HOPF ALGEBROIDS AND H-SEPARABLE EXTENSIONS

LARS KADISON

ABSTRACT. Since an H-separable extension A|B is of depth two, we associate
to it dual bialgebroids S := End pAp and T := (A®p A)B over the centralizer
R as in [8, Kadison-Szlachanyi]. We show that S has an antipode 7 and is
a Hopf algebroid. T°P is also Hopf algebroid under the condition that the
centralizer R is an Azumaya algebra over the center Z of M. For depth two

extension A|B, we show that End 44 ® 5 A = T x End gA.

1. INTRODUCTION AND PRELIMINARIES

There is a notion introduced in 1968 by Hirata [5] of an H-separable extension of
noncommutative rings, which has been studied intensively in connection with simple
rings, skew group rings and skew polynomial rings by S. Tkehata, K. Sugano, G.
Szeto and others. In many ways H-separable extension has a theory parallel to that
of depth two subfactors in von Neumann algebra theory, the explanation emerging
that both are special cases of depth two ring extensions [8, Kadison-Szlachanyi].

Hopf algebroids over noncommutative rings were introduced by Lu [9] in con-
nection with quantization of Poisson groupoids in Poisson geometry. Examples of
Hopf algebroids have also come from solutions to dynamical Yang-Baxter equa-
tions [3], although these are of a special self-dual type called weak Hopf algebras
[1, 2]. A bialgebroid S, i.e., a Hopf algebroid without antipode, and its R-dual T
has been associated with a depth two ring extension A|B with centralizer R in [8].
S acts from the left on the over-ring A such that the right endomorphism ring is
isomorphic to a smash product A x S [8]. Moreover, T' acts from the right on the
left endomorphism ring £ [8] such that the endomorphism ring End 4 A ®p A is
similarly isomorphic to a smash product 7' x &, as we show in this section.

In this paper we also show via the depth two theory in [8] that the bialgebroid
S of an H-separable extension A over subring B has Hopf algebroid structure over
R. Tf additionally R is Azumaya over the center of A, T is a Hopf algebroid as well.
We summarize the results of the papers [7] and [8] together with this paper in the
table below.

Let B be a unital subring of A, an associative noncommutative ring with unit.
Recall that the ring extension A|B is said to be of depth two if

ARQpAd+x=P"A
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Depth Two Ezxtension Centralizer Dual Quantum Algebras with Galois Actions
Biseparable Frobenius extension | Trivial Semisimple Hopf algebra

Frobenius extension Trivial Hopf algebra

Frobenius extension Separable Weak Hopf algebra

H-separable extension Azumaya Hopf algebroid

Unrestricted Unrestricted | Bialgebroid

as natural B-A and A-B-bimodules [8]. Equivalently, there are elements 8; € S :=
End pAp, t; €T := (A ®nB A)B (called a left D2 quasibasis) such that

(1) cod =Y tifi(a)d,
and a right D2 quasibasis v; € S, u; € T such that
a®a = Z avi(a')u;.

J
We fix both D2 quasibases for our work below.

For example, an H-separable extension A|B is of depth two since the condition
above on the tensor-square holds even more strongly as natural A-A-bimodules [5].
Another example is a finitely generated (f.g.) projective algebra A over commu-
tative ring B, since a left or right D2 quasibasis is easily constructed from a dual
basis.

In [8] a bialgebroid with action-and-smash-product structure was uncovered on
the Jones tower of a depth two ring extension A|B. In more detail, if R denotes the
centralizer of B in A, a left R-bialgebroid structure on S is given by the composition
ring structure on S with the left regular representation A : R — S and right regular
representation p : R°? — S. Since these commute (A(r)p(r') = p(r')A(r) for every
r,7 € R), we may induce an R-bimodule structure on S solely from the left by

/

rear = Mr)p(r)a = ra(=)r'.
Now an R-coring (“co-ring” [13]) structure (S, A, &) is given by
(2) Ala) =) a(-=t))t} @r i
for every a € S, denoting t; =t} ®t? € B by suppressing a possible summation,
and
(3) e(a) = a(l)

satisfying the additional axioms of a bialgebroid [8, Section 4], such as multiplica-
tivity of A and a condition that makes sense of this requirement. We have the
equivalent formula for the coproduct [8, Th’'m 4.1]:

(4) Ala) == Z’yj QR u]l-oz(u?-—)
J

The left action of S on A given by evaluation, a>a = a(a), has invariant subring
(of elements @ € A such that a>a = £(a)a) equal precisely to B if the natural
module Ap is balanced [8]. This action is measuring since a(yy(a)a(s)(a’) = a(aa’)
by Eq. (1). The smash product A xS is isomorphic as rings to End Ap via a®@pa —
A [8].
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In general T = (A®p A)P has a unital ring structure induced from End 4(A®p
A)a 2T via F— F(1® 1), which is given by
t =" @ 12
for each ¢, € T. There are obvious commuting mappings of R and R°P into T

given by 7 — 1®r and ' — ' @ 1, respectively. From the right, these two “source”
and “target” mappings induce the R-R-bimodule structure gpTg given by

rotor =t @t?)(ror) =rtr,
the ordinary bimodule structure on a tensor product.

There is a right R-bialgebroid structure on 7' with coring structure (7,A ¢)
given by

(5) Zt @ (Bi(t") @5 1%)

(6) E(t) =142

By [8, Th’'m 5.2] A is multiplicative and the other axioms of a right bialgebroid are
satisfied.

There is a right action of T on £ := End g A given by fat =t f(t?—) for f € £.
This is a measuring action by Eq. (1) since

(fatay)o(gate) = th 26:(tYg(t* =) = fg at.

The subring of invariants in £ is p(A) [8]. We next show that, in analogy with
End Agp = A x S, the smash product ring 7' x £ is isomorphic to End 4 A®p A via
¥ given by

7) Wt e faod) = atl p 1),
Proposition 1.1. ¥ is a ring isomorphism T x & =, End AA®p A.

Proof. Welet pp: A®p A — A denote the multiplication mapping defined on simple
tensors by a ® @’ + aa’. Letting F' € End 4 A ®@p A, define

ZZU Qr (B @A) F(1® —).
We check that ® o ¥ = id: givent@fET@RS
Zt @r p(B @ At @t f(- Ztﬁz of=taf

Next, given F € End s A®gp A, let F1(a)®F?(a) := F(1®a) noting that F(a®a’) =
aFl(a') ® F?(a’'). We check that ¥ = id:

UP(F)(a® a'_) = zztz1 ® t?ﬂi(Fl(a'))FQ(a') = aFl(a'_) ® FQ(a') =F(a® a').
Thus ¥ is bijective linear mapping.

Using Eq. (5), we check that ¥ is a ring isomorphism:

Y((tx )t x f))a®d) = V(' q) x (fat'@)f )('1@0)
= atit1®t 138 (t' ) f(t' 20 f'(a"))
= at' 1yt @t f(t (Q)fl(al))

— Ut U x f)aod). O
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Sweedler [13] has defined the left and right R-dual rings of an R-coring. In the
case of a left R-bialgebroid H with Hr and rH finitely generated projective, such
as (S, A, p, A e) above, the left and right Sweedler R-dual rings are extended to
right bialgebroids H* and *H in [8]. For example, H* has a natural nondegenerate
pairing with H denoted by (h*, h) € R for h* € H*,h € H. Then the R-bimodule
structure on H*, multiplication, and comultiplication are given below, respectively,
where R % H ¢ R°P denotes the commuting morphism set-up of the bialgebroid
H:

(8) (r-h*-v' h) = r(h* at(r'))
(9) (h*g*,h) = (", (h",h1)) - hz))
(10) <<h*, hh') = <h*(1) . <h*(2), hl>, h>

Of course, the unit of H* is ey while the counit on H* is e(h*) = (h*, 1x). Eq. (9)
is the formula for multiplication [13, 3.2(b)].

2. FROBENIUS D2 EXTENSIONS

This section is independent the rest of the paper, although it explains the interest
in certain constructions on B C A we considered above. If A|B is a Frobenius D2
extension, such as a depth two subfactor of finite index [8, 4], the various objects
and results above come together into a Jones tower as follows. In the Frobenius
case we have A @p A =2 End Ap via

a®a — AgoFEoly

for some “Frobenius homomorphism” F € Hom p_p(A, B). Tts inverse sends the
identity into >, z; @ y; where {z;}, {y;} are “dual bases” for £ : A — B [6].
(This may be more familiar in the case B is a subring of the center of A.) If we

denote Ay := A ®p A with the induced “E-multiplication” from composition of
endomorphisms, we see that A; has cyclic A-bimodule generator e; := 1® 1, and
the tower of rings induced by A : A — End Ap = Ay,

B A A

is isomorphic to

B3 A—AxS
where the latter mapping is a — a x 1, via the isomorphism A x .S = A given by

axa— Zaa(mi)elyi.
K3
It is a basic fact in Frobenius extension theory that the extension A;|A above
is Frobenius as well — with canonical Frobenius homomorphism and dual bases
Eym = p : aerd — ad', {z;e1}, {e1y;} (several sources, e.g. [11]). If we now
iterate the endomorphism ring construction above using the left, instead of right,
endomorphism ring, we have an anti-isomorphism instead

AQ = A162A] — End AA1

where e = 1@ 1 € Ay ®4 A1, via zesw — p(w)Epp(2) for z,w € Ay, with inverse
given by f > > . xzieieaf(e1y;). Similarly we have an anti-isomorphism inducing
AP = £ Again we consider a tower of rings induced by the monomorphism

A A Ay, ws w161w21A2 =w'lejeseqw?:

A;)A]‘—)AQ
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which is isomorphic to the tower induced by the anti-monomorphism w — 17 X w,
A A 5T x AP
via the anti-isomorphism T' x A{¥ = A, given by
X w— w16162t161t2w2

where w = wleqw? € Ay and t € T.

3. HOPF ALGEBROIDS AND LU’S EXAMPLES

With an adaptation to algebras over commutative ground rings, Lu’s Hopf alge-
broid and examples are the following. Let K be a commutative ring. We briefly
review the definition of antipode T for a left bialgebroid (H, R, 3,1, A, ¢), where H
and R are K-algebras and all four maps are K-linear. (H, R, 7) is a Hopf algebroid
if 7: H — H is an algebra anti-automorphism such that

1. 7t =3

2. u(r @ H)A = ter;

3. there is a linear section nn : H ®r H — H ®x H to the natural projection

H ®xg H — H ®r H such that:

w(H ® T)nA = 3e.

Cf. [9, Section 4].

Lu’s examples of bialgebroids and Hopf algebroids are the following. Given
an algebra C' over commutative ground ring K such that C is finitely generated
projective as K-module, the following two are left bialgebroids over C' (with @ =

QK):

Example 3.1. The endomorphism algebra E := End x C with 3(c) = A(c), {(¢) =
p(c"), coproduct A(f)(c ® ¢') = f(ec') for f € End gC after noting that F ®@¢
E>Homg(C®C,C)via f@g— (c®c — f(c)g(c')). The counit is given by
e(f) = f(1). We see that this is the left bialgebroid S above when B = K, a

subring in the center of A.

Example 3.2. The ordinary tensor algebra C®C°P with 5(c) = c®1, {(¢') = 1@¢
with bimodule structure ¢-¢'® " - "' = ¢’ @ """, Coproduct A(e®@c') = c®@1®¢
after a simple identification, with counit (¢ ® ¢/) = ¢¢’ for ¢,/ € C. C @ C°P is a
left C-bialgebroid by arguing as in [9], or [8, N = K] since C|K is D2. In addition,
7: C®CP - C@C defined as the twist 7(c®¢’) = ¢’ ®c is an antipode satisfying
the axioms of a Hopf algebroid (in addition, 72 = id, an involutive antipode).

A bialgebroid homomorphism from (Hy, Ry, s1,t1, A1, €1) into (Hg, Ra, 2,12, Ag, €2)
consists of a pair of algebra homomorphisms, F' : H; — Hs and f : Ry — R,
such that four squares commute: Fsy = sof, Ft; = tof, AoF = p(F @ F)Ay
and esF = fe1, where f induces an R;-Ri-bimodule structure on Hs via “re-
striction of scalars,” p : Ha ®gr, Ha — Ha ®pg, H2 is the canonical mapping and
F:p Hip, = r,Hap, is a bimodule homomorphism since

F(r-h-r') = F(si(r)t:(r')h) = so(f(r)t2(f (") F(h) =7 f F(h) -5 7",

Proposition 3.3. If F: Hi — Hy and f : Ry — Ry are ring isomorphisms and
7 is an antipode for Hi, then 15 := FrF~' is an antipode for Hs.



LARS KADISON

(=]

The proof is an easy checking for 7 of the axioms above and therefore omitted.
As an example of bialgebroid homomorphism with fixed base ring, let C' be the
algebra introduced above and F' : C ® C°P — End g C' be defined by F(c®¢c')(¢") =

cc”’¢’. The following is consequence of the well-known Azumaya theorem (cf. [9,

3.8], also [6, 5.9]).

Proposition 3.4. F : C @k C°° — End g C is a bialgebroid isomorphism if C is
an Azumaya K -algebra.

4. H-SEPARABLE EXTENSIONS

Again let B be a subring of A with centralizer subring R, endomorphism ring
S =FEnd gAg and ring T = (A®p A)B. The definition and proposition below are
due to [5, Hirata.

Lemma & Definition 4.1. A|B is H-separable if A@p A ® * = ®" A as A-A-
bimodules. Equivalently, A|B is H-separable if there are element e; € (A @p A)4
and r; € R (a so-called H-separability system)} such that

(11) 1®1:Zm6i.
i
For example, an Azumaya algebra A|Z is H-separable [5]. We note that ¢; € T,
and for a,a’ € A
a®a = Z eipr;(a)a’ = Z ak,(a')e;,
whence ¢;, A, is right D2 quasibasis and ¢;, p,, is left D2 quasibasis for A|B.
We next let 7 denote the center of A.

Proposition 4.2. If A|B is an H-separable extension, then

1. R is f.g. projective 7 -module;
2. Rz RP=Z S viar @1 v Appri;
3. T°P = End z R via t = M\t")p(t?).

Proof. We offer some short alternative proofs to these facts. Rz is f.g. projective
since for each r € R, we note that 7 = r;e} re? where summation over i is understood
and for each i, r + e}re? defines a map in Hom z(R, 7).

The inverse S — R @z R°P to the mapping above is given by a — a(e] )e? @ r;,
since a(e})e?ari = a(ae})e?ri = a(a) (a € A), while relr'e? @z =r@elrielr; =
r@r forr,r € R.

The inverse End z R — T°P to the second mapping above is given by g > g(r;)e;,
since for each t = t' @ t2 € T, t'rjt?e; = t'rje;t? = t, while for each » € R
g €End zR, g(ri)elre? = g(rietre?) = g(r). O

5. WHEN S AND T ARE HOPF ALGEBROIDS

Putting together Proposition 4.2.2 with Example 3.2 and the fact from Section 1
that S = End pAp is a left bialgebroid, we are led to the following.

Theorem 5.1. If A|B is H-separable, then the isomorphism ¢ : R®z RP — S
gwen in Proposition 4.2.2 is an isomorphism of bialgebroids; whence S is a Hopf
algebroud.
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Proof. Tt suffices by Proposition 3.3 to check the commutativity of four diagrams in
the definition of bialgebroid homomorphism ¢ : (R®R°P, R, 3,1, A e) — (S, R, X, p, A, €').
First, given r € R, ¢(5(r)) = é(r @ 1) = A(r), and ¢(f(r)) = ¢(1 @ r) = p(r).

t
R® R°® «—— R

s

R

¢ |=

S
Second, for r, 7’ € R we have e’¢(r @ ') = rr’ = ¢(r @ r'). Finally, we use the
left D2 quasibasis ¢; € T, 5; € S with Eq. (2), then a canonical isomorphism to
compute:

(e @ HAB(rar) = (67 @e™H)D r(—thr't e s

= Zre}t%r't?e? ®@z7; O Biler)er @z i

i7j7k: -
in Z

=5 Z TRz e;t%r't?e?rjﬁi(e}c)ez ®z Tk
0,7,k

= Y r@tir'tiBile})el @y
ik

= Zr@eir'ei@m
k

= Zr@l@eir'ezrk:r(@l@r'. O
k

It follows that the involutive antipode 7 on S is given by (a € A, € S)

(12) r(a)(a) = ¥ riaa(e})e,

i
where 7r;,e; 1s an H-separability system. The antipode T does not automatically
transfer to an antipode on its R-dual right bialgebroid 7. However, under the
additional hypothesis that R is Azumaya over the center 7 of A,! the isomorphisms
in Proposition 3.4 and Proposition 4.2.3 lead us to the following.

Theorem 5.2. If A|B is H-separable with centralizer R an Azumaya Z-algebra,
then T°P 1s a Hopf algebroid over R.

Proof. We note that (T°P, R, 3,1, A’ ¢') is a left bialgebroid where the product on
T°P is given by tt' = t! ® t’2t2, 5(r) =r® 1, 1(r) = 1 ® r, which together induce
from the left the ordinary R-bimodule structure on (A ®p A)®, A’ given by Eq.
(5) and &’ given by Eq. (6).

Since R is f.g. projective Z-algebra by Proposition 4.2, we have a left bialgebroid
(E:=EndzR,R, A, p,A,¢) asin Example 3.1. But R® R°P = F as bialgebroids by
Proposition 3.4, whence F is a Hopf algebroid over R (with antipode induced by the

1Tt is interesting to note that these are the conditions on A|B that ensure that End Ag|\(A4)
is H-separable [12].
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twist on R ® R°P). It suffices to show that the algebra isomorphism ¢ : T°P — E
given by ¢+ (r — t'rt?) is a bialgebroid homomorphism (w.r.t. idg).

It is clear that ¥/ = X, 9t = p, and ey = &’. For the final computation, we note
that 1@ € RQ R, 1 : r— 6217‘62 is a right D2 quasibasis for R|Z where ¢;,r; is

i

an H-separability system for A|B. Moreover, ¢; € T, p,, € S is a left D2 quasibasis
for A|B as noted in Section 4. Then by Eq. (4)

WoyA'(lt) = o) edr(p ') ost?)

i

= Y etn-)

= A@@). O

If Z also coincides with the center of B, T°P possesses a weak Hopf Z-algebra
structure [8, Prop. 9.4]. As a closing remark, it is not known on this date if the
bialgebroids S or T°P associated to a Frobenius D2 extension are Hopf algebroids.

(1]
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