 9110911 < llgt = 91l

by (3),(4) and (5). Furthermore,
[r00 (0o 91— ¢ o g)ullye S |7 [D?¢ 0 gif 109: — 09| (10g1] + 10g])|» +

Ir[D*¢ 0 9= D*0 0 g| 10|l o < 19t = 9l o
by (3),(4) and (5). Thus
[(pogi—¢pog)ullg, —0

as | — oo and therefore we have that (¢ o g)u is in the completion of
C*°(D) with respect to the norm ||-[| 5 . We extend the map

urs (pog)u:C®(D) — By
to a continuous map ¢(7,) : By — By, bounded by a constant times

s (16(2)| + 1D ()| + [ DP(2)).

Hence T, on By has a continuous C* (C")-functional calculus.
Next we consider the case k¥ = 1. Suppose that ¢ € C*(C*) and
u € C§5(D). From (3) and (5) we have the inequality

I 19g] [ulllzy < [[r*720g]| oo [0l p < 172y -
Hence we get

(e og)ullg, < sup o) lullg, + llrd(eog) Aullpr S
z€g(D)

sup (l¢(2)] + [Dp(2)]) [|ull g, -
z€g9(D)

As in the case k = 0 we prove that (¢ o g)u is in the completion of

C59(D). When we extend the map

ur (pog)u: C*®(D)— B
by continuity to a map ¢(7}) : By — By bounded by
sup (|¢(2)] + |Do(2)])

2€g(D)

and hence we have proved that T, on B; has a C* (C")-functional
calculus.
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In case k > 2 we suppose that ¢ € C*(C") and u € C§5,(D). Since
|0g| < r~1/? we have

(w0 g)ullp, < sup () Nlullg, + [[7**+170(p 0 g) Al S
zEg

sup (|¢(2)| + [De(2)]) [[ull, -
z€g(D)

As in the case k£ = 0 it follows that T, on By, k > 2, has a C* (C")-
functional calculus.

That each of the tuples T}, has property ()¢ now follows from Propo-
sition 6.4.13 in [9]. O

We can extend the integral operator K : Cg5 (D) = Cox(D), k >
1, to a continuous operator K : Byy1 — By, k > 2, and a continuous
operator K : By — Bj. This because

(14) I Kullgp S ([ ul| 1y < llullg,.,

and

H,rk/2+1/25KuHTlp = ||ty — Kg“)HT{’ S lullg,,,

for all u € C§%,1(D) by (6), (12) and (14). Also observe that Ku
is in the completion of C§5(D) under the norm I-lg, (or [[[l5) by
dominated convergence and the fact that one can find f; € gjc(D) such
that f; — Ku,0f; - 0Ku pointwise and |fi|, 0| $1 (as Ku,0Ku €
C(D)). Approximation in By, yields that 0Ku + K0u = u for all
u € Biy1, k> 1. Thus the complex (13) is exact in higher degrees.

Extend K : C§3(D) — C(9D) to continuous maps K : B; —
LP(0D) and K : B} — LP(OD), which is possible by (6) and (7).
Define the (1,0)-vector field £ by the equation

—92 or 0
L=x)lor| 7 021

where x is equal to 1 in a neighbourhood of 9D and 0 on the set where
Or = 0. Suppose that u € C*°(D) and let f = Ju. By integration by

parts we have
/ uh:/ fAh=V(f h)
oD D
and

LD“h:A)fAh:/l)O(r)fAh+/Tﬁ(f/\h)::W(f,h)

D

for all h € C%,,, (D) such that 0h = 0. We extend V' to elements f in
B! and W to elements in B;. We say that the equation Oyu = f + f/,
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where u € LP(0D), f € B; and f' € B, holds if and only if
| wh=wim vy
aD

for all h € C,,_;(D) such that 0h = 0.

Lemma 3.2. If f € By, ' € B and 0f + 0f' = 0 thenu = Kf +
K f' solves the equation Oyu = f + f'. Moreover, if ¢ € H*(D) then
3b(g0u) = Tfpf + Tsof’-

Proof. Suppose that f, f' € Cg3(D). Since 0K (f + f')+ Ko(f + f') =
f+ f' we have

(15) /BD(Kf+Kf’)h:W(f,h)+V(f’,h)—/JJK(6f+8f’)/\h

for all h € C,,_,(D) such that Ok = 0. For fixed h, we can estimate
each term of the above equality by a constant times ||f| 5, + [|f'||5-

Thus approximation in B; and Bj yields that if f € B; and f’' € Bj
then

/ uh:W(f,h)+V(f’,h)—/K(af—i—af’)/\h
oD D

for all h € C,,_;(D) such that Oh = 0. Hence the equation Gyu =

f + f" holds since we also have that 0f + df = 0. Suppose that
o € C*®°(D)N O(D) are chosen such that ¢, — ¢ in H(D). Replace
h in (15) by ¢,h and approximate to get

/ o (Kf + K[V h=W(f,hg) + V(' hig) / oK (3f +3f') AR
oD D

forall h € C,, (D) such that Oh = 0, if f, /' € C§3 (D). We estimate
the terms to the right,

W(f,he)| < / P2 |1 |+ /D r10f] ol " + /D rIf] 190l <

D

1£11 5, el gz »

V(' he)] 5/ P21 el et S Ny el g

D

and

[ oK@+ ar) A h\ S P2 (05 + 8F) g el
D

105 + 08, Il S (1711, + 115y ) Nl
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for fixed h by (2), (4) and (5). Hence approximation in B; and B
yields that

/a g = WL, 1) + V(T [ b

for all f € By, f' € B such that 9f +9f' =0and h € C%,, ,(D) such
that Oh = 0. O

Next we prove that functions in By has boundary values in LP(0D).

Lemma 3.3. There is a continuous and linear operator u — u* from
By to LP(OD) such that u* is the restriction of u to 0D if u € C*(D)
and (Tyu)* = f*u* if f € H®(D).

Proof. Suppose that u € C*°(D). Then |[ul|;5p) < ||ullp, and hence
the restriction operator can be extended to a continuous operator from
By to LP(0D). Suppose that u € By and f € H*®(D). Let u; € C®(D)
and f, € C*®°(D) N O(D) be such that u; — u in By and f; — f in
HP(D) with fj uniformily bounded. Then

| ffu® — (Tf“)*”Lp(aD) Sffut - J”“?”Lp(@D) + || ffuy — fiSUZ“IILp(aD) +

1(few)™ = (fur) poopy + 1(fur)” — (Tyu) || poopy — 0
if one first let £ — oo and then | — oo. O

Note that if u € By then
(16) / wh =W (du, h)
aD

for all h € Cg,,_,(D) such that Ok = 0 by approximation in B, and
Lemma 3.3.

Proof of Theorem 1.1

We want to prove that the complex K, (z — Ty, € (C*, H?)) has van-
ishing homology groups of positive order and that

Z (Zi - Tgi) £ ((Cn’Hp)
is closed in & (C*, H?).

Suppose that u¥ € K;(z — T,,E(C*, H?)) and that 4, ,u* — wu
in £(C", H?). By Lemma 3.1 there is a u; € K;(z — T,,& (C", By))
such that fug = 6, 7,u;. Again by Lemma 3.1 we can recursively find
u; € Ki(z—T,,E(C", Bj_1)) such that 6, 1,u;41 = Ou; for i > 1. Then
we have that Ou,,,1 = 0. Define v,,41 € Kpi1(2—T,,E(C*, Byy_2)) by
Umi1 = KUy Recursively define v, 1 > 2, by v; = Ku;— K6, 1,041
Thus v; € Ki(z — Ty, E(C*, B;2)) if i > 4, vy € A3¢(C", B]) and

the equation Ov; = u; — d,_1,vi41 holds for 7 > 3. Furthermore



12

vy € A26(C", LP(0D)) satisfies the equation dyvo = up — 8, 7,03 by
Lemma 3.2. ~

Let v} = uj — 0, 4-v2. By Lemma 3.2 we have that 0,0, v, =
d.—1,up and thus

/ 52_9*1)2h = W(éz_Tg’U,g, h)
oD

for all h € Cg2,,_,(D) such that Oh = 0. Since by equation (16)

/ uth = W (0uy, h)
aD

/ uth =0
oD

forall h € C%,, (D) such that dh = 0. Thus U] € K (2—T,, £(C", H?)),
where U] is the unique holomorphic extension of ). Since uy = 0,_7,U;
by Lemma 3.3 we have proved that

Y (s —Ty,) E(C HY)

i

we have proved that

is closed in & (C*, H?).

Suppose that uy, € Ky(2z—T,, & (C*, H?)) is §,_1,-closed. Then there
is a upy1 € Kiy1(z — Ty, £ (C", By)) such that u, = 0, 7, ug41. Let
uip1 € Kip1 (2 — Ty, E(C, B;_y)) solve the equation 0, 7,u;11 = ;.
Then we have that Oumiki1 = 0. Let Umiry1 = Kumirr and v; =
K’I,Li — K(sszgUH—l- Thus 8’0,5 = U; — 5z7Tg'Ui—|—1 and 8bvk+2 = Ug+2 —
0,—1,Uk43 since O (u; — 0,_rgviy1) = 0. Define u},; by the equation
Upy1 = Upyy — O, 1,Vk4+2. As in the case above we see that U;, is
a solution of the equation u; = 0, 1,U;,,, and hence the theorem is
proved.

O

We now prove the analogue of Theorem 1.1 with the Hardy space
replaced by the Bergman space. In the case of when g has bounded
derivate this is proved in Theorem 8.1.5 in [9)].

Corollary 3.4. Suppose that D is a bounded strictly pseudoconvex do-
main in C™ with C*-boundary and that g € H*(D)". Then the tuple
T, of Toeplitz operators on the Bergman space OLP(D), 1 < p < oo,
satisfies property (8)e and Bishop’s property (3).

Proof. Let p be a strictly plurisubharmonic defining function for D
and let D = {(v,w) € C™*' : p(v) + |w|* < 0}. Define the operators
P: H?(D) — OL(D) and I : OL”(D) — H?(D) by Pf(v) = f(v,0)
and I f(v,w) = f(v) respectively. The operator P is continuous by the
Carleson-Hérmander inequality since the measure with mass uniformly
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distributed on D N {w = 0} is a Carleson measure. The operator I is
continuous since

/6 WP o(o,0) ~ lime /D (—p() — [w) " [ @) ~

tim [ (=) 1£)7 = [ I£)P,

where o is the surface measure. Let g(v,w) = g(v). Then Tj; has
property (8)¢ and since PI = id, T;] = IT, and PT; = T,P it is easy
to see that T, has property (§)e. O

4. PROPERTY (f3)¢ FOR TOEPLITZ OPERATORS WITH H*-SYMBOL
ON THE UNIT DISC

In this section we will use the Euclidean norm. Let r(w) =1 — |w/|’
and let D be the unit disc in C. Let By be the Banach space of all
functions u € L*°(D) such that

||U||BO = ||u||L°°(D) + ||Tdu||L°°(D) + ”Tdu“T;O + HTZBguHTIw < 0.

Since ||rdul| e (py < 00, By consists of continuous functions on D. We

define B; as the Banach space of all locally integrable (0,1)-forms u
such that

lull 5, = llrull ooy + lrullge + [[r*0ul] o < o0

Suppose that u € C*(D) and h € C*°(0D). Then the Wolff trick
(see the proof of Theorem 1.1) yields

/ uhdwz/a(uPhdw)z
aD D

/ O(r)0(uPhdw) + / rLO(uPhdw) := S(u, h),

where Ph is the Poisson integral of h.
Asin Section 3 we need to know that functions in By has well defined
boundary values.

Lemma 4.1. If u € By then there is a u* € L*°(0D) such that
/ u*hdw = S(u, h)
oD
for all h € L?(0D) and (fu)* = f*u* if f € H*®(D).
Proof. We have the estimate
1S (u, M| S Nlull g, 121l 2 o) -
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Hence there is a function u* € L?(9D) such that

/ u*hdw = S(u, h)
aD
for all h € L?(0D). Suppose that h € C*(0D). Let u; be the dilation
ui(w) = u(tw). Since
1S(us — u, h)| < / lug — ul —I—/ r|d(uy — u)[? +/ r|00(u — u)|
D D D
for fixed h we have that
/ uy hdw — u*hdw
aD aD

ast /1. Therefore ||u”|| e 9p) < ||l g, since u} is uniformly bounded
by [[ulleo(p)- Let fs(w) = f(sw) be the dilation of f. Then we have
that

fruihdw :/ (fr = fHu;hdw + [fuphdw — fru*hdw
aD oD aD

oD
as s,t /1, by dominated convergence. Since we also have

/ (fu);hdw — (fu)*hdw
aD

oD
as t /1 we see that (fu)* = f*u*. O

Let
W(u, h) = / O(r)u A hdw + / rL(u A hdw)
D D
foru € By and h € H', where O(r) is the same O(r) as in the definition
of S(u, h).
Lemma 4.2. If f € £(C*, By) then there is a u € £(C", L*(0D))
such that Oyu = f, that is
| u@hd =w(s).h)

aD

for allh € HY(D) and z € C".

Proof. Consider the bilinear map W : B; x H' — C. This map is
continuous since we have the estimate

(WIS Mlullg, 1Pl g1

which is used in Wolff’s proof of the corona theorem. By the universal
property for m-tensor products (see 41.3.(1) in [13]) there is a corre-
sponding linear and continuous map W; from B;®,H® to C. Since

E(C",B)) 2 E(CH®B, &2 L(E'(C"), By)

by Appendix 1 in [9], f ® id is a continuous map &'(C*)QH! —
Bi®,H"'. Compose with the map W, to get a continuous functional on
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E'(C*)®H!. The injection £'(C")®H — £'(C*)Q®L(AD) is a topo-
logical monomorphism, and hence we can extend with Hahn-Banach
Theorem to a continuous functional on &'(C*)®L(AD). Since the
dual of £'(C*")®L*(dD) is isomorphic to £(C*, L>(8D)) by Theorem
A1.12 in |9] we have a u € £(C*, L>°(0D)). If h € H' then

/u(z)hdw =W (f(2),h)

and thus u is a solution to the equation dyu = f in the sense of this
lemma. U

Theorem 4.3. Let D be the unit disc in C and suppose that g €
H>(D)". Then the tuple T, of Toeplitz operators on H*®(D) satis-
fies property (B)e, and thus Bishop’s property (3).

Proof. The tuple T, considered as operators on By or By has a C*(C")-
functional calculus (the proof of this is similar to Lemma 3.1). Hence
they satisfies property (8)e¢ by Proposition 6.4.13 in [9]. Consider the
well-defined complex

(17) 0— H® — By 5 B; — 0.

Suppose that uf € Y. (z; — Ty, )E(C*, H*) and uF — u, in E(C, H®).
As T, on By has property (3)¢ there is a u; € Ky(z —T,,E(C*, By))
such that uy = 6,_7,u;. Since T, on B; has property (8)¢, there is a
uy € Ky(z —T,,E(C", By)) such that 0, 7,uy = Ou;. By Lemma 4.2
there is a v € A26(C", L®(0D)) such that

/ vhdw = W (ug, h)
oD
for all h € H*(D). Therefore we have that
/ 0,—g=vhdw = W (d,_1,u2, h)
oD
for all h € H'(D). Define v} € Ki(z — g*,£(C*, L*°(dD))) by the

3 ! *
equation u} = uj — d,_g+v. Then

/ uyhdw = 0
oD
for all h € H' since

/ uthdw = S(uy, h) = W (0ui, h)
aD

by Lemma 4.1. Thus U € Ky(z — T,,E(C*, H*®)), where U] is the
holomorphic extension. Since uy = 5z_TgU{ by Lemma 4.1 we have
proved that 0,_7, K1 (2 — g,£(C", H*)) is closed.

Suppose that u, € Ki(z — Ty, E(C*, H®)) is 6, r,-closed. Then
there is a solution ug11 € Kyi1(z — Ty, E(C*, By)) to the equation
0,—1,Uk+1 = Uy since Ty on By has property (3)s. Continuing in exactly
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the same way as above we see that we can replace u; with U, €
Ki1(2 — Ty, E(C*, H®)) such that 6, 7,Up,; = ug. Thus the theorem
is proved. O
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