ON THE PICARD GROUP OF SOME POLYNOMIAL RINGS

OLA HELENIUS

ABSTRACT. Let (, be a primitive p"*'th root of unity and let Cp» be the
cyclic group of order p™. There exists an exact sequence

0=V, @&V, = PicZCpn+1 = CLQ({,) ® Pic ZCpn — 0.

V. is explicitly known and when p is semi-regular and satisfies some mild extra

assumptions, so is V,F. In this paper we study rings Ay, := Z[z]/(pr (7)),
where py i (z) = (""" — 1)/(wpk — 1) which in some sense fits in between
Z.Cpn+1 and Z[(,]. For each such ring Ay; we exhibit an exact sequence

0=V @Vy, = PicAg; = ClQ(Cry1-1) ® Pic Agy—1 = 0

and calculate V,:,rl and kal explicitly when p is semi-regular and satisfies one
extra assumption.

1. INTRODUCTION

Let p be an odd semi-regular prime, let Cp» be the cyclic group of order p" and
let ¢, be a primitive p"*!-th root of unity. Kervaire and Murthy prove in the
article [K-M] 1977, that there exists an exact sequence

(1.1) 0= VtaV, = PicZCy+n — C1Q(¢,) @ PicZCyn — 0,

where

(p—1)2pn 177

n—1
p—3
- 2 2
Vo 202 x[]C, .
j=1

1%

and Char(V,") injects canonically in the p-component of the ideal class group of
Q(¢n—1)- The latter statement is actually proved with a group V. in place of VI,
where V,t is a canonical quotient of VI, which is obviously enough.

In [U2], Ullom proved under an extra assumption on the prime p, that

y/ y/
1.2 to () g (——
(1.2) v )" @ (pn—IZ

A—r(p)
L )

Y
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where ) is one of the Iwasawa-invariants of p and r(p) is the index of regularity of
p, that is the number of Bernoulli numbers B;, t = 1,2, ..., p—3 with nominators
(in reduced form) divisible by p.

In the articles [H-S] and [H-S2]| we use that fact that Pic ZC,» = Pic Zlz]

. ((@" -1)/(z-1))
and concentrate our efforts on @ 1)/ @) Among other things we re-prove

Ulloms result using a different technique and also find the exact structure of V!

for all semi-regular primes. An important part of our technique is that we use
ing —_2lgl Z[z] . .
not only the ring @)/ @ 1) but also @1 o) for different [ and k. It is

i jgzj](xp’“q)) and to try to find

a sequence corresponding to 1.1 and groups Vj;. In this paper we will complete
this task for semi-regular primes satisfying one extra assumption, namely that
for all n, the p-part of the ideal class group of Q(¢,) has p-rank equal to r(p). It
is known this assumption holds for all primes p < 4.000.000.

hence a natural question for us to consider Pic

Letfork >0andl>1
Z\x
Ay = H

S
wf’k—l

and
Dk,l = Ak,l mod p-

We denote the class of x in A;; by zx; and in Dy; by Zx;. Sometimes we will,
by abuse of notation, just denote classes by x. Note that A, = Z[(,] and that

~ Fp [‘/’C]
kI — (2? _ 1)pk+l_pk .

It is easy to see that there exists a pull-back diagram

Tk I+1

(1.3) Ak Z[C+1]
Jki4+1 Niea fri
Apy LN Dy,

where ixi41(Tri41) = Cotts Jgs1 (@Trge1) = Trg, Sri(Crrt) = Trg and ggy is just
taking classes modulo p. The multiplicative “norm” maps N ;, which make lower
right triangle of the diagrams commute, are defined in [H-S], Proposition 2.1. By
Lemma 2.5 in the same paper we have an injection @y, : Z[(y 1] — Aj ;- By
using the pull-back above with [ replaced by [ — 1 we see that every element of
Ay, can be represented as a pair (a,b) € Z[Cg4;—1] X Agy—1. The injection ¢y, is
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defined by ¢y (€) = (€, Ngy—1(€). In what follows, we identify Z[(j1,—1]* with its
image in Aj ;. The pull-back 1.3 induces a Maier-Vietoris exact sequence

Z[Ck)-l—l]* X A;;,l — DZ),Z — PiCAk,H_l — PiCZ[Ck_H] X PiCAk’l — PiCDk,l,

Since Dy, is local, Pic Dy; = 0 and since Z[(j4,] is a Dedekind ring, Pic Z[(j4] =
ClZ[Ck+1)- By letting Vi, be the cokernel

Dy
Vk,l = * : * *
Im{Z[Cea]* x Af, — Dy}
we get an exact sequence
(14) 0— Vk,l — Pic Ak,l—}—l — CIZ[CIC—H] x Pic Ak,l — 0.

To find Vj; we start by splitting this group in “positive” and “negative” parts.
For this we use the map c¢. By abuse of notation we let ¢ act on all our rings Z[n|,
Ay and Dy, On Z[(,], ¢ is just complex conjugation. On the other rings c is
the homomorphism induced by z +— 27! (for z = xy; € Ay, and Ty € Dy,). If
B is a ring (or group) upon which ¢ act, we define Bt = {b € B : ¢(b) = b} and
B~ ={be B : c¢(b) =b"'}. It is easy to see that ¢ commute with all maps in
diagram 1.3, hence extends to Vj;, so we can define V,:l and Vig In the obvious
ways.

It turns out that the calculation of V;7; is easy and reasonably straightforward.
Once we have found the structure of the group D, the result follows from a
generalization of Kummer’s famous result that a unit in Z[(y]* can be written as
a real unit times a power of (.

When it comes to V,:l we run into more trouble. We first consider a group V,:“J
such that V,/; is a canonical quotient of V;/; (see section 3 for a definition). We
then show that Vi, = V{, ,,. Here we use a result from [H-S] that tells us that a
unit in D,:Jlr congruent to 1 modulo a sufficiently high power of (Z —1) is actually
the image of an element from A,’;J; After this, of course, we need only use the
structure of V,,;, which we also calculated in [H-S], to get our hands on V.

Finally we prove that V., = V[, by a direct construction.

2. STRUCTURE OF Dy ; AND V,

We start off with some preliminary results.

Proposition 2.1.

Vi = D
’ Im{AZ,z - Dz,z}
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Proof. fri = Niio gy O

We now zoom in on the structure of Df ;. Clearly any element of Dy, can be
represented by ag + ai(z — 1) + ... + ape+_pr 1 (T — NPt € By, (¢ —
17" " =0, s0 |Dy,| = p*"" ?*. Every element with ao = 0 is nilpotent and
hence not a unit. Since, clearly, ay # 0 is a unit we see that every element with
ap # 0 is a unit, so [Dy | = (p — 1)p”k+l_7’k—1. F, C Dy, so Dy, = F, x D,‘;,l,
where IND,’;J is a p-group of order p”kH_pk_l. Since the map ¢ has order 2 we also
get Dy, = Dj; x D}t (for convenience we use the notation D} instead of the
maybe more correct (D;J)J’).

It is easy to see that we can also use (x —z71)!, i =0,1,...,pF" —p* — 1, as a
basis for Dy ; over [,. Using this basis we see that

DZ; ={l1+a(z— xfl) + az(x — x*1)3 + .+ apk+l,pk,1(x _ :L_fl)pk+l7pkfl}
and
DZ?{ = {1 + CL2($ — 3:—1)2 + a4(x _ $_1)4 4+ Clpk+l_pk_2(.r _ x_l)pk+1_pk_2}

so |Dy| = p@ ' P)/2 and Dyl = p@ "' -P")/2-1  For later use we need to find

the exact structure of D,:j By the structure theorem for Abelian groups,

~ k+1
(2.1) Dy =]Jcs

i=1
for some s;. Observe that if

u=1+a(z -z +ag@— a7 + ..+ apr_pp_y(x —z 1P

then

wW=1+a(z—a "W +az(z—a7 )P+ .. 4 aps1_ppr_ (T — P i e
Hence if v = 1 we must have a; = a3 = ... = aprt-1_p-1_3 = 0 so the
subset of elements in D} of order p has order p(@H =pt =)=t —pt 1)) /2

p@* =Pt /2 - Gimilarly, if we let o; denote the number of elements of
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order p’ or less we get

logp o = (pk+l2 pk) ~ phHi—1 2_ p[k—l])
k+l _ ok k+l-2 _ , [k—2]
logp02 _ (p > p)_ p 2p )
k+l _ ok -1
logp Ok+i-1 = (p 2 P ) - (p 2 )
| pk+l _ pk
08, Ok+1 = 5

where [m] = (m + |m|)/2 for an integer m. By comparing this with 2.1 we can
find the exponents s; by.

s = 2 logp 0] — logp 09
sy = 2log, o0y — log, 01 — log, 03
s3 = 2log,o03 —log, 0, —log, 04
Spyi-1 = 2 logp Ok+1-1 — logp Ok+1-2 — logp Ok+1
Sk = log, 0p1 —log, op 411
which gives us
. Pt — ph ~ 2pk+l71 _ pl-1l . P2 _ plk=2]
! 2 2 2
o phHi=1 _ ple=1] - 2pk+l—2 _ pl-2l . prti=3 _ plk=3]
2 2 2 2
3 _ o [—1+3] 2 [—1+42] —1
p b b b p
Skyi—2 = 5 -2 5 + 5
B p? — pl=i+2 2p 1
Sk+l-1 = 9 - 5
p—1
Sk+1 = T

We summarize this and some other facts proved above in a proposition.
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Proposition 2.2. |Dy,| = , 1D = p@ e D )= pHpt-1
Dyl = p@ =2 gnd |D,’;Jl“| = pkH 9/2-1, Moreover,
k-

N*— A S
el | o
=1

where

flitl k=it - 2p[k+l—i] — plk=i] . plett=i=1] _ plk—i=1]

2 2 2

p

S; =

fori=1,2,... k+1L.

The following lemma, sometimes called Kummer’s Lemma, is well known. A
proof can be found in for example [W], p 3.

Lemma 2.3. For every unit € € Z[(,|* there exists a natural number k and a
unit €, € Z[C]*" such that € = €,CF.

We now generalize this to the rings Ay .

Proposition 2.4. For every unit e € A}, there exists a natural number k and a
unit e, € A,‘;J{ such that e = era:ﬁ,l.

Proof. Induction with respect to [. If [ equals 1, this in the lemma above. Fix
I > 1 and suppose the statement holds in A}, , (for all k). Consider the dia-
gram 1.3 and let ez;1 € A}, be represented by (¢,€') € Z[(xyi]* x A}, By

the assumption there exists €. € Z[(,]*" and e, € A,ﬁ and integers k1, ko such

that € = €/.(}, and e’ = ¢! x’,?l Since the maps ¢ commute with the pull-back

dia‘gra‘m’ C((CT,(?T)) = (Erﬁer) and (el’el) ( €rs T)(Ck+l’xk l) (6’,6,) € Ak,l-l-l is
equivalent to fi;(€') = gk, (€’) and also c(fi,(€')) = c(gk,(e')). We hence get

T fraler) = T gr(e))

and
——ki 1\ _ =—k2 i
Ty fraler) = L1 gri(er)

which implies jzkf = jzkf in Dy,. Since zx; € D}, which is a p-group, this

implies xﬁll k2 — 1. Now recall that D,’;‘l do have elements of order p**' by

Proposmon 2.2 and hence it is not hard to realize that Z,; then must have
k+l This means ky = k; mod p** Th1

order p which in turn means that xk | = Ty

Now it follows that e, := (e;,e;) € A;},, and since i Y1 = (CkH,xH) we get

— k1
€kl+1 = eTxk,H—l' I
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We also have the following lemma.

Lemma 2.5. F; C Im{4}, — D; ;}

Proof. Fix arbitrary ¢ € F;. By Fermat’s little theorem, ¢ = " mod p. Con-
sider fct:ll € Ag,. Choose r, s € Z such that tr — sp* = 1. Then
ot — 1 gttt g ittt
-1 = = " _ 1=
r—1 zxt—-1 r—1
x1+spk+l —z xspk+l _ 1
N z—1 - r—1
pk+l _ 1
= 2@ D+ 1) =
z—1
PP o
= 2@ V4 41T L =0

r—1 2v* -1
in Ak,l- Since

k+1
gt 1 gt

gt —1 ot —1

.It(ril) =+ ... +£Ct + 1 € Ak,l

: zt—1 *
this shows 7= € A} ;. Now,

bt —1

. —t=a"1+ . +z+1-k=(z-1)f(z)
T —

for some polynomial f € Z[z]. Hence, in Dy we get

t 1 t 1
(=) =t = g e =
t_
_ gk,l(a; _11 _ t)pk“ = (z— 1)pk+lf(m)pk+l ~0

We are now ready to prove the first proposition about the structure of Vj .

Proposition 2.6. V= D}/ < 4, > and V,; = Di4 [ (gra(A,) N DfY).

Proof. The first statement follows directly by Lemma 2.4 since Zj; is clearly in
D,’;; The second statement follows by Lemma 2.5. O



8 OLA HELENIUS

3. THE STRUCTURE OF V;, AND V,},

In the quest for V,:“l a main role will be played by a close relative to V,;Ll, namely
;. D

N yE .
S Im{Z[Geyi ]t — Dif

where Z[Cp4i_1]*t consists of units congruent to 1 modulo (C4i_1—1). Recall that
we identify Z[(yy;—1]* with its image in A} ; under the injection ¢ : Z[Cp1-1]" —
Af s ora(€e) = (€, Ny-1(€)) (see Lemma 2.5 in [H-S]).

Our main goal for now is to find the structure of V;l. We will see that it is closely
related to the structure of V! which we have found in [H-S] (for semi-regular
primes with some extra condition) and [H-S2] (for all semi-regular primes). In
this paper we will do this under the following assumption, which is Assumption
3 in [H-S]. We will continue to call it Assumption 3 even though we don not use
any assumptions 1 and 2 here. Recall that r(p) denotes the index of regularity
of p.

Assumption 3. rank,(CI?(Q(¢,))") = r(p) for all n.

This holds for example if the Iwasawa invariant A satisfy A = r(p) which follows
from, for instance, certain congruence assumptions on Bernoulli numbers (see
page 202 in [W]) which calculations have shown holds for all p < 4000000.

Under this assumption we can prove the following theorem.

Theorem 3.1. If p is semi-reqular and Assumption 8 holds, then Vi = Vi, .

Let Dy} (s) denote the group of real units congruent to 1 modulo (Zy; — j,;})s

Proof. By using the identifications
okt * LlCryi—]” — Ab ket
and
Orpt LlCeyi1]" — Ay

we get a commutative diagram

Z[Cryi—1]*

90,k+1 9k,1

*
Dkl

*
DO,k+l P >
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where p is the natural surjection. We hence get an induced surjection
D Dt
0,k+l k,l
s — =: Vi,
90s+1(Z[Ceri-1]*) gt (Z[Ceti1]*)

Suppose a € DZ}L is trivial in V;;l, that is a = gi(e) for some € € Z[Ceri-1]*, and
that a = p(b). Then

St
P Vo gt =

p(b) = a = gru(€) = p((gok+i(€))
in DZJZ which implies
bgokri(e ') € Dyh (P —pP).
By Corollary 4.7 of [H-S] we have (when Assumption 3 holds) that
DS,}ZH(ZS)
9ok+1(Z[Ce1-1]*) N D1 (25)
k

is trivial whenever 2s > p*+ — 2pF =1 Since phtt — pb > phtt — pti=t > phtl
2p* =1 this implies bgo x1i(e ™) = gox+i(€') for some € € Z[(x4;—1]* which means
b is trivial in V(}L’ k41~ In other words, p is injective and hence an isomorphism. [

By Theorem 4.3 in [H-S] we have that when Assumption 3 holds, V} = C;T(Lp ),
We hence get the following corollary of Theorem 3.1.

Corollary 3.2. When Assumption 3 holds, Vi = C;,Eﬁ),.

The rest of this paper is devoted to proving the following theorem.

Theorem 3.3. When Assumption 8 holds, V', = V.

Proof. Any element of A} can be presented as a pair (¢, e) € Z[Cryi-1] X Agy-1.

Recall that we make Z[(1;—1]* a summand of A}, by using the map ¢, :
Z[Crri-a]* — Ay Wehave (¢, ¢) = (&, Npi—1(€)) (1, eNpg-1(e71)) = @ru(e) (1, eNgy1(e ).
What we need to show is hence that for all (1,7) € Ay} there exists € € Z[(y 1y 1]*

such that

(1,7) = (€ Ni,-1(€)) mod p.

This is equivalent to

™
|

1 mod P in Z[Ck—i—l—l]
Niy—1(e) = ymod pin Ay
Nii—1(€) —v

N—r
I

mod p in Ag;_;.
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The last condition comes from that fx;—1 = gki—1 © Ngj—1 (and gg 1 is the
surjection mod p) and we need to have

Jrg—1((e = 1)/p) = gru—1((Nky—1(€) —v)/p)
in Dk,l*l for

(6—1 Nk,l—l(E)_’Y)

p p
to hold. Since we assume (1,7) € Ag; we must have gx;—1(y) = fr—1(1) =1
in Dy, 1, that is, v = 1 mod p. What we need to prove is hence that for all
v E A;‘:;_l such that v = 1 mod p there exists € € Z[(x4; 1]* with e = 1 mod p

such that
-1 Ny, -1 1—

(31) Nk’l_l(e ) — Ik 1(6) = 7 mod p-
b p b

Let Uy, : {real € € Z[(,]* : ¢ =1 mod Af}, where ), := (¢, — 1). Recall that

€ Ak,l

in Z[(k+1-1]*, e = 1 mod p is equivalent to € = 1 mod /\ﬁk+1_pk+l_l. Consider the
map ®p; 1 1 Upyoyprstpest-1 — Dy defined by
e—1 Nk 1—1\€) — 1
Dy 1-1(€) = Nigoa ( ’ ) - — 1 mod p.

If we can prove that ®;;_; is a surjective group homomorphism, then we can
obviously for any + find e such that 3.1 holds which in turn means Theorem 3.3
is proved. We will prove the surjectivity in Proposition 3.4 below and this ends
the proof of the theorem. O

Proposition 3.4. When Assumption 3 holds, @1 is a surjective group homo-
morphism for all k > 0 and [ > 2.

This result will follow from the following lemma which is the corresponding result
for k = 0.

Lemma 3.5. When Assumption 3 holds, ®y,_1 is a surjective group homomor-
phism for alln > 2.

This is Theorem 4.4 in [H-S]. We will not re-prove it here, but for the sake of
completeness we will give some indication of how the proof goes.

We start by looking the first part of @y, 1, namely @o, 1 : Uppn_pn-1 — Dgzn_l
defined by ¢g,-1(€) = Nyn—1((e —1)/p). It is easy to prove, using our standard
commutative diagram, that the kernel is Up ,»_1 which by Lemma 3.2 in in [H-§]
equals Uy pni1. This gives us an injection

UO,p" —pn— 1

% . +
SDO’n_l . _> DO,n—l'

UO,p"—|—1
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We then prove that this map is an also surjective, that is, an isomorphism.
This is done by showing that (Up yn_pn-1)/(Uppnt1) have the “correct” number of
elements and this is one of the harder parts of the proof. In short, to prove this
we use that we have (by definition) r(p) indexes 41,4y ...4%, among 1,2...(p —
3)/2 such that the nominator of the Bernoulli number B;_ (in reduced form)
is divisible by p. We prove that E,((z, — x,')**) generate the group V{, :=
Dit/9om(Z[Cuoa]*T) Where E,, : Do, — Dj, is the truncated exponential map
defined by

> y y!

We first use some old number theoretical techniques to prove the result for n =1
and then lift the result to arbitrary n. To make the lifting work it is vital that we
already know that V{, = (Z/p"Z)"®. After this we use that we know “where”
to find a set of generators of Vg, to show that D7 (2s) C gn(Z[(y—1]*") when
2s > p" — 2p"~'. Since ker(gon) = U, ;n_; (by Lemma 2.6, [H-S]) when go,
is restricted to units, one can now show that Dg (2s) = U, ,, /Ut ju_y if
25 > p" — 2p™~ L. Finally we set 25 = p" — p"~! and easily calculate the number
of elements in Dy, (p™ — p"~") to be the “correct” one.

Now let wg -1 : U;’_lpn_pn,l — D(J{,n_l be defined by

won-1(7) = gn-1((Np-1(7) — 1)/p).

As before one can show that wg, 1 is a group homomorphism and that we get
an induced map @on-1 : (Ugpn_pn-1)/(Uopnt1) = Dg,_; Since g p_1 is an iso-
morphism we can find units {¢;} C Uy pn_pn—1 such that {@gn,_1(€;)} is a basis of
Dg,_1- We now consider the map induced by @on—1(€;) = @o,n-1(€:) — Don—1(€:)
(in the “standard” basis (x — 27 1)%). After some pretty long calculations we fi-
nally manage to find some congruences on our norm maps which helps us conclude
that the matrix for the map above is upper triangular with invertible elements
on the diagonal, that is, invertible. This means that the map ¢, 1 — @y ,1
is in particular surjective, which implies that ®y,_1 = @on—1 — Won—1 is also
surjective.

We are now ready to prove Proposition 3.4.

Proof of Proposition 3.4. We will show that ®;; 1 = po ®;;4; 1, where p :
Dy k+1-1 — Dyy—1 is the natural surjection, which means that ®;,; ; is surjective
(by Lemma 3.5) as a composition of surjective maps. It is enough to show that
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9k,i—1© Nk,l—l =po 90,k+1—1 © NO,k—l—l—l- Consider the diagram

90,k+1—-1

(3.2) Ag fyi—1 Do jti-1
Ng,i—1
Z[Cry1-1] p p
Nok+i-1
Appo1 —5——— Dr

The square part is obviously commutative. It is hence enough to prove that
the triangular part is commutative. Recall that an element a € A, can be
uniquely represented by a pair (2,45-1,0) € ZGys—1] X Ay 1 Using this re-
cursively we find that any element of A;;_; can be uniquely represented by a
(I—1)-tuple in Z[(xt1—2] X Z[Crri—2] X - .. X Z[(x] and that any element of Ag ;s 1
can be uniquely represented by a (k + [ — 1)-tuple in Z[Cx1; 2] X Z[Ckr1 2] X

. X Z[(y]. As before we consider the tuple-representations as identifications.
If @ = (2kti—2, Zkti—2,---,20) € Aoyi—1 (with z; € Z[(;]) we have that p(a) =
(Zk41-25 Zk41-2y---52K). For k> 0and ! > 1 let NkH,l : Z[Ck+1] — Z[(x] denote
the usual norm. By Proposition 2.1 of [H-S] we have that

p(Nojyi—1(a)) = p((Neri—1,1(a), - Neimrg—1(a), -, Npyio1 -1 (a))) =
= (Nigi—1,1(a), Npicr2(a), - oo, Ngyio1-1(a)) =
= Nii-1(a)

which completes the proof. 0

4. CONCLUSIONS AND DISCUSSION

We can now summarize and write down the main theorem of this paper. Recall
that [m] := (m + |m|)/2.

Theorem 4.1. Let p be a semi-reqular prime satisfying Assumption 3. Then
there exists an exact sequence

0— V,;l @V, = Pic Agy = ClQ(Cryi-1) @ Pic Apy1 — 0,

where

+ ~ r(p)
Vk,l — MpktH
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and
k+l
— v ti
V}c,l = H Op“
=1
where
B phHi-itl _ p[kfz'—H] p[k+l i _ p[k—z] p[lc—|—l i-1] _ p[k—i—l]
ti = 5 -2 5 + 3

fori=1,2,....k+1. andtyy = 2>

Proof. The exact sequence is just the sequence 1.4. The structure of kal follows
directly by Theorem 3.3 and Corollary 3.2. By Proposition 2.6,

_ Dy

Vi = ~ )

Kl >

The structure of DZ ; can be found in Lemma 2.2. Since there exists elements of
order p**!in Dk,l it is easy to see that Ty, must have order p**! which yields the
structure of Vit O

One can ask the question if Assumption 3 really is necessary. The structure of
V., holds for all primes, so here lies no problem. Regarding the +-part, we prove
in [H-S2] that

\70+, Cro D Cﬂ"l To ) C;n—l*""n—2’

where the numbers r; are given by the order of certain groups of units in Q(¢;)
and 79 can be shown to equal 7(p) (see [H-S] for details). When Assumption 3
holds, all r; equal r(p) which gives us Vg, = C"?) as mentioned. When we in the
present paper show that V;, =V, ., we for technical reasons use Assumption 3
but we still conjecture that

T T T T
V]cl o k+l @ Ii+l 01 @ @ C k+l—1"Tk+4+1-2

for each semi-regular prime. Showing that V, = V,}, without using Assumption 3
seems to be harder and this result is not known even in the case k = 0.

REFERENCES

[B-S] Borevich, Z.I. and Shafarevich, I.R, Number theory.
Academic Press: London and New York, 1966.

[H-S] O. Helenius and A. Stolin, Unit Bases in Integer Group Rings and the Kervaire-Murthy
Conjectures
Preprint 2001:40, Chalmers University of Technology, 2001.



14

OLA HELENIUS

[H-S2] O. Helenius and A. Stolin, Picard Groups of Integer Group Rings and Units in Cyclo-

tomic Fields

Preprint 2001:75, Chalmers University of Technology, 2001.

K. Iwasawa, On Z;-extensions of algebraic number fields

Ann. of Math., 98 (1973), 246-326.

Kervaire, M. A. and Murthy, M. P., On the Projective Class Group of Cyclic Groups of
Prime Power Order.

Comment. Math. Helvetici 52 (1977), 415-452.

Ullom, S. Class Groups of Cyclotomic Fields and Group Rings
London Math. Soc. (2) 17 (1978), no 2, 231-239.

Washington, Lawrence C, Introduction to Cyclotomic Fields
New York: Springer Verlag, 1997.

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY AND GOTEBORG
UNIVERSITY, SE-41296 GOTEBORG, SWEDEN

E-mail address: olahe@math.chalmers.se



