PICARD GROUPS OF INTEGER GROUP RINGS AND UNITS
IN CYCLOTOMIC FIELDS

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. In 1977 Kervaire and Murthy presented conjectures regarding
KoZCyn, where Cpn is the cyclic group of order p™ and p a semi-regular prime.
There is a group V,, that injects into K'OZCpn = PicZCyn. Vp, is a canonical
quotient of an in some sense simpler group V,,. Both groups split in a “positive”
and “negative” part. While V,;~ is well understood there is still no complete
information on V. In a previous paper we gave the explicit structure of V;}
under some different extra assumption on the semi-regular prime p. Here we
extend this result to all semi-regular primes. We also present results on the
structure of the real units in Z[¢,], prove that the number of generators of V;;
coincides with the number of generators of c1®) Q(¢n—1) and prove that the
extra assumption about an explicit form of the elements generating all unram-
ified extensions of Q({,) of degree p (which we used in the previous paper) is
valid for all semi-regular primes.

1. INTRODUCTION

This paper is an extension of a previous paper, [H-S|, from the authors. We refer
you there for some history and more explicit notation.

Let p be an odd semi-regular prime, let C,» be the cyclic group of order p” and
let ¢, be a primitive p"™'-th root of unity. Kervaire and Murthy prove in [K-M]
that there is an exact sequence

0= V,f @V, = PicZCp+1 — Cl1Q((,) @ Pic ZCpn — 0,

where

j=1
and Char(V,") injects canonically in the p-component of the ideal class group of

Q(¢u—1)- The latter statement is proved with V' replaced by a group V;", where
V.t is a canonical quotient of VI (which is obviously enough).
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Under an extra assumption on the prime p (concerning the Iwasawa-invariants of
), Ullom proved in 1978 in [U] that V, & (Z/p"Z)"® @ (Z/p"~'Z) "), where
A is one of the Iwasawa invariants. In [H-S| we, among other things, proved that
under a certain condition on the p-rank of the class groups C1®) Q(¢,) (a weaker
condition than the one Ullom uses) we have

Z 7 - Z _
+ o~ ro r1—ro RN T

The numbers 7, are defined as the log, of orders of certain groups of units in

Z[¢k] and our assumption is exactly that r, = rank, C1®) Q(¢)-

In this paper we will show that V" is given by the formula above for all semi-
regular primes. Throughout this paper we assume that p is semi-regular.

2. V! FOR SEMI-REGULAR PRIMES

We start by defining the numbers r,, by
|Un,p”+171/(Un,p"+1)(p)| =p™.

Here U, is the group of all real units in Z[(,]* that are congruent to 1 modulo
AE where A, = (¢, — 1).
Our main theorem is, as mentioned, the following.

Theorem 2.1. For every semi-reqular prime p

Z \r,
p"Z)

( Z )rl—ro

’V;i— = ( pn—1Z

Before we can prove this we need to recall some notation from [H-S|. Let for
k>0and [ >1

Apyi= 2

N EEy
wf’k—l

and
Dk,l = Ak,l mod p-

We denote the class of z in Ay by z;; and in Dy ; by Z;. Sometimes we will,
by abuse of notation, just denote classes by z. Note that A, 1 = Z[(,] and that

~ Bl
Dra & oy
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By a generalization of Rim’s theorem (see for example [S1]) Pic ZCy» = Pic Ay,
for all n > 1 and this is why these rings are relevant for us. It is easy to see that
there exists a pull-back diagram

Ik i+1
(2.1) Ak 1 = Z[Ce+1]
Jk,i+1 o Sy
k,l
S 9k,
Apy ~ Dy

where dy41(Tki41) = Cotts Joit1 (Trit1) = Trps Sei(Ce1) = Try and gey is just
taking classes modulo p. The norm-maps Ny, are defined in [H-S], Proposition
2.1, and by Lemma 2.5 in the same paper we have an injection Z|[(x1i—1]" — Aj ;-

In what follows, we identify Z[(j;—1]* with its image in A} ;.

In the rest of this paper we will only need the the rings A;; and Dy, in the case
k = 0. Therefore we will simplify the notation a little by setting A4; := Ao,

Dy := Doy, g1 := Gou, Ji 2= fous 0 2= %04, Ji := Jou and Ny := Ny,

By abuse of notation we let for each group (or ring) ¢ denote the homomorphism
defined by sending a generator x to z~' (this is complex conjugation in Z[(,])-
We denote by G* the group of elements of G invariant under c.

In our setting, V" is defined by
by
2.2 VE=——n
( ) " gn(Un—l,l)
where D** is the group of all units in D** congruent to 1 modulo (z — 1).

Note that this definition is not the same as the one used in [K-M]. They instead
look at

F, Pt 1))
23 SR 3G/
Im{Z[C]* = (Fp[z]/(2#" —1))*}
The confusion regarding the two definitions of V,, is cleared up by the following.

Proposition 2.2. The definitions of V,, and 'V, (2.3 and 2.2) coincide.

Proof. The kernel of the surjection (F, [z]/(z—1)?")* — (F,[z]/(x—1)""1)* = D},
n+1_i_1

consist of units congruent to 1 mod (z — 1)P" 1. Let n := Q: 2 . Then n* = ¢,

and c(n) = n~ L. Let ¢, := %ﬂ:?m One can by a direct calculation show

that €, = 1+ (¢ — 1)P" 1 +¢(¢, — 1)P" for some ¢ € Z[(,]. If a =1+ apn_1(z, —
1)P"~t e (Fylz]/(z — 1)), apn_y € F;, Then it is just a matter of calculations
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to show that a = fu(€)@"-1. This shows that (F,[z]/(x — 1)?")*/f (Z](]) &
(Fp[2]/ (@ — 1)P"71)*/ fu(Z[Ca]). Since

Z[Gn]"

Z

Z[Cn1]* _9 f);;+

f

is commutative and N (which is the restriction of the usual norm-map) is surjec-
tive when p is semi-regular (a well known fact) the proposition follows. O

We now introduce some techniques from [K-M].

Let Py, be the group of principal fractional ideals in Q((,) prime to A,. Let H,
be the subgroup of fractional ideals congruent to 1 modulo A?". In [K-M], p. 431,
it is proved that there exists a canonical isomorphism

Pon | (Bz]/(@ - 1)F")”

J: =:V.

— :
Hy, F(ZGa]?) "
Now consider the injection ¢ : Q((, 1) = Q(¢n), o1 — (2. It is clear we get an
induced map Py, 1 — P ,. Since ¢ will map A, to A it is easy to see that we
get an induced homomorphism

POnfl POn
of = 0

" Hn—l Hn

Considered as a map o, : V' | — V' this map acts as (F,[z]/(z — 1)”")* >
Tyt — 22 € (F,[z]/(z — 1)P")*. Since V!, = V, (see Proposition 2.2) we can
consider this as a homomorphism «,, : V,, 1 — V,,. Clearly we then get that
« is induced by z,_; — 2P Note however, that z,_; — 2P does not induce a
homomorphism D} _, — D;.

Lemma 2.3. The map a, is injective on V;_;.

Proof. In this proof, denote Q((,) by K,. Let L, be the p-part of the Hilbert
class field of K, and let M, /K, be the p-part of the ray class field extension
associated with the ray group H,. In other words we have the following Artin
map

Sk, : Iy(K,) = Gal(M,/K,),
which induces an isomorphism (I4(K,)/H,)® — Gal(M,/K,). Here I;(K,)

is the group of ideals of K, which are prime to \,, and (Iy(K,)/H,)® is the
p-component of Iy(K,)/H,.
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The following facts were proved in [K-M]:
1) Gal* (M, /K,) = Gal*(M,/L,) = V;
2) M,_1NK,=K,(lemma4.4).
Obviously the field extension K,/K, ; induces a natural homomorphism
Gal(My_1/K,_1) 2 (Io(Kp_1)/Hy1)® — (Io(K,)/H,)® = Gal(M,/K,)

which we denote with some abuse of notations by «,,. Therefore it is sufficient
to prove that the latter a,, is injective. First we note that the natural map
F: Gal(My-1/K,—1) = Gal(M,_1K,/K,) is an isomorphism. Let us prove that
M, K, C M,. Consider the Artin map ®% : Iy(K,) — Gal(M, 1K, /K,) (of
course F'is induced by the canonical embedding Iy(K,—1) — Io(K,)). We have
to show that the kernel of ®% contains H,.

To see this note that F~ (@} (s)) = @k, ,(Nk,/k,_,(s)) for any s € Io(K,).
If s € H, then without loss of generality s = 1 + A\2"¢, ¢t € Z[(,], and thus,
Nk, /K, 1(5)) = 1+ pt, for some t; € Z[¢,—1]. Now it is clear that ®% (s) =0
since @k, ,(1+ pt;) =0 (0 is the identical automorphism).

It follows that the identical map id : [H(K,) — Iy(K,) induces the canonical
Galois surjection Gal(M,/K,) — Gal(M,_1K,/K,) and we have the following
commutative diagram:

Gal(Mnfl/anl)

|

Gal(M,/K,) - Gal(My_1 K,/ Ky)

If o, (a) = 0 then F(a) =0 and @ = 0 because F' is an isomorphism which proves
the lemma. O

Proof of Theorem 2.1. Induction with respect to n. If n = 1 the result is
known from for example [K-M]. Suppose the result holds with the index equal to
n—1. Lemma 3.10 in [H-S] tells us that we have a surjection 7, : V" — V! | and
Proposition 3.11 in [H-S] that ker 7, isomorphic to C}»~!. Suppose 1+ (21— 1)
is non-trivial in V,}_,. Since

(2.4) ZCy )T —— Dit
Nn,l
ZlCua]* Dyt
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is commutative 1+ (x,, — 1)* is non-trivial in V,". Moreover, since a, is injective,
a(l+ (T —DF) =1+ (22 - 1)F = (1 + (z, — 1)F)?

is non-trivial in V.. Now let 1+ (x,_; —1)% generate V! ; and suppose 7, (a;) =
14 (zp_1—1)%. Since mp (14 (z, —1)%) = 1+ (xp—1 —1)* we get a; = b;(1+ (2, —
1)%) for some b; € ker m,, which implies that 4! is trivial. Suppose 1+ (z,_1 —1)*
has exponent p* for some 1 < k < n — 1. To prove the theorem we need to prove
that a; has exponent p*+'. Since kerm, = C5®, g; has exponent less than or
equal to p**'. But (1 + (2,1 — 1)%)?" =1+ (z,_; — 1)?"% is non-trivial in V;_,
SO

pk+1

a;

_ b€k+1(1 + (xn . 1)8¢)pk+1 _ (1 + (an . 1)Si)pk+1

is non-trivial in V;! by above, which is what we needed to show O

As an application of Theorem 2.1 we can get some results on the unit basis in
D,,, previously obtained in [H-S] under an extra assumption. Let

Ung = {7 € Z[Ga]" : 7 =1 mod (A7)}
Define @y : U, pn+1_pn-n — D by

1~ e—1
on(e) = gn—N(Nn—N(I;Nn,N(W)))-

In [H-S], p. 24, it is proved that ¢y is a homomorphism. The following corollary
now follows immediately in the same way as Proposition 5.8 of [H-S]

Corollary 2.4. Suppose p is semi-reqular. Let N be as in Proposition 3.7 in
[H-S] and let n > N + 1. Then there exists a basis for D} consisting of
elements @y () where v € Uy, pnt1_pn-n.

Furthermore, since Dy; = Ak ;/(p), we can get a p-adic version of this result. Let

Zy[X]
Akip) = (w,,;iil)

;Uf’k—l

be the p-adic completion of A;,; and let A;;i be “the real elements” of Aj;.
Let Uppp = {real € € Z,[,]* : € = 1 mod AL} and let us define ¢y :
Un7pn+1_pn—N,(p) — (AO,n—N,(p))+ by
() = Noon (- Ny (e )
p DY
where the norm-maps are the obvious p-adic extensions of our usual norm-maps.

Corollary 2.5. Suppose p is semi-reqular. There exists a basis for (Agn_n,p))"
consisting of elements 'y () where v are global units, v € Uy, yn+1_pn—n.
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An interesting remark on Theorem 2.1 is that this result might be thought of
as an indication on that Assumption 2 in [H-S] is true. We will prove this later
in this paper and therefore we will find a number of generators of the p-part of

CI”Q(Gy)-

Another interesting remark is that for every semi-regular prime V; is (isomor-
phic to) a subgroup of CI®) Q(¢,_1) (under the injection from [K-M]), a subgroup
which we now by Theorem 2.1 now explicitly. Kervaire and Murphy also conjec-
tures that V1 is actually isomorphic to c1®) Q(¢n—1)- If this is true Theorem 2.1
of course would provide an explicit description of this class group.

3. AN APPLICATION TO UNITS IN Z[(,]

The techniques we developed in [H-S] also lead to some conclusions about the
group of units in Z[(,]*. From the previous results we know that

x4 y*+
f\7+ _ Dn-l—l ~ Dn+1
n+1 — - U,
gn+1(Un,1) U#
n,pntl_1

Let sppn+1_1 = |Up1/Up—1pn+1-1|. A naive first guess would be that s, yn+1_1 =

an;l*Q = pn+21 —3 which is the maximal value of this number. Incidentally, this

maximal value equals |D;F,|. In this case we say that U, /U, yn+1_; is full, but
this happens if and only if p is a regular prime. In other words V. 41 1s trivial
if and only if p is a regular. This fact is by the way proved directly in [H]. For
non-regular (but as before semi-regular) primes, what happens is that there are
“missed places” in U, 1/U, yn+1_1. We define 2k as a missed place (at level n) if
Un2k/Un,2k+2 is trivial. Lemma 3.2 in [H-S] reads Uy, pn+1_1 = Uy pn+141 and hence
provides an instant example of a missed place, namely p" ! —1. It follows from our
theory that every missed place corresponds to a non-trivial element of V.- 41- By
Lemma 5.2 of [H-S] we have that for all 1 < 2s < p"*'—1, €is in U, o5 if and only
if an only if g,41(€) € D;t,(2s), where D}, (k) = {a: a =1 mod (z,41 — 1)*}.
Theorem 2.1 and its proof hence give us specific information about the missed
places which we will formulate in a Theorem below. We start with a simple
lemma.

Lemma 3.1. Let 1 <s<n+1and1 <k <s. Then p*° —p* is a missed place
at level n if and only if s=n+1 and k = 1.

Proof. Let 7 := (" ™Y/2 Then 2 = ¢, and c(n) = n~ . Define

. npsﬂi’“ _ n*(ps+p’°)

77Pk — n—(Pk)
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Clearly, € is real and since
s k _
Y iy

€ is a unit. By a calculation one can show that € € Uy, ys_p1 \ Up ps_phio- O

Define for k = 0,1,... the k-strip as the numbers p* + 1,pF +3,...,pFt! — 1.

Theorem 3.2. At level n we have the following

1. Let 0 < k < n. In the k-strip there are exactly rr, missed places.
2. The missed places in the 0-strip are in one to one correspondence with the

numbers 21y, ..., 21, such that the numerator of the Bernoulli-number Ba;,
(in reduced form) is divisible by p.
3. Suppose i1,...,1, are the missed places in the k-strip. Then pii, ..., i,

are missed places in the k + 1 strip. The other ryy1 — 1, missed places in
the k + 1 strip are not divisible by p.

Proof. We know (from for example Proposition 4.6 of [H-S]) that we have rg
missed places in the O-strip at level 0 and that they correspond exactly to the
indexes of the relevant Bernoulli numbers. An easy induction argument using the
map 7, to lift the generators of V' | to V" show that we have ry missed places
in the O-strip at every level. This proves 2. To prove 1 we now only need prove
that the “new” missed places we get when we go from level n — 1 to n all end up
in the n-strip. First, p" — 1 can not be a missed place (at level n) by the lemma
above. It follows from our theory that the “new” missed places correspond to the
generators of V. 41 of exponent p. We need to show that each such generators
a, | =1,...,Th1 — Tno, belong to D}*, (p" + 1). Suppose for a contradiction
that a; = 1 4 t(xpe1 — 1)%, s < p" — 1, is a “new” generator. Then m,,1(a;) is
neccesarily trivial in V;'. Hence 1 + t(z, — 1)* = g,(€) for some € € Z[(,—_1]*.
But since the usual norm map Nn,l is surjective (when p is semi-regular) and
by commutativity of diagram 4.1 of [H-S] we then get a;g,.1(e')™" = b for some
¢ € Z[(,)* and b € ker{D* — DT} = D (p" —1). Since p" —1 is not a missed
place b = g,+1(€”) for some some € € Z[(,]*. But this means ; is trivial in V,\
which is a contradiction. We conclude that a; € D%, (p™ +1).

To prove & we use the map «, to see that a missed place k£ at level n — 1 lifts
to a missed place pk at level n. To prove the rest of it is enough to prove that
no “new” missed places are divisible by p (since the rest follows inductively). As
we did above it is enough to prove that if a; € DT, (s) \ D% (s +2) is a “new”
generator of V.|, then p does not divide s. Now, a generator can always be
chosen of the form 1+ (z,,; —1)°. Then an element of the form 1+ (x,,; — 1),
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with & & {i1,...,4,,_, } cannot be a missed place. This follows from the fact that
if k£ is not a missed place, then 1 + (z, — 1) is trivial in V" and since «, is
injective, 1 4+ (11 — 1)P* = (1 + (@5 — 1)) is also trivial in V1. O

4. CLASS GROUPS AND THE KERVAIRE-MURTHY CONJECTURES

In this section we will prove that C1Q(¢,1)(p) = V.1 /(V})P. Here A(p) := {z €
A : 2P = 1}. It follows from Theorem 2.1 that V;/(V,})? has r,_; generators,
and it was proved in [K-M] that Char(V;) can be embedded into C1® Q(C,—1).

So, in order to prove the result we need, it suffices to prove the following

Theorem 4.1. There exists an embedding ClQ((,—1)(p) — Char(V,}).

Proof. First note that all our maps, g, jn, NV, etc and rings A, and can be
extended p-adically. Recall that A, ) is defined by

Zy|7]
()
We have a commutative diagram
(4.1) An,(p) —— Zp|Gp1]
jn N, _1 fnfl

An1,p) —— Dp

Considering pairs (a, N,—1(a)), where a € Z,[(,—1], we can embed Zj[(,—1]* into
Ay - In [S2] it was proved that D is isomorphic t0 Zy[¢o—1]"/Un—1pn-1,(5)- We
hence have the following proposition

Proposition 4.2.

Zp[gn—l]*
Un—1pn—1,) * Gn(L[Cn—1]*)

I

Vn

Now for any valuation w of K, 1 = Q((, 1) and any a,b € Q((,_1)* we have
the norm residue symbol (a, b), with values in the group of p-th (not p™) roots
of unity. Let w = A, 1 = (o1 — ¢;%y) and let 1 = 1 — A\5_ . Then

i )21 = s ied )2 iy M) aw 1 Wiy Amc1) 32,

It follows that (a,b),, , =1ifa € U,_14, b € U,_1,5 and k + s > p". Further,
(Mpn, An—1) a1 = Co and therefore (n;,n;)x,_, # 1ifi+j =p”, j is co-prime to p.
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Let « be an ideal in Z[(,_1] co-prime to A\,_; and such that o? = (q), where
q =14+)2_,t € Z[(,_1] (we can choose such ¢ since (1 = 14+, _1C(n1(1+Co1)
and ¢, 1(1+¢, 1) € Z[(, 1]*). Define the following action of C1Q(¢, 1)(p) on
U:_:L:Q,(p) :

Ta(v) = (v, @),

Let us prove that this action is well-defined. First of all it is independent of the
choice of the representative o in C1Q({,—1)(p) because if we use r« instead of o

then (U, qu))\n_l = (Ui q)An—l'

The action is independent of the choice of ¢ by the following reason: another
generator of o?, which is 1 modulo A2 |, differs from “the old” ¢ by some unit
v =1+ A2_,t;, and it can be easily verified that v is either real or v = 5’1171
with a real unit ;. Hence we must consider 7.,4(v) for real v. In other words we
have to prove that (v,7),,_, = 1. But if the latter is untrue, then (v, y)x,_, = Co,
which is not consistent with the action of the “complex conjugation” (v and

are real, while (j is not real).

Clearly (Un—1pn—1,(p),9)rn_, = 1. It remains to prove that (v, q)x,_, = 1 for any
unit v and we will obtain an action of Cl1Q((,—1)(p) on V. For this consider
a field extension K, 1(¢'/?)/K, 1. Since (¢) = o?, it can ramify in \, ; only.
Then clearly (v, q),, = 1 for any w # A, _; and it follows from the product formula
that v, g)x,_, = 1.

Therefore C1Q((,—1)(p) acts on V) and obviously 7,3 = 7,75.

The last stage is to prove that any o € C1Q((,—1)(p) acts non-trivially on V.
Let (g) = o? and let ¢ =1+ Af ¢ with some k > 1 and ¢, co-prime to A, ;.

We first prove that k£ < p™ — 1. Assume that £ > p™ — 1. Then the field extension
K,_1(¢"/?)/K,_, is unramified. It is well-known that if p is semi-regular, then
K,_1(¢*'?) = K,_1(y'/?) for some unit v. Kummer’s theory says that ¢ = yr?
and then obviously @ = (r), i.e. « is a principal ideal. So, it remains to prove
that the case k = p™ — 1 is impossible. For this consider (;, ; and take into
account that ¢, 1 =1+ A\, 1G1(1 + ¢, 1)~". Then clearly it follows from the
properties of the local norm residue symbol (, )x, , that ({—1,9)x, , # 1. On
the other hand ((,-1,¢), = 1 for any w # A,_; because (,_; is a unit and the
extension K,_(¢"/?)/K,_; is unramified in w. Therefore ((,_1,¢)»,_, = 1 by the
product formula and the case £k = p™ — 1 is impossible and £ < p™ — 1.

Now let us consider the cyclic subgroup of C1Q(¢, 1)(p) generated by « and all
the ¢; which generate all o”® for non-trivial o (i.e. s is co-prime to p). Let us
choose that g € U,_1 (), which has the maximal value of k.
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Then ged(k,p) = 1 (otherwise consider ¢(1 — )\fb/_pl)p). Next we prove that k
is odd. If untrue, consider the following element from our set of {g;}, namely
q/o(q), where o is the complex conjugation. Easy computations show that if &
is even for ¢, then ¢/0(q) € Up_1 5, With s > k. On the other hand ¢/o(g) is in
our chosen set of {¢;} because it generates some ideal from the class of o since
ClQ(¢n-1)(p) = C1Q(Cn—1)(p) - Therefore we have proved that k is odd. Then
(Mpn—k, q) # 1 and this means that 7,»_j is a non-trivial element of V" for which

Ta(Npn—r) # 1.

The theorem is proved.

O

Recall that one of the Kervaire-Murthy conjectures was that Vi & C1® Q(Cy—1).
Now we partially solve this conjecture.

Corollary 4.3. ClQ((,—1)(p) = Vi/(VIP =2 (Z/pZ) ™ (see Section 2 for the
definition of r,_1).

Proof. It remains to prove the second isomorphism only, which follows from
Theorem 2.1. ]

Now it is clear that the Assumption 2 from [H-S], which we used there to describe
Vi is valid for any semi-regular prime.

Corollary 4.4. Any unramified extension of Q((,—1) = K,—1 of degree p is of
the form K,_1(€'/?)/Kn_1, where € is a unit satisfying e =1+ X 1 '¢.

n—1

Finally we obtain Kummer’s Lemma for semi-regular primes
y |Y

Corollary 4.5. Let a unit € € Z[C,_1]* satisfy e = 7 mod X" |'. Then e = Py,

with units v, gammay and v, =1 mod X2,
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