PICARD GROUPS OF INTEGER GROUP RINGS AND UNITS IN CYCLOTOMIC FIELDS

OLA HELENIUS AND ALEXANDER STOLIN

ABSTRACT. In 1977 Kervaire and Murthy presented conjectures regarding $K_0\mathbb{Z}C_{p^n}$, where C_{p^n} is the cyclic group of order p^n and p a semi-regular prime. There is a group V_n that injects into $\tilde{K}_0\mathbb{Z}C_{p^n}\cong\operatorname{Pic}\mathbb{Z}C_{p^n}$. V_n is a canonical quotient of an in some sense simpler group \mathcal{V}_n . Both groups split in a "positive" and "negative" part. While V_n^- is well understood there is still no complete information on V_n^+ . In a previous paper we gave the explicit structure of \mathcal{V}_n^+ under some different extra assumption on the semi-regular prime p. Here we extend this result to all semi-regular primes. We also present results on the structure of the real units in $\mathbb{Z}[\zeta_n]$, prove that the number of generators of \mathcal{V}_n^+ coincides with the number of generators of $\operatorname{Cl}^{(p)}\mathbb{Q}(\zeta_{n-1})$ and prove that the extra assumption about an explicit form of the elements generating all unramified extensions of $\mathbb{Q}(\zeta_n)$ of degree p (which we used in the previous paper) is valid for all semi-regular primes.

1. Introduction

This paper is an extension of a previous paper, [H-S], from the authors. We refer you there for some history and more explicit notation.

Let p be an odd semi-regular prime, let C_{p^n} be the cyclic group of order p^n and let ζ_n be a primitive p^{n+1} -th root of unity. Kervaire and Murthy prove in [K-M] that there is an exact sequence

$$0 \to V_n^+ \oplus V_n^- \to \operatorname{Pic} \mathbb{Z} C_{p^{n+1}} \to \operatorname{Cl} \mathbb{Q}(\zeta_n) \oplus \operatorname{Pic} \mathbb{Z} C_{p^n} \to 0,$$

where

$$V_n^- \cong C_{p^n}^{\frac{p-3}{2}} \times \prod_{j=1}^{n-1} C_{p^j}^{\frac{(p-1)^2 p^{n-1-j}}{2}}.$$

and $\operatorname{Char}(V_n^+)$ injects canonically in the *p*-component of the ideal class group of $\mathbb{Q}(\zeta_{n-1})$. The latter statement is proved with V_n^+ replaced by a group \mathcal{V}_n^+ , where V_n^+ is a canonical quotient of \mathcal{V}_n^+ (which is obviously enough).

¹⁹⁹¹ Mathematics Subject Classification. 11R65, 11R21, 19A31. Key words and phrases. Picard Groups, Integral Group Rings.

Under an extra assumption on the prime p (concerning the Iwasawa-invariants of p), Ullom proved in 1978 in [U] that $V_n^+ \cong (\mathbb{Z}/p^n\mathbb{Z})^{r(p)} \oplus (\mathbb{Z}/p^{n-1}\mathbb{Z})^{\lambda-r(p)}$, where λ is one of the Iwasawa invariants. In [H-S] we, among other things, proved that under a certain condition on the p-rank of the class groups $\mathrm{Cl}^{(p)} \mathbb{Q}(\zeta_n)$ (a weaker condition than the one Ullom uses) we have

$$\mathcal{V}_n^+ \cong \left(\frac{\mathbb{Z}}{p^n \mathbb{Z}}\right)^{r_0} \oplus \left(\frac{\mathbb{Z}}{p^{n-1} \mathbb{Z}}\right)^{r_1 - r_0} \oplus \ldots \oplus \left(\frac{\mathbb{Z}}{p \mathbb{Z}}\right)^{r_{n-1} - r_{n-2}}.$$

The numbers r_k are defined as the \log_p of orders of certain groups of units in $\mathbb{Z}[\zeta_k]$ and our assumption is exactly that $r_k = \operatorname{rank}_p \operatorname{Cl}^{(p)} \mathbb{Q}(\zeta_k)$.

In this paper we will show that \mathcal{V}_n^+ is given by the formula above for all semi-regular primes. Throughout this paper we assume that p is semi-regular.

2. \mathcal{V}_n^+ for semi-regular primes

We start by defining the numbers r_n by

$$|U_{n,p^{n+1}-1}/(U_{n,p^n+1})^{(p)}|=p^{r_n}.$$

Here $U_{n,k}$ is the group of all real units in $\mathbb{Z}[\zeta_n]^*$ that are congruent to 1 modulo λ_n^k where $\lambda_n = (\zeta_n - 1)$.

Our main theorem is, as mentioned, the following.

Theorem 2.1. For every semi-regular prime p

$$\mathcal{V}_n^+ \cong \left(\frac{\mathbb{Z}}{p^n \mathbb{Z}}\right)^{r_0} \oplus \left(\frac{\mathbb{Z}}{p^{n-1} \mathbb{Z}}\right)^{r_1 - r_0} \oplus \ldots \oplus \left(\frac{\mathbb{Z}}{p \mathbb{Z}}\right)^{r_{n-1} - r_{n-2}}$$

Before we can prove this we need to recall some notation from [H-S]. Let for $k \geq 0$ and $l \geq 1$

$$A_{k,l} := \frac{\mathbb{Z}[x]}{\left(\frac{x^{p^k+l}-1}{x^{p^k}-1}\right)}$$

and

$$D_{k,l} := A_{k,l} \mod p.$$

We denote the class of x in $A_{k,l}$ by $x_{k,l}$ and in $D_{k,l}$ by $\bar{x}_{k,l}$. Sometimes we will, by abuse of notation, just denote classes by x. Note that $A_{n,1} \cong \mathbb{Z}[\zeta_n]$ and that

$$D_{k,l} \cong \frac{\mathbb{F}_p[x]}{(x-1)^{p^{k+l}-p^k}}.$$

By a generalization of Rim's theorem (see for example [S1]) Pic $\mathbb{Z}C_{p^n} \cong \operatorname{Pic} A_{0,n}$ for all $n \geq 1$ and this is why these rings are relevant for us. It is easy to see that there exists a pull-back diagram

(2.1)
$$A_{k,l+1} \xrightarrow{i_{k,l+1}} \mathbb{Z}[\zeta_{k+l}]$$

$$\downarrow j_{k,l+1} \qquad \downarrow N_{k,l} \qquad \downarrow f_{k,l}$$

$$A_{k,l} \xrightarrow{g_{k,l}} D_{k,l}$$

where $i_{k,l+1}(x_{k,l+1}) = \zeta_{k+l}$, $j_{k,l+1}(x_{k,l+1}) = x_{k,l}$, $f_{k,l}(\zeta_{k+l}) = \bar{x}_{k,l}$ and $g_{k,l}$ is just taking classes modulo p. The norm-maps $N_{k,l}$ are defined in [H-S], Proposition 2.1, and by Lemma 2.5 in the same paper we have an injection $\mathbb{Z}[\zeta_{k+l-1}]^* \to A_{k,l}^*$. In what follows, we identify $\mathbb{Z}[\zeta_{k+l-1}]^*$ with its image in $A_{k,l}^*$.

In the rest of this paper we will only need the the rings $A_{k,l}$ and $D_{k,l}$ in the case k=0. Therefore we will simplify the notation a little by setting $A_l:=A_{0,l}$, $D_l:=D_{0,l}$, $g_l:=g_{0,l}$, $f_l:=f_{0,l}$, $i_l:=i_{0,l}$, $j_l:=j_{0,l}$ and $N_l:=N_{0,l}$.

By abuse of notation we let for each group (or ring) c denote the homomorphism defined by sending a generator x to x^{-1} (this is complex conjugation in $\mathbb{Z}[\zeta_n]$). We denote by G^+ the group of elements of G invariant under c.

In our setting, \mathcal{V}_n^+ is defined by

(2.2)
$$\mathcal{V}_n^+ := \frac{\tilde{D}_n^{*+}}{g_n(U_{n-1,1})},$$

where \tilde{D}_n^{*+} is the group of all units in D_n^{*+} congruent to 1 modulo (x-1).

Note that this definition is not the same as the one used in [K-M]. They instead look at

(2.3)
$$\mathcal{V}'_n := \frac{(\mathbb{F}_p[x]/(x^{p^n} - 1))^*}{\operatorname{Im}\{\mathbb{Z}[\zeta_n]^* \to (\mathbb{F}_p[x]/(x^{p^n} - 1))^*\}}$$

The confusion regarding the two definitions of \mathcal{V}_n is cleared up by the following.

Proposition 2.2. The definitions of \mathcal{V}_n and \mathcal{V}'_n (2.3 and 2.2) coincide.

Proof. The kernel of the surjection $(\mathbb{F}_p[x]/(x-1)^{p^n})^* \to (\mathbb{F}_p[x]/(x-1)^{p^n-1})^* = D_n^*$ consist of units congruent to $1 \mod (x-1)^{p^n-1}$. Let $\eta := \zeta_n^{\frac{p^{n+1}+1}{2}}$. Then $\eta^2 = \zeta_n$ and $c(\eta) = \eta^{-1}$. Let $\epsilon_n := \frac{\eta^{p^n+1}-\eta^{-(p^n+1)}}{\eta-\eta^{-1}}$. One can by a direct calculation show that $\epsilon_n = 1 + (\zeta_n - 1)^{p^n-1} + t(\zeta_n - 1)^{p^n}$ for some $t \in \mathbb{Z}[\zeta_n]$. If $a = 1 + a_{p^n-1}(x_n - 1)^{p^n-1} \in (\mathbb{F}_p[x]/(x-1)^{p^n})^*$, $a_{p^n-1} \in \mathbb{F}_p^*$, Then it is just a matter of calculations

to show that $a = f_n(\epsilon)^{a_{p^n-1}}$. This shows that $(\mathbb{F}_p[x]/(x-1)^{p^n})^*/f'_n(\mathbb{Z}[\zeta_n]^*) \cong (\mathbb{F}_p[x]/(x-1)^{p^n-1})^*/f_n(\mathbb{Z}[\zeta_n]^*)$. Since

is commutative and N (which is the restriction of the usual norm-map) is surjective when p is semi-regular (a well known fact) the proposition follows.

We now introduce some techniques from [K-M].

Let $P_{0,n}$ be the group of principal fractional ideals in $\mathbb{Q}(\zeta_n)$ prime to λ_n . Let H_n be the subgroup of fractional ideals congruent to 1 modulo $\lambda_n^{p^n}$. In [K-M], p. 431, it is proved that there exists a canonical isomorphism

$$J: \frac{P_{0,n}}{H_n} \to \frac{(\mathbb{F}_p[x]/(x-1)^{p^n})^*}{f_n'(\mathbb{Z}[\zeta_n]^*)} =: \mathcal{V}_n'.$$

Now consider the injection $\iota : \mathbb{Q}(\zeta_{n-1}) \to \mathbb{Q}(\zeta_n)$, $\zeta_{n-1} \mapsto \zeta_n^p$. It is clear we get an induced map $P_{0,n-1} \to P_{0,n}$. Since ι will map λ_{n-1} to λ_n^p it is easy to see that we get an induced homomorphism

$$\alpha'_n: \frac{P_{0,n-1}}{H_{n-1}} \to \frac{P_{0,n}}{H_n}.$$

Considered as a map $\alpha'_n: \mathcal{V}'_{n-1} \to \mathcal{V}'_n$ this map acts as $(\mathbb{F}_p[x]/(x-1)^{p^{n-1}})^* \ni x_{n-1} \mapsto x_n^p \in (\mathbb{F}_p[x]/(x-1)^{p^n})^*$. Since $\mathcal{V}'_n \cong \mathcal{V}_n$ (see Proposition 2.2) we can consider this as a homomorphism $\alpha_n: \mathcal{V}_{n-1} \to \mathcal{V}_n$. Clearly we then get that α is induced by $x_{n-1} \to x_n^p$ Note however, that $x_{n-1} \mapsto x_n^p$ does not induce a homomorphism $D_{n-1}^* \to D_n^*$.

Lemma 2.3. The map α_n is injective on \mathcal{V}_{n-1}^+ .

Proof. In this proof, denote $\mathbb{Q}(\zeta_n)$ by K_n . Let L_n be the p-part of the Hilbert class field of K_n and let M_n/K_n be the p-part of the ray class field extension associated with the ray group H_n . In other words we have the following Artin map

$$\Phi_{K_n}: I_0(K_n) \to Gal(M_n/K_n),$$

which induces an isomorphism $(I_0(K_n)/H_n)^{(p)} \to Gal(M_n/K_n)$. Here $I_0(K_n)$ is the group of ideals of K_n which are prime to λ_n , and $(I_0(K_n)/H_n)^{(p)}$ is the p-component of $I_0(K_n)/H_n$.

The following facts were proved in [K-M]:

- 1) $Gal^+(M_n/K_n) \cong Gal^+(M_n/L_n) \cong \mathcal{V}_n^+$
- 2) $M_{n-1} \cap K_n = K_{n-1}$ (lemma 4.4).

Obviously the field extension K_n/K_{n-1} induces a natural homomorphism

$$Gal(M_{n-1}/K_{n-1}) \cong (I_0(K_{n-1})/H_{n-1})^{(p)} \to (I_0(K_n)/H_n)^{(p)} \cong Gal(M_n/K_n)$$

which we denote with some abuse of notations by α_n . Therefore it is sufficient to prove that the latter α_n is injective. First we note that the natural map $F: Gal(M_{n-1}/K_{n-1}) \to Gal(M_{n-1}K_n/K_n)$ is an isomorphism. Let us prove that $M_{n-1}K_n \subset M_n$. Consider the Artin map $\Phi'_{K_n}: I_0(K_n) \to Gal(M_{n-1}K_n/K_n)$ (of course F is induced by the canonical embedding $I_0(K_{n-1}) \to I_0(K_n)$). We have to show that the kernel of Φ'_{K_n} contains H_n .

To see this note that $F^{-1}(\Phi'_{K_n}(s)) = \Phi_{K_{n-1}}(N_{K_n/K_{n-1}}(s))$ for any $s \in I_0(K_n)$. If $s \in H_n$ then without loss of generality $s = 1 + \lambda_n^p t$, $t \in \mathbb{Z}[\zeta_n]$, and thus, $N_{K_n/K_{n-1}}(s) = 1 + pt_1$ for some $t_1 \in \mathbb{Z}[\zeta_{n-1}]$. Now it is clear that $\Phi'_{K_n}(s) = 0$ since $\Phi_{K_{n-1}}(1+pt_1) = 0$ (0 is the identical automorphism).

It follows that the identical map $id: I_0(K_n) \to I_0(K_n)$ induces the canonical Galois surjection $Gal(M_n/K_n) \to Gal(M_{n-1}K_n/K_n)$ and we have the following commutative diagram:

If $\alpha_n(a) = 0$ then F(a) = 0 and a = 0 because F is an isomorphism which proves the lemma.

Proof of Theorem 2.1. Induction with respect to n. If n=1 the result is known from for example [K-M]. Suppose the result holds with the index equal to n-1. Lemma 3.10 in [H-S] tells us that we have a surjection $\pi_n: \mathcal{V}_n^+ \to \mathcal{V}_{n-1}^+$ and Proposition 3.11 in [H-S] that $\ker \pi_n$ isomorphic to $C_p^{r_{n-1}}$. Suppose $1+(x_{n-1}-1)^k$ is non-trivial in \mathcal{V}_{n-1}^+ . Since

(2.4)
$$\mathbb{Z}[\zeta_{n-1}]^{*+} \longrightarrow D_n^{*+}$$

$$\downarrow \tilde{N}_{n,1} \qquad \qquad \downarrow$$

$$\mathbb{Z}[\zeta_{n-2}]^{*+} \longrightarrow D_{n-1}^{*+}$$

is commutative $1 + (x_n - 1)^k$ is non-trivial in \mathcal{V}_n^+ . Moreover, since α_n is injective,

$$\alpha(1 + (x_{n-1} - 1)^k) = 1 + (x_n^p - 1)^k = (1 + (x_n - 1)^k)^p$$

is non-trivial in \mathcal{V}_n^+ . Now let $1+(x_{n-1}-1)^{s_i}$ generate \mathcal{V}_{n-1}^+ and suppose $\pi_n(a_i)=1+(x_{n-1}-1)^{s_i}$. Since $\pi_n(1+(x_n-1)^{s_i})=1+(x_{n-1}-1)^{s_i}$ we get $a_i=b_i(1+(x_n-1)^{s_i})$ for some $b_i\in\ker\pi_n$, which implies that b_i^p is trivial. Suppose $1+(x_{n-1}-1)^{s_i}$ has exponent p^k for some $1\leq k\leq n-1$. To prove the theorem we need to prove that a_i has exponent p^{k+1} . Since $\ker\pi_n\cong C_p^{r(p)}$, a_i has exponent less than or equal to p^{k+1} . But $(1+(x_{n-1}-1)^{s_i})^{p^k}=1+(x_{n-1}-1)^{p^ks_i}$ is non-trivial in \mathcal{V}_{n-1}^+ so

$$a_i^{p^{k+1}} = b_i^{p^{k+1}} (1 + (x_n - 1)^{s_i})^{p^{k+1}} = (1 + (x_n - 1)^{s_i})^{p^{k+1}}$$

is non-trivial in \mathcal{V}_n^+ by above, which is what we needed to show

As an application of Theorem 2.1 we can get some results on the unit basis in D_m previously obtained in [H-S] under an extra assumption. Let

$$U_{n,k} := \{ \gamma \in \mathbb{Z}[\zeta_n]^* : \gamma = 1 \mod (\lambda_n^k) \}$$

Define $\varphi_N: U_{n,p^{n+1}-p^{n-N}} \to D_{n-N}^+$ by

$$\varphi_N(\epsilon) = g_{n-N}(N_{n-N}(\frac{1}{p}\tilde{N}_{n,N}(\frac{\epsilon - 1}{\lambda_n^{p^{n+1} - p^{n-N+1}}}))).$$

In [H-S], p. 24, it is proved that φ_N is a homomorphism. The following corollary now follows immediately in the same way as Proposition 5.8 of [H-S]

Corollary 2.4. Suppose p is semi-regular. Let N be as in Proposition 3.7 in [H-S] and let $n \geq N+1$. Then there exists a basis for D_{n-N}^+ consisting of elements $\varphi_N(\gamma)$ where $\gamma \in U_{n,p^{n+1}-p^{n-N}}$.

Furthermore, since $D_{k,i} = A_{k,i}/(p)$, we can get a p-adic version of this result. Let

$$A_{k,i,(p)} := \frac{\mathbb{Z}_p[X]}{\left(\frac{x^{p^{k+i}}-1}{x^{p^k}-1}\right)}$$

be the *p*-adic completion of $A_{k,i}$ and let $A_{k,i}^+$ be "the real elements" of $A_{k,i}$. Let $U_{n,k,(p)} := \{ \text{real } \epsilon \in \mathbb{Z}_p[\zeta_n]^* : \epsilon \equiv 1 \mod \lambda_n^k \}$ and let us define φ_N' : $U_{n,p^{n+1}-p^{n-N},(p)} \to (A_{0,n-N,(p)})^+$ by

$$\varphi'_{N}(\epsilon) = N_{0,n-N}(\frac{1}{p}\tilde{N}_{n,N}(\frac{\epsilon - 1}{\lambda_{n}^{p^{n+1} - p^{n-N+1}}})).$$

where the norm-maps are the obvious p-adic extensions of our usual norm-maps.

Corollary 2.5. Suppose p is semi-regular. There exists a basis for $(A_{0,n-N,(p)})^+$ consisting of elements $\varphi'_N(\gamma)$ where γ are global units, $\gamma \in U_{n,p^{n+1}-p^{n-N}}$.

An interesting remark on Theorem 2.1 is that this result might be thought of as an indication on that Assumption 2 in [H-S] is true. We will prove this later in this paper and therefore we will find a number of generators of the p-part of $Cl^{(p)}\mathbb{Q}(\zeta_n)$.

Another interesting remark is that for every semi-regular prime \mathcal{V}_n^+ is (isomorphic to) a subgroup of $\mathrm{Cl}^{(p)} \mathbb{Q}(\zeta_{n-1})$ (under the injection from [K-M]), a subgroup which we now by Theorem 2.1 now explicitly. Kervaire and Murphy also conjectures that \mathcal{V}_n^+ is actually isomorphic to $\mathrm{Cl}^{(p)} \mathbb{Q}(\zeta_{n-1})$. If this is true Theorem 2.1 of course would provide an explicit description of this class group.

3. An application to units in $\mathbb{Z}[\zeta_n]$

The techniques we developed in [H-S] also lead to some conclusions about the group of units in $\mathbb{Z}[\zeta_n]^*$. From the previous results we know that

$$\mathcal{V}_{n+1}^{+} = \frac{\tilde{D}_{n+1}^{*+}}{g_{n+1}(U_{n,1})} \cong \frac{\tilde{D}_{n+1}^{*+}}{\frac{U_{n,2}}{U_{n,p^{n+1}-1}}}$$

Let $s_{n,p^{n+1}-1}=|U_{n,1}/U_{n-1,p^{n+1}-1}|$. A naive first guess would be that $s_{n,p^{n+1}-1}=\frac{p^{n+1}-1-2}{2}=\frac{p^{n+1}-3}{2}$ which is the maximal value of this number. Incidentally, this maximal value equals $|\tilde{D}_{n+1}^{*+}|$. In this case we say that $U_{n,1}/U_{n,p^{n+1}-1}$ is full, but this happens if and only if p is a regular prime. In other words \mathcal{V}_{n+1}^+ is trivial if and only if p is a regular. This fact is by the way proved directly in [H]. For non-regular (but as before semi-regular) primes, what happens is that there are "missed places" in $U_{n,1}/U_{n,p^{n+1}-1}$. We define 2k as a missed place (at level n) if $U_{n,2k}/U_{n,2k+2}$ is trivial. Lemma 3.2 in [H-S] reads $U_{n,p^{n+1}-1}=U_{n,p^{n+1}+1}$ and hence provides an instant example of a missed place, namely $p^{n+1}-1$. It follows from our theory that every missed place corresponds to a non-trivial element of \mathcal{V}_{n+1}^+ . By Lemma 5.2 of [H-S] we have that for all $1 \leq 2s \leq p^{n+1}-1$, ϵ is in $U_{n,2s}$ if and only if an only if $g_{n+1}(\epsilon) \in D_{n+1}^{*+}(2s)$, where $D_{n+1}^*(k) = \{a: a=1 \mod (x_{n+1}-1)^k\}$. Theorem 2.1 and its proof hence give us specific information about the missed places which we will formulate in a Theorem below. We start with a simple lemma.

Lemma 3.1. Let $1 \le s \le n+1$ and $1 \le k < s$. Then $p^s - p^k$ is a missed place at level n if and only if s = n+1 and k = 1.

Proof. Let
$$\eta:=\zeta_n^{(p^{n+1}+1)/2}$$
. Then $\eta^2=\zeta_n$ and $c(\eta)=\eta^{-1}$. Define
$$\epsilon:=\frac{\eta^{p^s+p^k}-\eta^{-(p^s+p^k)}}{\eta^{p^k}-\eta^{-(p^k)}}.$$

Clearly, ϵ is real and since

$$\epsilon = \eta^{-p^s} \frac{\zeta_n^{p^s + p^k} - 1}{\zeta_n^{p^k} - 1}$$

 ϵ is a unit. By a calculation one can show that $\epsilon \in U_{n,p^s-p^k} \setminus U_{n,p^s-p^k+2}$.

Define for $k = 0, 1, \ldots$ the k-strip as the numbers $p^k + 1, p^k + 3, \ldots, p^{k+1} - 1$.

Theorem 3.2. At level n we have the following

- 1. Let $0 \le k \le n$. In the k-strip there are exactly r_k missed places.
- 2. The missed places in the 0-strip are in one to one correspondence with the numbers $2i_1, \ldots, 2i_{r_0}$ such that the numerator of the Bernoulli-number B_{2i_k} (in reduced form) is divisible by p.
- 3. Suppose i_1, \ldots, i_{r_k} are the missed places in the k-strip. Then pi_1, \ldots, pi_{r_k} are missed places in the k+1 strip. The other $r_{k+1}-r_k$ missed places in the k+1 strip are not divisible by p.

Proof. We know (from for example Proposition 4.6 of [H-S]) that we have r_0 missed places in the 0-strip at level 0 and that they correspond exactly to the indexes of the relevant Bernoulli numbers. An easy induction argument using the map π_n to lift the generators of \mathcal{V}_{n-1}^+ to \mathcal{V}_n^+ show that we have r_0 missed places in the 0-strip at every level. This proves 2. To prove 1 we now only need prove that the "new" missed places we get when we go from level n-1 to n all end up in the n-strip. First, p^n-1 can not be a missed place (at level n) by the lemma above. It follows from our theory that the "new" missed places correspond to the generators of \mathcal{V}_{n+1}^+ of exponent p. We need to show that each such generators a_l , $l=1,\ldots,r_{n-1}-r_{n-2}$, belong to $D_{n+1}^{*+}(p^n+1)$. Suppose for a contradiction that $a_l=1+t(x_{n+1}-1)^s$, $s\leq p^n-1$, is a "new" generator. Then $\pi_{n+1}(a_l)$ is neccessarily trivial in \mathcal{V}_n^+ . Hence $1+t(x_n-1)^s=g_n(\epsilon)$ for some $\epsilon\in\mathbb{Z}[\zeta_{n-1}]^*$. But since the usual norm map $\tilde{N}_{n,1}$ is surjective (when p is semi-regular) and by commutativity of diagram 4.1 of [H-S] we then get $a_lg_{n+1}(\epsilon')^{-1}=b$ for some $\epsilon'\in\mathbb{Z}[\zeta_n]^*$ and $b\in\ker\{\tilde{D}_n^{*+}\to\tilde{D}_{n-1}^{*+}\}=\tilde{D}_n^{*+}(p^n-1)$. Since p^n-1 is not a missed place $b=g_{n+1}(\epsilon'')$ for some some $\epsilon'\in\mathbb{Z}[\zeta_n]^*$. But this means a_l is trivial in \mathcal{V}_{n+1}^+ which is a contradiction. We conclude that $a_l\in D_{n+1}^{*+}(p^n+1)$.

To prove β we use the map α_n to see that a missed place k at level n-1 lifts to a missed place pk at level n. To prove the rest of β it is enough to prove that no "new" missed places are divisible by p (since the rest follows inductively). As we did above it is enough to prove that if $a_l \in D_{n+1}^{*+}(s) \setminus D_{n+1}^{*+}(s+2)$ is a "new" generator of \mathcal{V}_{n+1}^+ , then p does not divide s. Now, a generator can always be chosen of the form $1 + (x_{n+1} - 1)^s$. Then an element of the form $1 + (x_{n+1} - 1)^{pk}$,

with $k \notin \{i_1, \ldots, i_{r_{n-1}}\}$ cannot be a missed place. This follows from the fact that if k is not a missed place, then $1 + (x_n - 1)^k$ is trivial in \mathcal{V}_n^+ and since α_n is injective, $1 + (x_{n+1} - 1)^{pk} = \alpha_n (1 + (x_n - 1)^k)$ is also trivial in \mathcal{V}_{n+1}^+ .

4. Class groups and the Kervaire-Murthy conjectures

In this section we will prove that $\operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p) \cong \mathcal{V}_n^+/(\mathcal{V}_n^+)^p$. Here $A(p) := \{x \in A : x^p = 1\}$. It follows from Theorem 2.1 that $\mathcal{V}_n^+/(\mathcal{V}_n^+)^p$ has r_{n-1} generators, and it was proved in [K-M] that $\operatorname{Char}(\mathcal{V}_n^+)$ can be embedded into $\operatorname{Cl}^{(p)} \mathbb{Q}(\zeta_{n-1})$.

So, in order to prove the result we need, it suffices to prove the following

Theorem 4.1. There exists an embedding $Cl \mathbb{Q}(\zeta_{n-1})(p) \to Char(V_n^+)$.

Proof. First note that all our maps, g_n, j_n, N_n etc and rings A_n and can be extended *p*-adically. Recall that $A_{n,(p)}$ is defined by

$$A_{n,(p)} := \frac{\mathbb{Z}_p[x]}{\left(\frac{x^{p^n} - 1}{x - 1}\right)}$$

We have a commutative diagram

$$(4.1) A_{n,(p)} \xrightarrow{i_n} \mathbb{Z}_p[\zeta_{n-1}]$$

$$\downarrow j_n \qquad \downarrow N_{n-1} \qquad \downarrow f_{n-1}$$

$$A_{n-1,(p)} \xrightarrow{g_{n-1}} D_{n-1}$$

Considering pairs $(a, N_{n-1}(a))$, where $a \in \mathbb{Z}_p[\zeta_{n-1}]$, we can embed $\mathbb{Z}_p[\zeta_{n-1}]^*$ into $A_{n,(p)}^*$. In [S2] it was proved that D_n^* is isomorphic to $\mathbb{Z}_p[\zeta_{n-1}]^*/U_{n-1,p^n-1,(p)}$. We hence have the following proposition

Proposition 4.2.

$$\mathcal{V}_n \cong \frac{\mathbb{Z}_p[\zeta_{n-1}]^*}{U_{n-1,p^n-1,(p)} \cdot g_n(\mathbb{Z}[\zeta_{n-1}]^*)}.$$

Now for any valuation ω of $K_{n-1} = \mathbb{Q}(\zeta_{n-1})$ and any $a, b \in \mathbb{Q}(\zeta_{n-1})^*$ we have the norm residue symbol $(a,b)_{\omega}$ with values in the group of p-th (not p^n) roots of unity. Let $\omega = \lambda_{n-1} = (\zeta_{n-1} - \zeta_{n-1}^{-1})$ and let $\eta_k = 1 - \lambda_{n-1}^k$. Then

$$(\eta_i, \eta_j)_{\lambda_{n-1}} = (\eta_i, \eta_{i+j})_{\lambda_{n-1}} (\eta_{i+j}, \eta_j)_{\lambda_{n-1}} (\eta_{i+j}, \lambda_{n-1})_{\lambda_{n-1}}^{-j}$$

It follows that $(a,b)_{\lambda_{n-1}}=1$ if $a\in U_{n-1,k}$, $b\in U_{n-1,s}$ and $k+s>p^n$. Further, $(\eta_{p^n},\lambda_{n-1})_{\lambda_{n-1}}=\zeta_0$ and therefore $(\eta_i,\eta_j)_{\lambda_{n-1}}\neq 1$ if $i+j=p^n,j$ is co-prime to p.

Let α be an ideal in $\mathbb{Z}[\zeta_{n-1}]$ co-prime to λ_{n-1} and such that $\alpha^p = (q)$, where $q = 1 + \lambda_{n-1}^2 t \in \mathbb{Z}[\zeta_{n-1}]$ (we can choose such q since $\zeta_{n-1} = 1 + \lambda_{n-1}\zeta_{n-1}(1 + \zeta_{n-1})^{-1}$ and $\zeta_{n-1}(1 + \zeta_{n-1})^{-1} \in \mathbb{Z}[\zeta_{n-1}]^*$). Define the following action of $\operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p)$ on $U_{n-1,2,(p)}^+$:

$$\tau_{\alpha}(v) = (v, q)_{\lambda_{n-1}}$$

Let us prove that this action is well-defined. First of all it is independent of the choice of the representative α in $\operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p)$ because if we use $r\alpha$ instead of α then $(v, r^p q)_{\lambda_{n-1}} = (v, q)_{\lambda_{n-1}}$.

The action is independent of the choice of q by the following reason: another generator of α^p , which is 1 modulo λ_{n-1}^2 , differs from "the old" q by some unit $\gamma = 1 + \lambda_{n-1}^2 t_1$, and it can be easily verified that γ is either real or $\gamma = \zeta_{n-1}^{pk} \gamma_1$ with a real unit γ_1 . Hence we must consider $\tau_{\gamma q}(v)$ for real γ . In other words we have to prove that $(v, \gamma)_{\lambda_{n-1}} = 1$. But if the latter is untrue, then $(v, \gamma)_{\lambda_{n-1}} = \zeta_0$, which is not consistent with the action of the "complex conjugation" (v and γ are real, while ζ_0 is not real).

Clearly $(U_{n-1,p^n-1,(p)},q)_{\lambda_{n-1}}=1$. It remains to prove that $(\gamma,q)_{\lambda_{n-1}}=1$ for any unit γ and we will obtain an action of $\operatorname{Cl}\mathbb{Q}(\zeta_{n-1})(p)$ on \mathcal{V}_n^+ . For this consider a field extension $K_{n-1}(q^{1/p})/K_{n-1}$. Since $(q)=\alpha^p$, it can ramify in λ_{n-1} only. Then clearly $(\gamma,q)_{\omega}=1$ for any $\omega\neq\lambda_{n-1}$ and it follows from the product formula that $\gamma,q)_{\lambda_{n-1}}=1$.

Therefore $\operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p)$ acts on \mathcal{V}_n^+ and obviously $\tau_{\alpha\beta} = \tau_{\alpha}\tau_{\beta}$.

The last stage is to prove that any $\alpha \in \operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p)$ acts non-trivially on \mathcal{V}_n^+ . Let $(q) = \alpha^p$ and let $q = 1 + \lambda_{n-1}^k t$ with some k > 1 and t, co-prime to λ_{n-1} .

We first prove that $k < p^n - 1$. Assume that $k > p^n - 1$. Then the field extension $K_{n-1}(q^{1/p})/K_{n-1}$ is unramified. It is well-known that if p is semi-regular, then $K_{n-1}(q^{1/p}) = K_{n-1}(\gamma^{1/p})$ for some unit γ . Kummer's theory says that $q = \gamma r^p$ and then obviously $\alpha = (r)$, i.e. α is a principal ideal. So, it remains to prove that the case $k = p^n - 1$ is impossible. For this consider ζ_{n-1} and take into account that $\zeta_{n-1} = 1 + \lambda_{n-1}\zeta_{n-1}(1+\zeta_{n-1})^{-1}$. Then clearly it follows from the properties of the local norm residue symbol $(,)_{\lambda_{n-1}}$ that $(\zeta_{n-1}, q)_{\lambda_{n-1}} \neq 1$. On the other hand $(\zeta_{n-1}, q)_{\omega} = 1$ for any $\omega \neq \lambda_{n-1}$ because ζ_{n-1} is a unit and the extension $K_{n-1}(q^{1/p})/K_{n-1}$ is unramified in ω . Therefore $(\zeta_{n-1}, q)_{\lambda_{n-1}} = 1$ by the product formula and the case $k = p^n - 1$ is impossible and $k < p^n - 1$.

Now let us consider the cyclic subgroup of $\operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p)$ generated by α and all the q_i which generate all α^{ps} for non-trivial α^s (i.e. s is co-prime to p). Let us choose that $q \in U_{n-1,k,(p)}$, which has the maximal value of k.

Then gcd(k,p)=1 (otherwise consider $q(1-\lambda_{n-1}^{k/p})^p$). Next we prove that k is odd. If untrue, consider the following element from our set of $\{q_i\}$, namely $q/\sigma(q)$, where σ is the complex conjugation. Easy computations show that if k is even for q, then $q/\sigma(q) \in U_{n-1,s,(p)}$ with s>k. On the other hand $q/\sigma(q)$ is in our chosen set of $\{q_i\}$ because it generates some ideal from the class of α^2 since $\operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p) = \operatorname{Cl} \mathbb{Q}(\zeta_{n-1})(p)^-$. Therefore we have proved that k is odd. Then $(\eta_{p^n-k},q)\neq 1$ and this means that η_{p^n-k} is a non-trivial element of \mathcal{V}_n^+ for which $\tau_{\alpha}(\eta_{p^n-k})\neq 1$.

The theorem is proved.

Recall that one of the Kervaire-Murthy conjectures was that $\mathcal{V}_n^+ \cong \operatorname{Cl}^{(p)} \mathbb{Q}(\zeta_{n-1})$. Now we partially solve this conjecture.

Corollary 4.3. Cl $\mathbb{Q}(\zeta_{n-1})(p) \cong \mathcal{V}_n^+/(\mathcal{V}_n^+)^p \cong (\mathbb{Z}/p\mathbb{Z})^{r_{n-1}}$ (see Section 2 for the definition of r_{n-1}).

Proof. It remains to prove the second isomorphism only, which follows from Theorem 2.1.

Now it is clear that the Assumption 2 from [H-S], which we used there to describe \mathcal{V}_n^+ , is valid for any semi-regular prime.

Corollary 4.4. Any unramified extension of $\mathbb{Q}(\zeta_{n-1}) = K_{n-1}$ of degree p is of the form $K_{n-1}(\epsilon^{1/p})/K_{n-1}$, where ϵ is a unit satisfying $\epsilon = 1 + \lambda_{n-1}^{p^n+1}t$.

Finally we obtain Kummer's Lemma for semi-regular primes

Corollary 4.5. Let a unit $\epsilon \in \mathbb{Z}[\zeta_{n-1}]^*$ satisfy $\epsilon \equiv r^p \mod \lambda_{n-1}^{p^n-1}$. Then $\epsilon = \gamma^p \gamma_1$ with units γ , gamma₁ and $\gamma_1 \equiv 1 \mod \lambda_{n-1}^{p^n+1}$.

REFERENCES

- [B-S] Borevich, Z.I. and Shafarevich, I.R, *Number theory*. Academic Press: London and New York, 1966.
- [H] Helenius, Ola Kummers Lemma and Picard Groups of Integer Group Rings
 The Arabian Journal of Science and Engineering, Theme Issue: Commutative Algebra,
 26 (2001) 107-118.
- [H-S] O. Helenius and A. Stolin, Unit Bases in Integer Group Rings and the Kervaire-Murthy Conjectures Preprint, Chalmers University of Technology, 2001.

- [K-M] Kervaire, M. A. and Murthy, M. P., On the Projective Class Group of Cyclic Groups of Prime Power Order.
 Comment. Math. Helvetici 52 (1977), 415-452.
- [S1] Stolin, Alexander. An Explicit Formula for the Picard Group of the Cyclic Group of $Order\ p^2$.

 Proceedings of the American Mathematical Society, Vol. 121 (1994), 375-383.
- [S2] Stolin, Alexander. On the Picard Group of the Integer Group Ring of the Cyclic p-Group and Rings Close to It.
 Commutative ring theory (Fs, 1995), Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997, pp. 443-455.
- [U] Ullom, S. Class Groups of Cyclotomic Fields and Group Rings London Math. Soc. (2) 17 (1978), no 2, 231-239.

Department of Mathematics, Chalmers University of Technology and Göteborg University, SE-41296 Göteborg, Sweden

 $E ext{-}mail\ address:$ olahe@math.chalmers.se, astolin@math.chalmers.se