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Abstract

The content of this note was presented at ”Linear and nonlinear hyper-
bolic equations”, a conference in honor of Sergio Spagnolo on the occasion
of his 60th birthday, held in Grado, Italy in September 2001.

The Klein-Gordon equation is the equation for relativistic wave-propagation

Gfuo—Auo+m2uo:0 z€e€R™t>0

KG
(KG) Uolo= ¥, Oruolo=1% =z €R"

where m > 0,A = 2?21 ng, (n > 3). The nonlinear counterpart, extensively
studied since early 1960’s, is

Oiu— Au+m?u+ f(u)=0 z€R™t>0

NLKG
( ) ulo= ¢, Orulo=9¢ =z €R"

where f(u) is a nonlinear function, f(u) 2 |u|’~!u; modified at 0 if necessary,
to be smooth enough, and with

I+4<p< iz =p
The conditions on f will be made precise below.

Energy:We will assume that F(u) = [ f(v)dv > 0. The energy

B(t) = %/qazuﬁ + |9l +m2|u|2)d:v+/F(u)d$



is a conserved quantity, E(t) = E(0).Let X, = H} x Ly with norm ||.||. defined
by

lu@)I2 = lu®)lzn + [10u@)Z,
Our assumptions on p and f imply that
E(t) < Cllu@)?

Correspondingly, for 2 C R™ we defind the local energy and energy norm by
Eq(t) = %/(|8ﬂcu|2 + |0gu* + m?|u* + 2F (u))dz
Q

and X.(Q) is defined by replacing the global spaces and norms in the definition
of X, by the corresponding local spaces and norms. The local energy as defined
is no longer a conserved quantity ( to get conservation of energy, one has to
work with the whole surface of the light cone ).

Global estimates in space-time (Strichartz estimate) for the KG (Strichartz
[19], Segal [15], ...). If the data ¢, belong to X, then

lluoll < Clella +[1#llz.) < Clluo(0)]e

1
»(L7)
where p > 2,8, = 3 — - = 5i7. More general, but also much more com-
plex, estimates that bound ug in L,(R, Hj(R™)) are available (Strichartz [19],
Marshall-Strauss-Wainger [11], Brenner [2]; a good exposition is given by Gini-
bre and Velo 1995 [6]) . One such example we will use is that if the data belong
to X, then

Space-time integrals of solutions of NLKG. Let u, be a solution of KG
with the same data at ¢t = 0 as u, the solution of NLKG. Assume that the
data has finite energy (i.e. u(0),d;u(0) belongs to X.). Then one example of a
Strichartz-type estimate for the NLKG due to the author [4] is that if

(1) §=35-3,0<0<5<1,0€(0,1],
i:z<p—1,(n+1+9)§1+s—a,
m=-1-6)<1l<(n—1+6)

then

ifu, € Ly(R, Hy (R")) thenu € Ly(R, Hy (R"))



In view of our previous example, if the data belong to X, then the conditions

above are satisfied for 0 < o < ¥ and % <d< ﬁ , and hence

u € Ly(R, H}(R™)).

The following is a result on (local) energy decay: Let Q; = {e(t)t
(1 — €(t))t}, where 0 < €(t) < 1 ,€(t) = 0 ,as t — co.Let Y; = HI(R™\ Q).
Then

Energy decay ( Strichartz 1981 [20]). Let u, be a finite energy solution of
the Klein Gordon equation. Then

[luo(®)|ly, = 0 ,as t = 0o

Earlier Morawetz (1968) [12] proved a result about Energy decay on compact
subsets 2 of R™:

Local Energy Decay. Let n =3 and assume that u is a solution of the NLKG,
which is locally a classical solution. Then

Eq(t) € L1 and Eq(t) > 0 as t — o
In particular,

lw(t)||Lo(@) € L2 and tends to 0 as t — oo

We will study the behavior of u(t), a solution of NLKG with finite energy data.
Let © be a compact subset of R™. Then

lu(®)llza(2) < 2L lu®llz, @

where as before, 6 =
L5, which proves tha

If L < § < -1 then as mentioned above ||u(t)||z, €

1_1
2 p°
t

lu@®lzo(2) € Lo

In addition, we may use the existence of solutions of the Klein-Gordon equation
approximating u in the following sense

Scattering (Brenner 1983-86 [2], [3], [4]). There exists an everywhere de-
fined scattering operator on X, for the NLKG.

In particular there is a solution w4 of the Klein-Gordon equation with finite
energy such that

[|lu(t) — ug(t)||le = 0 ,as t = oo



We conclude, using that u. (¢) is uniformly continuous in H3, that u is uniformly
continuous in Ly(2). The integrability then implies that

lw(t)]| o) — 0 as t = o0

Notice that this result, as well as the extension of the Energy Decay Theorem
to the solution of the NLKG, follows from that theorem and the Scattering
Theorem above. We have

[lu(®)|ly, = 0 ,as t = oo

where again V; = Hy(R™\ Q;), with Q; = {e(t)t < |z| < (1 — €(t))t}, where
0<e(t)<1,e(t) > 0,ast— co.

There has been a number of results on pointwise decay in L,(R™) of solutions
of the NLKG over the years by e.g. Strauss 1968 [17], Morawetz and Strauss
1972 [13],Pecher 1974 [14] 1976, Brenner 1981-1985 ( see e.g. [3] ) ...

Pointwise L, Decay ( Brenner [4]). . Let u be a solution of NLKG with
sufficiently nice data (data which have sufficiently many derivatives in L ,
say). Then for § = 1 — % < min(z15, 21), p > 2, then

n—1’

lu(®) s < CQ1L+ )™

The work of Grillakis ( [8], [9]) on classical solutions for the nonlinear wave
equation for critical exponents p = p* proves that we may use § = % for n=3
( and p = oo ).The choice § = ﬁ probably also holds for n < 6, even in the
critical case p = p*. Using the Pontwise L, decay and our previous estimate of
uin L,(Q), we get

Local Pointwise L, Decay. Letn > 3, and let § < -15, with equality for n
= 3.Then

3=

lu() |3y < C(E2)™

for sufficiently "nice” data.

Example: Let © = Q(¢) with [Q(t)| < t*" with0 < a < 1. Then
llu(t) | 23 (e < Ct=mIm0
Notice that only the size, not the actual position of € is involved.

The largest d-value for which we get decay results for solutions of the NLKG is
determined by the singularities of the map

L,v—>E({wel, 1/p+1/p*=1



where the solution of the Klein-Gordon equation is given by u(t) = F(t)¢
+E(t)y, with ¢ = u(0), ¥ = du(t). Much indicates that § < —7, includ-
ing results on classical solutions for critical case exponents ,p = p*. Notice also
that the maximal rate of decay for the solutions of the Klein-Gordon equation
seems to be O(t~™/2) in L,(Q),Q2 CC R™, p > 2. More should not be expected
for sets 2 C {]x| <t} , in contrast to the rapid decay of solutions of the wave
equation in sets away from the light cone.

The following gives an example of a case when the maximal rate of the long
range mean value is attained. Let X = L,(R") where (1) holds and where

2t 1
Mt o(t) = (& / lo(r)|dr))

Theorem (Brenner, to appear). Assume that u € X, is a solution of the
NLKG, and let u, be corresponding solution of the Klein-Gordon equation. Let
(1) be satisfied, and assume that M yxu,(t) has mazimal rate of decay. Then

MfI’Xu(t) also attains the mazimal rate of decay, that is decays as O(t~™).

Similar results hold in the other cases when Strichartz’ estimates are known to
hold for the NLKG.

A local version of the long range estimates is (work in progress):Let X = L,(12)
X' = L,(9) and let M}, x be defined as above.Then

Local L,(L,) Decay. LetQ CC Q' CC R", n > 3 and assume that distance(09Y',Q) >
t¢ for some € > 0. Assume that (1) holds.Assume also that u, has either mazi-
mal decay in Ly(X') or else has uniform decay in this space. Then

M xu(t) <

¢ 1
C M} xttft) + O ) [ o)1, gyt

where u, is a solution of the Klein-Gordon equation with the same data as u.

A1l Strichartz’ estimates

Let u be a solution of the Klein-Gordon Equation with data in X3/? = H, 2 %
oY

Let 0<0<1/2,2<r<gqandlet§, = —%and&rz%—

1
2

Then



provided

(@) (n+2)d, >1+20
(B) né,+8 <l+o

We may replace L° by L, ( global in time estimate) if in addition

() o 26,06, (=0)
If r = 2 ( that is 6, = 0 ) equality in (8) and (v) is not allowed. This could be
handled by using weaker spaces, e.g. Besov spaces of suitable order.

For the wave equation , only () and (§) with equality matters ( and local =
global). In this case we use homogeneous Sobolev norms.

We may also replace L, by Hf if we replace o by o + s.

A2 Conditions on the nonlinearity f
Let f(u) € C* with f(R) C R and assume that

(i) F(u) = f' fw)dv > 0.
(ii)
|f' ()] < ful™t  Jul <1
|F'(@)] < ful~t Jul>1
where

*

1+%<po;ﬂ1<z—f§=p
(iii)

uf(u) — 2F(u) > aF(u), some a >0
and F is not flat at 0 or oo

The last condition ensures that we avoid local concentration of energy
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