PICARD GROUPS OF INTEGER GROUP RINGS AND UNITS IN CYCLOTOMIC FIELDS

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. In 1977 Kervaire and Murthy presented conjectures regarding $K_0\mathbb{Z}C_{p^n}$, where C_{p^n} is the cyclic group of order p^n and p a semi-regular prime. There is a group V_n that injects into $K_0\mathbb{Z}C_{p^n} \cong \text{Pic} \mathbb{Z}C_{p^n}$. V_n is a canonical quotient of an in some sense simpler group V'_n. Both groups split in a “positive” and “negative” part. While V'_n is well understood there is still no complete information on V_n. In a previous paper we gave the explicit structure of V'_n under some different extra assumption on the semi-regular prime p. Here we extend this result to all semi-regular primes. We also present results on the structure of the real units in $\mathbb{Z}[\zeta_n]$, prove that the number of generators of V_n coincides with the number of generators of $\text{Cl}^P(\mathbb{Q}(\zeta_{n-1}))$ and prove that the extra assumption about an explicit form of the elements generating all unramified extensions of $\mathbb{Q}(\zeta_n)$ of degree p (which we used in the previous paper) is valid for all semi-regular primes.

1. Introduction

This paper is an extension of a previous paper, [H-S], from the authors. We refer you there for some history and more explicit notation.

Let p be an odd semi-regular prime, let C_{p^n} be the cyclic group of order p^n and let ζ_n be a primitive p^{n+1}-th root of unity. Kervaire and Murthy prove in [K-M] that there is an exact sequence

$$0 \rightarrow V_n^+ \oplus V_n^- \rightarrow \text{Pic} \mathbb{Z}C_{p^{n+1}} \rightarrow \text{Cl} \mathbb{Q}(\zeta_n) \oplus \text{Pic} \mathbb{Z}C_{p^n} \rightarrow 0,$$

where

$$V_n^- \cong C_{p^n}^{\mathbb{Z}_p} \times \prod_{j=1}^{n-1} C_{p^{(p-1)}2^{n-1-j}}.$$

and $\text{Char}(V_n^+)$ injects canonically in the p-component of the ideal class group of $\mathbb{Q}(\zeta_{n-1})$. The latter statement is proved with V_n^+ replaced by a group V''_n, where V''_n is a canonical quotient of V_n^+ (which is obviously enough).

1991 Mathematics Subject Classification. 11R65, 11R21, 19A31.
Key words and phrases. Picard Groups, Integral Group Rings.
Under an extra assumption on the prime p (concerning the Iwasawa-invariants of p), Ullom proved in 1978 in [U] that $V_n^+ \cong \left(\mathbb{Z}/p^n\mathbb{Z} \right)^{r \gamma_0} \oplus \left(\mathbb{Z}/p^{n-1}\mathbb{Z} \right)^{\lambda - r \gamma_0}$, where λ is one of the Iwasawa invariants. In [H-S] we, among other things, proved that under a certain condition on the p-rank of the class groups $\text{Cl}^p(\mathbb{Q}(\zeta_n))$ (a weaker condition than the one Ullom uses) we have

$$V_n^+ \cong \left(\frac{\mathbb{Z}}{p^n\mathbb{Z}} \right)^{r_0} \oplus \left(\frac{\mathbb{Z}}{p^{n-1}\mathbb{Z}} \right)^{r_1 - r_0} \oplus \ldots \oplus \left(\frac{\mathbb{Z}}{p\mathbb{Z}} \right)^{r_{n-1} - r_{n-2}}.$$

The numbers r_k are defined as the \log_p of orders of certain groups of units in $\mathbb{Z}[\zeta_k]$ and our assumption is exactly that $r_k = \text{rank}_p\text{Cl}^p(\mathbb{Q}(\zeta_k))$.

In this paper we will show that V_n^+ is given by the formula above for all semi-regular primes. Throughout this paper we assume that p is semi-regular.

2. V_n^+ FOR SEMI-REGULAR PRIMES

We start by defining the numbers r_n by

$$|U_{n,p^{n+1-1}}/(U_{n,p^{n+1}})^{[p]}| = p^{r_n}.$$

Here $U_{n,k}$ is the group of all real units in $\mathbb{Z}[\zeta_n]^*$ that are congruent to 1 modulo λ^k_n where $\lambda_n = (\zeta_n - 1)$.

Our main theorem is, as mentioned, the following.

Theorem 2.1. For every semi-regular prime p

$$V_n^+ \cong \left(\frac{\mathbb{Z}}{p^n\mathbb{Z}} \right)^{r_0} \oplus \left(\frac{\mathbb{Z}}{p^{n-1}\mathbb{Z}} \right)^{r_1 - r_0} \oplus \ldots \oplus \left(\frac{\mathbb{Z}}{p\mathbb{Z}} \right)^{r_{n-1} - r_{n-2}}$$

Before we can prove this we need to recall some notation from [H-S]. Let for $k \geq 0$ and $l \geq 1$

$$A_{k,l} := \frac{\mathbb{Z}[x]}{(x^{p^{k+l-1}} - 1)}$$

and

$$D_{k,l} := A_{k,l} \mod p.$$

We denote the class of x in $A_{k,l}$ by $x_{k,l}$ and in $D_{k,l}$ by $\bar{x}_{k,l}$. Sometimes we will, by abuse of notation, just denote classes by x. Note that $A_{n,1} \cong \mathbb{Z}[\zeta_n]$ and that

$$D_{k,l} \cong \frac{\mathbb{F}_p[x]}{(x - 1)^{p^{k+l-1}}}.$$
By a generalization of Rim’s theorem (see for example [S1]) Pic \(ZC_{p^n} \cong \text{Pic} A_{0,n} \) for all \(n \geq 1 \) and this is why these rings are relevant for us. It is easy to see that there exists a pull-back diagram

\[
\begin{array}{c}
A_{k,l+1} \xrightarrow{i_{k,l+1}} \mathbb{Z}[\zeta_{k+l}] \\
\downarrow j_{k,l+1} \hspace{1cm} \downarrow f_{k,l} \\
A_{k,l} \xrightarrow{g_{k,l}} D_{k,l}
\end{array}
\]

where \(i_{k,l+1}(x_{k,l+1}) = \zeta_{k+l} \), \(j_{k,l+1}(x_{k,l+1}) = x_{k,l} \), \(f_{k,l}(\zeta_{k+l}) = \bar{x}_{k,l} \) and \(g_{k,l} \) is just taking classes modulo \(p \). The norm-maps \(N_{k,l} \) are defined in [H-S], Proposition 2.1, and by Lemma 2.5 in the same paper we have an injection \(\mathbb{Z}[\zeta_{k+l-1}]^* \to A_{k,l}^* \).

In what follows, we identify \(\mathbb{Z}[\zeta_{k+l-1}]^* \) with its image in \(A_{k,l}^* \).

In the rest of this paper we will only need the rings \(A_{k,l} \) and \(D_{k,l} \) in the case \(k = 0 \). Therefore we will simplify the notation a little by setting \(A_l := A_{0,l} \), \(D_l := D_{0,l} \), \(g_l := g_{0,l} \), \(f_l := f_{0,l} \), \(i_l := i_{0,l} \), \(j_l := j_{0,l} \) and \(N_l := N_{0,l} \).

By abuse of notation we let for each group (or ring) \(c \) denote the homomorphism defined by sending a generator \(x \) to \(x^{-1} \) (this is complex conjugation in \(\mathbb{Z}[\zeta_n] \)). We denote by \(G^+ \) the group of elements of \(G \) invariant under \(c \).

In our setting, \(\mathcal{V}_n^+ \) is defined by

\[
\mathcal{V}_n^+ := \frac{D_n^*}{g_n(U_{n-1,1})},
\]

where \(D_n^* \) is the group of all units in \(D_n^+ \) congruent to 1 modulo \((x-1) \).

Note that this definition is not the same as the one used in [K-M]. They instead look at

\[
\mathcal{V}_n := \frac{(\mathbb{F}_p[x]/(x^{p^n} - 1))^*}{\text{Im} \{ \mathbb{Z}[\zeta_n]^* \to (\mathbb{F}_p[x]/(x^{p^n} - 1))^* \}}
\]

The confusion regarding the two definitions of \(\mathcal{V}_n \) is cleared up by the following.

Proposition 2.2. The definitions of \(\mathcal{V}_n \) and \(\mathcal{V}_n^+ \) (2.3 and 2.2) coincide.

Proof. The kernel of the surjection \((\mathbb{F}_p[x]/(x-1)^{p^n})^* \to (\mathbb{F}_p[x]/(x-1)^{p^n-1})^* = D_n^* \) consist of units congruent to 1 mod \((x-1)^{p^n-1} \). Let \(\eta := \zeta_n^{\frac{n^p - 1}{n-1}} \). Then \(\eta^2 = \zeta_n \) and \(c(\eta) = \eta^{-1} \). Let \(\epsilon_n := \zeta_n^{\frac{n^p - 1}{n-1}} \). One can by a direct calculation show that \(\epsilon_n = 1 + (\zeta_n - 1)p^{n-1} + t(\zeta_n - 1)p^n \) for some \(t \in \mathbb{Z}[\zeta_n] \). If \(a = 1 + ap_{n-1}(x_n - 1)^{p^n-1} \in (\mathbb{F}_p[x]/(x-1)^{p^n})^* \), \(a_{n-1} \in \mathbb{F}_p \), Then it is just a matter of calculations...
to show that $a = f_n(e)^{q_n-1}$. This shows that $(\mathbb{F}_p[x]/(x-1)p^n)^*/f_n^*(\mathbb{Z}[\zeta_n]^*) \cong (\mathbb{F}_p[x]/(x-1)p^n-1)^*/f_n(\mathbb{Z}[\zeta_n]^*)$. Since

$$
\begin{array}{c}
\mathbb{Z}[\zeta_n]^* \\
\downarrow \quad f \quad \downarrow g
\end{array}
\xrightarrow{N}
\begin{array}{c}
\mathbb{Z}[\zeta_{n-1}] \\
\downarrow \quad \hat{D}_n^+
\end{array}
$$

is commutative and N (which is the restriction of the usual norm-map) is surjective when p is semi-regular (a well known fact) the proposition follows. \qed

We now introduce some techniques from [K-M].

Let $P_{0,n}$ be the group of principal fractional ideals in $\mathbb{Q}(\zeta_n)$ prime to λ_n. Let H_n be the subgroup of fractional ideals congruent to 1 modulo λ_n^n. In [K-M], p. 431, it is proved that there exists a canonical isomorphism

$$J : \frac{P_{0,n}}{H_n} \rightarrow \frac{(\mathbb{F}_p[x]/(x-1)p^n)^*}{f_n^*(\mathbb{Z}[\zeta_n]^*)} : \mathcal{V}_n^*.$$

Now consider the injection $\iota : \mathbb{Q}(\zeta_{n-1}) \rightarrow \mathbb{Q}(\zeta_n)$, $\zeta_{n-1} \mapsto \zeta_n^p$. It is clear we get an induced map $P_{0,n-1} \rightarrow P_{0,n}$. Since ι will map λ_{n-1} to λ_n^p it is easy to see that we get an induced homomorphism

$$\alpha'_n : \frac{P_{0,n-1}}{H_{n-1}} \rightarrow \frac{P_{0,n}}{H_n}.$$

Considered as a map $\alpha'_n : \mathcal{V}_n^* \rightarrow \mathcal{V}_n^*$ this map acts as $(\mathbb{F}_p[x]/(x-1)p^{n-1})^* \ni x_{n-1} \mapsto x_n^p \in (\mathbb{F}_p[x]/(x-1)p^n)^*$. Since $\mathcal{V}_n^* \cong \mathcal{V}_n$ (see Proposition 2.2) we can consider this as a homomorphism $\alpha_n : \mathcal{V}_n-1 \rightarrow \mathcal{V}_n$. Clearly we then get that α is induced by $x_{n-1} \mapsto x_n^p$. Note however, that $x_{n-1} \mapsto x_n^p$ does not induce a homomorphism $D_n^+ \rightarrow D_n^+$.

Lemma 2.3. The map α_n is injective on \mathcal{V}_n^*.

Proof. In this proof, denote $\mathbb{Q}(\zeta_n)$ by K_n. Let L_n be the p-part of the Hilbert class field of K_n and let M_n/K_n be the p-part of the ray class field extension associated with the ray group H_n. In other words we have the following Artin map

$$\Phi_{K_n} : I_0(K_n) \rightarrow Gal(M_n/K_n),$$

which induces an isomorphism $(I_0(K_n)/H_n)^{(p)} \rightarrow Gal(M_n/K_n)$. Here $I_0(K_n)$ is the group of ideals of K_n which are prime to λ_n, and $(I_0(K_n)/H_n)^{(p)}$ is the p-component of $I_0(K_n)/H_n$.

The following facts were proved in [K-M]:

1) \(\text{Gal}^+(M_n/K_n) \cong \text{Gal}^+(M_n/I_n) \cong \mathcal{V}_n^+ \)
2) \(M_{n-1} \cap K_n = K_{n-1} \) (lemma 4.4).

Obviously the field extension \(K_n/K_{n-1} \) induces a natural homomorphism

\[
\text{Gal}(M_{n-1}/K_{n-1}) \cong (I_0(K_{n-1})/H_{n-1})^{(p)} \rightarrow (I_0(K_n)/H_n)^{(p)} \cong \text{Gal}(M_n/K_n)
\]

which we denote with some abuse of notations by \(\alpha_n \). Therefore it is sufficient to prove that the latter \(\alpha_n \) is injective. First we note that the natural map \(F : \text{Gal}(M_{n-1}/K_{n-1}) \rightarrow \text{Gal}(M_{n-1}K_n/K_n) \) is an isomorphism. Let us prove that \(M_{n-1}K_n \subset M_n \). Consider the Artin map \(\Phi_{K_n} : I_0(K_n) \rightarrow \text{Gal}(M_{n-1}K_n/K_n) \) (of course \(F \) is induced by the canonical embedding \(I_0(K_{n-1}) \rightarrow I_0(K_n) \)). We have to show that the kernel of \(\Phi_{K_n} \) contains \(H_n \).

To see this note that \(F^{-1}(\Phi_{K_n}(s)) = \Phi_{K_{n-1}}(N_{K_n/K_{n-1}}(s)) \) for any \(s \in I_0(K_n) \). If \(s \in H_n \) then without loss of generality \(s = 1 + \lambda t_n t, \ t \in \mathbb{Z}[[\zeta_n]], \) and thus, \(N_{K_n/K_{n-1}}(s)) = 1 + pt_1 \) for some \(t_1 \in \mathbb{Z}[\zeta_{n-1}] \). Now it is clear that \(\Phi_{K_n}(s) = 0 \) since \(\Phi_{K_{n-1}}(1 + pt_1) = 0 \) (0 is the identical automorphism).

It follows that the identical map \(\text{id} : I_0(K_n) \rightarrow I_0(K_n) \) induces the canonical Galois surjection \(\text{Gal}(M_n/K_n) \rightarrow \text{Gal}(M_{n-1}K_n/K_n) \) and we have the following commutative diagram:

\[
\begin{array}{ccc}
\text{Gal}(M_{n-1}/K_{n-1}) & \xrightarrow{\alpha_n} & \text{Gal}(M_{n-1}K_n/K_n) \\
\text{Gal}(M_n/K_n) & \xrightarrow{F} & \text{Gal}(M_{n-1}K_n/K_n)
\end{array}
\]

If \(\alpha_n(a) = 0 \) then \(F(a) = 0 \) and \(a = 0 \) because \(F \) is an isomorphism which proves the lemma. \(\square \)

Proof of Theorem 2.1. Induction with respect to \(n \). If \(n = 1 \) the result is known from for example [K-M]. Suppose the result holds with the index equal to \(n - 1 \). Lemma 3.10 in [H-S] tells us that we have a surjection \(\pi_n : \mathcal{V}_n^+ \rightarrow \mathcal{V}_{n-1}^+ \) and Proposition 3.11 in [H-S] that \(\ker \pi_n \) isomorphic to \(C_p^{n-1} \). Suppose \(1 + (x_{n-1} - 1)^k \) is non-trivial in \(\mathcal{V}_{n-1}^+ \). Since

\[
\begin{align*}
\mathbb{Z}[\zeta_{n-1}]^* & \xrightarrow{\tilde{N}_{n,1}} D_{n-1}^* \\
\mathbb{Z}[\zeta_2]^* & \xrightarrow{D_{n-1}^*} D_{n-1}^*
\end{align*}
\]

(2.4)
is commutative $1 + (x_n - 1)^k$ is non-trivial in \mathbb{V}^+_n. Moreover, since α_n is injective,
\[
\alpha(1 + (x_{n-1} - 1)^k) = 1 + (x_n - 1)^k = (1 + (x_n - 1)^k)^p
\]
is non-trivial in \mathbb{V}^+_n. Now let $1 + (x_{n-1} - 1)^{s_i}$ generate \mathbb{V}^+_n and suppose $\pi_n(a_i) = 1 + (x_{n-1} - 1)^{s_i}$. Since $\pi_n(1 + (x_{n-1} - 1)^{s_i}) = 1 + (x_{n-1} - 1)^{s_i}$ we get $a_i = b_i(1 + (x_{n-1} - 1)^{s_i})$ for some $b_i \in \ker \pi_n$, which implies that $b_i^{p^k}$ is trivial. Suppose $1 + (x_{n-1} - 1)^{s_i}$ has exponent p^k for some $1 \leq k \leq n - 1$. To prove the theorem we need to prove that a_i has exponent p^{k+1}. Since $\ker \pi_n \cong C^r_p$, a_i has exponent less than or equal to p^{k+1}. But $(1 + (x_{n-1} - 1)^{s_i})^{p^{k+1}} = 1 + (x_{n-1} - 1)^{p^k s_i}$ is non-trivial in \mathbb{V}^+_n
so
\[
a_i^{p^{k+1}} = b_i^{p^{k+1}}(1 + (x_{n-1} - 1)^{s_i})^{p^{k+1}} = (1 + (x_{n-1} - 1)^{s_i})^{p^{k+1}}
\]
is non-trivial in \mathbb{V}^+_n by above, which is what we needed to show.

As an application of Theorem 2.1 we can get some results on the unit basis in D_n previously obtained in [H-S] under an extra assumption. Let $U_{n,k} := \{ \gamma \in \mathbb{Z}[\zeta_n]^* : \gamma = 1 \bmod (\lambda_n^k) \}$ Define $\varphi_N : U_{n,p^{n+1}-p^n-N} \to D_{n-N}^+$ by
\[
\varphi_N(\epsilon) = \eta_{n-N}(N_{n-N}((\epsilon - 1)N_n N_m(\frac{\epsilon - 1}{\lambda_n^{p^{n+1}-p^n-N+1}}))).
\]
In [H-S], p. 24, it is proved that φ_N is a homomorphism. The following corollary now follows immediately in the same way as Proposition 5.8 of [H-S]

Corollary 2.4. Suppose p is semi-regular. Let N be as in Proposition 3.7 in [H-S] and let $n \geq N + 1$. Then there exists a basis for D_{n-N}^+ consisting of elements $\varphi_N(\gamma)$ where $\gamma \in U_{n,p^{n+1}-p^n-N}$.

Furthermore, since $D_{k,i} = A_{k,i}/(p)$, we can get a p-adic version of this result. Let $A_{k,i}(p) := \mathbb{Z}_p[X]/(x^{p^{k+i+1} - 1}/x^{p+1} - 1)$ be the p-adic completion of $A_{k,i}$ and let $A_{k,i}^+$ be the “real elements” of $A_{k,i}$. Let $U_{n,k}(p) := \{ \text{real } \epsilon \in \mathbb{Z}_p[\zeta_n]^* : \epsilon \equiv 1 \bmod \lambda_n^k \}$ and let us define $\varphi_N' : U_{n,p^{n+1}-p^n-N,(p)} \to (A_{0,n-N,(p)})^+$ by
\[
\varphi_N'(\epsilon) = N_{0,n-N}(\frac{\epsilon}{1}N_n N_m(\frac{\epsilon - 1}{\lambda_n^{p^{n+1}-p^n-N+1}}))).
\]
where the norm-maps are the obvious p-adic extensions of our usual norm-maps.

Corollary 2.5. Suppose p is semi-regular. There exists a basis for $(A_{0,n-N,(p)})^+$ consisting of elements $\varphi_N'(\gamma)$ where γ are global units, $\gamma \in U_{n,p^{n+1}-p^n-N}$.
An interesting remark on Theorem 2.1 is that this result might be thought of as an indication on that Assumption 2 in [H-S] is true. We will prove this later in this paper and therefore we will find a number of generators of the p-part of $\text{Cl}[^p]Q(\zeta_n)$.

Another interesting remark is that for every semi-regular prime \mathcal{V}^+_n is (isomorphic to) a subgroup of $\text{Cl}[^p]Q(\zeta_{n-1})$ (under the injection from [K-M]), a subgroup which we now by Theorem 2.1 now explicitly. Kervaire and Murphy also conjectures that \mathcal{V}^+_n is actually isomorphic to $\text{Cl}[^p]Q(\zeta_{n-1})$. If this is true Theorem 2.1 of course would provide an explicit description of this class group.

3. AN APPLICATION TO UNITS IN $\mathbb{Z}[\zeta_n]$

The techniques we developed in [H-S] also lead to some conclusions about the group of units in $\mathbb{Z}[\zeta_n]^*$. From the previous results we know that

$$\mathcal{V}^+_n = \frac{\tilde{D}^+_n}{g_n(U_n,1)} \approx \frac{\tilde{D}^+_n}{\frac{U_n}{U_n,p^{n+1}-1}}$$

Let $s_{n,p^{n+1}-1} = |U_{n,1}/U_{n-1,p^{n+1}-1}|$. A naive first guess would be that $s_{n,p^{n+1}-1} = \frac{p^{n+1}-1}{2} = \frac{p^{n+1}-3}{2}$ which is the maximal value of this number. Incidentally, this maximal value equals $|\tilde{D}^+_n|$. In this case we say that $U_{n,1}/U_{n,p^{n+1}-1}$ is full, but this happens if and only if p is a regular prime. In other words \mathcal{V}^+_n is trivial if and only if p is a regular. This fact is by the way proved directly in [H]. For non-regular (but as before semi-regular) primes, what happens is that there are "missed places" in $U_{n,1}/U_{n,p^{n+1}-1}$. We define $2k$ as a missed place (at level n) if $U_{n,2k}/U_{n,2k+2}$ is trivial. Lemma 3.2 in [H-S] reads $U_{n,2k+1} = U_{n,p^{n+1}-1}$ and hence provides an instant example of a missed place, namely $p^{n+1}-1$. It follows from our theory that every missed place corresponds to a non-trivial element of \mathcal{V}^+_n. By Lemma 5.2 of [H-S] we have that for all $1 \leq 2s \leq p^{n+1} - 1$, ϵ is in $U_{n,2s}$ if and only if an only if $g_{n+1}(\epsilon) \in D_{n+1}^s(2s)$, where $D_{n+1}^s(k) = \{a : a = 1 \mod (x_{n+1} - 1)^k\}$.

Theorem 2.1 and its proof hence give us specific information about the missed places which we will formulate in a Theorem below. We start with a simple lemma.

Lemma 3.1. Let $1 \leq s \leq n + 1$ and $1 \leq k < s$. Then $p^s - pk$ is a missed place at level n if and only if $s = n + 1$ and $k = 1$.

Proof. Let $\eta := \zeta_n^{(p^{n+1}+1)/2}$. Then $\eta^2 = \zeta_n$ and $c(\eta) = \eta^{-1}$. Define

$$\epsilon := \frac{\eta^{p^s+k} - \eta^{-(p^s+k)}}{\eta^{p^s} - \eta^{-(p^s)}}.$$
Clearly, ϵ is real and since
\[\epsilon = \eta^{-p^s} \frac{C_n^{p^s+p^k} - 1}{C_n^{p^k} - 1} \]
ϵ is a unit. By a calculation one can show that $\epsilon \in U_{n,p^s-p^k} \setminus U_{n,p^s-p^k+2}$.

Define for $k = 0, 1, \ldots$ the k-strip as the numbers $p^k + 1, p^k + 3, \ldots, p^{k+1} - 1$.

Theorem 3.2. At level n we have the following

1. Let $0 \leq k \leq n$. In the k-strip there are exactly r_k missed places.
2. The missed places in the 0-strip are in one to one correspondence with the numbers $2i_1, \ldots, 2i_{r_0}$ such that the numerator of the Bernoulli-number B_{2i_k} (in reduced form) is divisible by p.
3. Suppose i_1, \ldots, i_{r_k} are the missed places in the k-strip. Then pi_1, \ldots, pi_{r_k} are missed places in the $k + 1$ strip. The other $r_{k+1} - r_k$ missed places in the $k + 1$ strip are not divisible by p.

Proof. We know (from for example Proposition 4.6 of [H-S]) that we have r_0 missed places in the 0-strip at level 0 and that they correspond exactly to the indexes of the relevant Bernoulli numbers. An easy induction argument using the map π_n to lift the generators of \mathcal{V}_{n-1}^+ to \mathcal{V}_n^+ shows that we have r_0 missed places in the 0-strip at every level. This proves 2. To prove 1 we now only need prove that the “new” missed places we get when we go from level $n - 1$ to n all end up in the n-strip. First, $p^n - 1$ cannot be a missed place (at level n) by the lemma above. It follows from our theory that the “new” missed places correspond to the generators of \mathcal{V}_{n+1}^+ of exponent p. We need to show that each such generator a_l, $l = 1, \ldots, r_{n-1} - r_{n-2}$, belong to $D_{n+1}^+(p^n - 1)$. Suppose for a contradiction that $a_l = 1 + t(x_{n+1} - 1)^s$, $s \leq p^n - 1$, is a “new” generator. Then $\pi_{n+1}(a_l)$ is necessarily trivial in \mathcal{V}_{n+1}^+. Hence $1 + t(x_{n} - 1)^s = g_n(\epsilon)$ for some $\epsilon \in \mathbb{Z}[\zeta_n]^*$. But since the usual norm map $\tilde{N}_{n,1}$ is surjective (when p is semi-regular) and by commutativity of diagram 4.1 of [H-S] we then get $a_l g_{n+1}(\epsilon'^{-1}) = b$ for some $\epsilon' \in \mathbb{Z}[\zeta_n]^*$ and $b \in \ker\{D_{n}^+ \to D_{n+1}^+\} = D_{n+1}^+(p^n - 1)$. Since $p^n - 1$ is not a missed place $b = g_{n+1}(\epsilon'^{n})$ for some some $\epsilon' \in \mathbb{Z}[\zeta_n]^*$. But this means a_l is trivial in \mathcal{V}_{n+1}^+ which is a contradiction. We conclude that $a_l \in D_{n+1}^+(p^n + 1)$.

To prove 3 we use the map α_n to see that a missed place k at level $n - 1$ lifts to a missed place pk at level n. To prove the rest of 3 it is enough to prove that no “new” missed places are divisible by p (since the rest follows inductively). As we did above it is enough to prove that if $a_l \in D_{n+1}^+(s) \setminus D_{n+1}^+(s + 2)$ is a “new” generator of \mathcal{V}_{n+1}^+, then p does not divide s. Now, a generator can always be chosen of the form $1 + (x_{n+1} - 1)^s$. Then an element of the form $1 + (x_{n+1} - 1)^{pk}$,
with \(k \notin \{i_1, \ldots, i_{r_{n-1}}\} \) cannot be a missed place. This follows from the fact that if \(k \) is not a missed place, then \(1 + (x_n - 1)^k \) is trivial in \(\mathcal{V}_n^+ \) and since \(\alpha_n \) is injective, \(1 + (x_{n+1} - 1)^p = \alpha_n(1 + (x_n - 1)^k) \) is also trivial in \(\mathcal{V}_{n+1}^+ \).

4. Class groups and the Kervaire-Murthy conjectures

In this section we will prove that \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \cong \mathcal{V}_n^+ / (\mathcal{V}_n^+)^p \). Here \(A(p) := \{ x \in A : x^p = 1 \} \). It follows from Theorem 2.1 that \(\mathcal{V}_n^+ / (\mathcal{V}_n^+)^p \) has \(r_{n-1} \) generators, and it was proved in [K-M] that \(\text{Char}(\mathcal{V}_n^+) \) can be embedded into \(\text{Cl}^{[p]} \mathbb{Q}(\zeta_{n-1}) \).

So, in order to prove the result we need, it suffices to prove the following

Theorem 4.1. There exists an embedding \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \to \text{Char}(\mathcal{V}_n^+) \).

Proof. First note that all our maps, \(g_n, f_n, N_n \) etc and rings \(A_n \) and can be extended \(p \)-adically. Recall that \(A_n(p) \) is defined by

\[
A_n(p) := \frac{\mathbb{Z}_p[x]}{(x^{p^{n-1}} - x^{p^{n-1}-1})}
\]

We have a commutative diagram

\[
\begin{array}{ccc}
A_{n-1}(p) & \xrightarrow{g_{n-1}} & \mathbb{Z}_p[\zeta_{n-1}] \\
\downarrow{j_{n-1}} & & \downarrow{f_{n-1}} \\
A_n(p) & \xrightarrow{g_n} & D_n
\end{array}
\]

Considering pairs \((a, N_{n-1}(a))\), where \(a \in \mathbb{Z}_p[\zeta_{n-1}] \), we can embed \(\mathbb{Z}_p[\zeta_{n-1}]^\ast \) into \(A_{n,1}^\ast \). In [S2] it was proved that \(D_n^\ast \) is isomorphic to \(\mathbb{Z}_p[\zeta_{n-1}]^\ast / U_{n-1, p^{n-1}-1}(p) \). We hence have the following proposition

Proposition 4.2.

\[
\mathcal{V}_n \cong \frac{\mathbb{Z}_p[\zeta_{n-1}]^\ast}{U_{n-1, p^{n-1}-1}(p) \cdot g_n(\mathbb{Z}[\zeta_{n-1}]^\ast)}.
\]

Now for any valuation \(\omega \) of \(K_{n-1} = \mathbb{Q}(\zeta_{n-1}) \) and any \(a, b \in \mathbb{Q}(\zeta_{n-1})^\ast \) we have the norm residue symbol \((a, b)_\omega\) with values in the group of \(p \)-th (not \(p^n \)) roots of unity. Let \(\omega = \lambda_{n-1} = (\zeta_{n-1} - \zeta_{n-1}^{-1}) \) and let \(\eta_k = 1 - \lambda_{n-1}^{-k} \). Then

\[
(\eta_i, \eta_j)_{\lambda_{n-1}} = (\eta_i, \eta_{k+j})_{\lambda_{n-1}}(\eta_{k+j}, \eta_j)_{\lambda_{n-1}}(\eta_{k+j}, \lambda_{n-1})_{\lambda_{n-1}}^{-j}
\]

It follows that \((a, b)_{\lambda_{n-1}} = 1\) if \(a \in U_{n-1,k}, b \in U_{n-1,s} \) and \(k + s > p^n \). Further, \((\eta_{p^n}, \lambda_{n-1})_{\lambda_{n-1}} = \zeta_0\) and therefore \((\eta_i, \eta_j)_{\lambda_{n-1}} \neq 1\) if \(i + j = p^n, j \) is co-prime to \(p \).
Let \(\alpha \) be an ideal in \(\mathbb{Z}[\zeta_{n-1}] \) co-prime to \(\lambda_{n-1} \) and such that \(\alpha^p = (q) \), where \(q = 1 + \lambda_{n-1}^2 t \in \mathbb{Z}[\zeta_{n-1}] \) (we can choose such \(q \) since \(\zeta_{n-1} = 1 + \lambda_{n-1} \zeta_{n-1}(1 + \zeta_{n-1})^{-1} \) and \(\zeta_{n-1}(1 + \zeta_{n-1})^{-1} \in \mathbb{Z}[\zeta_{n-1}]^* \)). Define the following action of \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \) on \(\mathcal{V}^+_{n-1,2,(p)} \):

\[
\tau_\alpha(v) = (v, q)_{\lambda_{n-1}}
\]

Let us prove that this action is well-defined. First of all it is independent of the choice of the representative \(\alpha \) in \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \) because if we use \(r\alpha \) instead of \(\alpha \) then \((v, r\alpha q)_{\lambda_{n-1}} = (v, q)_{\lambda_{n-1}} \).

The action is independent of the choice of \(q \) by the following reason: another generator of \(\alpha^p \), which is 1 modulo \(\lambda_{n-1}^2 \), differs from “the old” \(q \) by some unit \(\gamma = 1 + \lambda_{n-1}^2 t_1 \), and it can be easily verified that \(\gamma \) is either real or \(\gamma = \zeta_{n-1}^p \gamma_1 \) with a real unit \(\gamma_1 \). Hence we must consider \(\tau_{\gamma q}(v) \) for real \(\gamma \). In other words we have to prove that \((v, \gamma q)_{\lambda_{n-1}} = 1 \). But if the latter is untrue, then \((v, \gamma)_{\lambda_{n-1}} = \zeta_0 \), which is not consistent with the action of the “complex conjugation” \((v, \gamma) \) are real, while \(\zeta_0 \) is not real).

Clearly \((U_{n-1, p^{n-1},(p)}, q)_{\lambda_{n-1}} = 1 \). It remains to prove that \((\gamma, q)_{\lambda_{n-1}} = 1 \) for any unit \(\gamma \) and we will obtain an action of \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \) on \(\mathcal{V}^+_{n} \). For this consider a field extension \(K_{n-1}(q^{1/p})/K_{n-1} \). Since \((q) = \alpha^p \), it can ramify in \(\lambda_{n-1} \) only. Then clearly \((\gamma, q)_{\omega} = 1 \) for any \(\omega \neq \lambda_{n-1} \) and it follows from the product formula that \((\gamma, q)_{\lambda_{n-1}} = 1 \).

Therefore \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \) acts on \(\mathcal{V}^+_{n} \) and obviously \(\tau_\alpha \beta = \tau_\alpha \tau_\beta \).

The last stage is to prove that any \(\alpha \in \text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \) acts non-trivially on \(\mathcal{V}^+_{n} \). Let \((q) = \alpha^p \) and let \(q = 1 + \lambda_{n-1}^k t \) with some \(k > 1 \) and \(t \), co-prime to \(\lambda_{n-1} \).

We first prove that \(k < p^n - 1 \). Assume that \(k > p^n - 1 \). Then the field extension \(K_{n-1}(q^{1/p})/K_{n-1} \) is unramified. It is well-known that if \(p \) is semi-regular, then \(K_{n-1}(q^{1/p}) = K_{n-1}(\gamma^{1/p}) \) for some unit \(\gamma \). Kummer’s theory says that \(q = \gamma^p \) and then obviously \(\alpha = (r) \), i.e. \(\alpha \) is a principal ideal. So, it remains to prove that the case \(k = p^n - 1 \) is impossible. For this consider \(\zeta_{n-1} \) and take into account that \(\zeta_{n-1} = 1 + \lambda_{n-1} \zeta_{n-1}(1 + \zeta_{n-1})^{-1} \). Then clearly it follows from the properties of the local norm residue symbol \((,)_n \) that \((\zeta_{n-1}, q)_{\lambda_{n-1}} \neq 1 \). On the other hand \((\zeta_{n-1}, q)_{\omega} = 1 \) for any \(\omega \neq \lambda_{n-1} \) because \(\zeta_{n-1} \) is a unit and the extension \(K_{n-1}(q^{1/p})/K_{n-1} \) is unramified in \(\omega \). Therefore \((\zeta_{n-1}, q)_{\lambda_{n-1}} = 1 \) by the product formula and the case \(k = p^n - 1 \) is impossible and \(k < p^n - 1 \).

Now let us consider the cyclic subgroup of \(\text{Cl} \mathbb{Q}(\zeta_{n-1})(p) \) generated by \(\alpha \) and all the \(q_i \) which generate all \(\alpha^{p^s} \) for non-trivial \(\alpha^s \) (i.e. \(s \) is co-prime to \(p \)). Let us choose that \(q \in U_{n-1,k,(p)} \), which has the maximal value of \(k \).
Then $gcd(k, p) = 1$ (otherwise consider $q(1 - i^{k/p}_{n-1})^p$). Next we prove that k is odd. If untrue, consider the following element from our set of $\{q_i\}$, namely $q/\sigma(q)$, where σ is the complex conjugation. Easy computations show that if k is even for q, then $q/\sigma(q) \in U_{n-1, s[p]}$ with $s > k$. On the other hand $q/\sigma(q)$ is in our chosen set of $\{q_i\}$ because it generates some ideal from the class of α^2 since $Cl \mathbb{Q}(\zeta_{n-1})(p) = Cl \mathbb{Q}(\zeta_{n-1})(p)^\cdot$. Therefore we have proved that k is odd. Then $(\eta_{p^n-k}, q) \neq 1$ and this means that η_{p^n-k} is a non-trivial element of V_n^+ for which $\tau_\alpha(\eta_{p^n-k}) \neq 1$.

The theorem is proved.

Recall that one of the Kervaire-Murthy conjectures was that $V_n^+ \cong Cl[p] \mathbb{Q}(\zeta_{n-1})$. Now we partially solve this conjecture.

Corollary 4.3. $Cl \mathbb{Q}(\zeta_{n-1})(p) \cong V_n^+/(V_n^+)^p \cong (\mathbb{Z}/p\mathbb{Z})^{r_{n-1}}$ (see Section 2 for the definition of r_{n-1}).

Proof. It remains to prove the second isomorphism only, which follows from Theorem 2.1.

Now it is clear that the Assumption 2 from [H-S], which we used there to describe V_n^+, is valid for any semi-regular prime.

Corollary 4.4. Any unramified extension of $\mathbb{Q}(\zeta_{n-1}) = K_{n-1}$ of degree p is of the form $K_{n-1}(e^{1/p})/K_{n-1}$, where e is a unit satisfying $e = 1 + \lambda_{n-1}^{p^{n+1}}t$.

Finally we obtain Kummer's Lemma for semi-regular primes

Corollary 4.5. Let a unit $e \in \mathbb{Z}[\zeta_{n-1}]^*$ satisfy $e \equiv r^p \mod \lambda_{n-1}^{p^{n-1}}$. Then $e = \gamma_p \gamma_1$ with units γ_1, gamma_1 and $\gamma_1 \equiv 1 \mod \lambda_{n-1}^{p^{n+1}}$.

References

[H] Helenius, Ola *Kummers Lemma and Picard Groups of Integer Group Rings*

[H-S] O. Helenius and A. Stolin, *Unit Bases in Integer Group Rings and the Kervaire-Murthy Conjectures*

Department of Mathematics, Chalmers University of Technology and Göteborg University, SE-41296 Göteborg, Sweden

E-mail address: olaha@math.chalmers.se, astolin@math.chalmers.se