PARTIALLY ORDERED GENERALIZED PATTERNS

SERGEY KITAEV

ABSTRACT. We introduce partially ordered generalized patterns (POGPs), which further general-
ize the generalized permutation patterns (GPs) introduced by Babson and Steingrimsson [BabStein].
A POGP p is a GP some of whose letters are incomparable. Thus, in an occurrence of p in a per-
mutation 7, two letters that are incomparable in p pose no restrictions on the corresponding letters
in m. We describe many relations between POGPs and GPs and give general theorems about the
number of permutations avoiding certain classes of POGPs. These theorems have several known
results as corollaries but also give many new results. We also give the generating function for the
entire distribution of the maximum number of non-overlapping occurrences of a pattern p with no
dashes, provided we know the e.g.f. for the number of permutations that avoid p.

1. INTRODUCTION AND BACKGROUND

All permutations in this paper are written as words m = ajas - - - a,,, where the a; consist of all
the integers 1,2,... ,n.

We will be concerned with patterns in permutations. A pattern is a word on some alphabet
of letters, where some of the letters may be separated by dashes. In our notation, the classical
permutation patterns, first studied systematically by Simion and Schmidt [SchSim], are of the form
p = 1—3—2, the dashes indicating that the letters in a permutation corresponding to an occurrence
of p don’t have to be adjacent. In the classical case, an occurrence of a pattern p in a permutation
7 is a subsequence in 7 (of the same length as the length of p) whose letters are in the same relative
order as those in p. For example, the permutation 41352 has only one occurrence of the pattern
1 — 2 — 3, namely the subword 135.

Note that a classical pattern should, in our notation, have dashes at the beginning and end. Since
all patterns considered in this paper satisfy this, we suppress these dashes from the notation. Thus,
a pattern with no dashes corresponds to a contiguous subword anywhere in a permutation.

In [BabStein] Babson and Steingrimsson introduced generalized permutation patterns (GPs) where
two adjacent letters in a pattern may be required to be adjacent in the permutation. Such an
adjacency requirement is indicated by the absence of a dash between the corresponding letters in
the pattern. For example, the permutation # = 516423 has only one occurrence of the pattern
2-31, namely the subword 564, but the pattern 2-3-1 occurs also in the subwords 562 and 563. The
motivation for introducing these patterns in [BabStein] was the study of Mahonian statistics.

A number of interesting results on GPs were obtained by Claesson in [Claes]. Relations to
several well studied combinatorial structures, such as set partitions, Dyck paths, Motzkin paths and
involutions, were shown there. In [Kit] the present author investigated simultaneous avoidance of
two or more 3-letter GPs with no dashes. This work is of particular interest here since avoidance
of the patterns considered in this paper has a close connection to simultaneous avoidance of two or
more GPs with no dashes. Also important here is the work of Elizalde and Noy [ElizNoy] where
they find the distribution of several patterns with no dashes.

In this paper we introduce a further generalization of GPs — namely partially ordered generalized
patterns (POGP). A POGP is a GP some of whose letters are incomparable. For instance, if we write
p =1—1'2" then we mean that in an occurrence of p in a permutation m the letter corresponding
to the 1 in p can be either larger or smaller than the letters corresponding to 1'2’. Thus, the
permutation 13425 has four occurrences of p, namely 134, 125, 325 and 425.

We consider two particular classes of POGPs — shuffle patterns and multi-patterns. A multi-
pattern is of the form p = 07 — 03 — -+ — 0} and a shuffle pattern is of the form p = g9 — a1 —
01 —as — -+ — ap — Oy, where for any 7 and j, the letter a; is greater than any letter of o; and for
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any ¢ # j each letter of o; is incomparable with any letter of o; These patterns are investigated in
Sections 4 and 5. A corollary to one of our theorems (Theorem 13) about the shuffle patterns is the
result of Claesson [Claes, Proposition 2] that the number of n-permutations that avoid the pattern
12 — 3 is the n-th Bell number.

Let p = 01 —02—- - -— 0} be an arbitrary multi-pattern and let A;(z) be the exponential generating
function (e.g.f.) for the number of permutations that avoid o; for each ¢. In Theorem 28 we find
the e.g.f., in terms of the A;(z), for the number of permutations that avoid p. In particular, this
allows us to find the e.g.f. for the entire distribution of the maximum number of non-overlapping
occurrences of a pattern p with no dashes, if we only know the e.g.f. for the number of permutations
that avoid p. In many cases, this gives nice generating functions.

We also give alternative proofs, using inclusion-exclusion, of some of the results of Elizalde and
Noy [ElizNoy]. Our proofs result in explicit formulas for the e.g.f. in terms of infinite series whereas
Elizalde and Noy obtained differential equations for the same e.g.f..

2. DEFINITIONS AND PRELIMINARIES

A partially ordered generalized pattern (POGP) is a GP where some of the letters can be incom-
parable.

Example 1. The simplest non-trivial example of a POGP that differs from the ordinary GPs is
p =1 —2—1" where the second letter is the greatest one and the first and the last letters are
incomparable to each other. The permutation 3142 has two occurrences of p, namely, the subwords
342 and 142.

It is easy to see that the number of permutations that avoid p in Example 1 is equal to 2" .
Indeed, if 7 = a3 ...a, and a; is the leftmost letter in 7 that is smaller than its successor, then
all letters to the right of a; must be in increasing order. So any permutation 7 avoiding p can be
written as 71 1my , where 7, is decreasing and 7, is increasing and there are 2"~ ! ways to pick the
permutation 7, which determines 7.

Definition 2. If the number of permutations in S, for each n, that avoid a POGP p is equal to
the number of permutations that avoid a POGP ¢, then p and ¢ are said to be equivalent and we
write p = ¢ in this case.

If A,, is the number of n-permutations that avoid a pattern p, then the exponential generating
function, or e.g.f., of the class of such permutations is
n

Az) = ZA"%.

n>0

We will talk about bivariate generating functions, or b.g.f., exclusively as generating functions of
the form

were A, 1, is the number of n-permutations with k occurrences of the pattern p.

The reverse R(w) of a permutation @ = aqas .. .a, is the permutation a,a, _1...a:. The com-
plement C(x) is the permutation bby ...b, where b; = n + 1 — a;. Also, R o C is the composition
of R and C. For example, R(13254) = 45231, C'(13254) = 53412 and R o C(13254) = 21435. We
call these bijections of S,, to itself trivial, and it is easy to see that any pattern p is equivalent to
the patterns R(p), C(p) and R o C(p). For example, the number of permutations that avoid the
pattern 132 is the same as the number of permutations that avoid the patterns 231, 312 and 213,
respectively.

It is convenient to introduce the following definition.

Definition 3. Let p be a GP without internal dashes. A permutation 7 gquasi-avoids p if ™ has
exactly one occurrence of p and this occurrence consists of the |p| rightmost letters of .
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For example, the permutation 51342 quasi-avoids the pattern p = 231, whereas the permutations
54312 and 45231 do not. Indeed, 54312 ends with 312, which is not an occurrence of the pattern p,
and 45231 has an occurrence of p, namely 452, in a forbidden place.

Proposition 4. Let p be a non-empty GP with no dashes. Let A(x) (resp. A*(x)) be the e.g.f. for
the number of permutations that avoid (resp. quasi-avoid) p. Then

A*(z) = (z — 1)A(z) + 1.
Proof. We first show that

(1) A% =nA,_1 — A,

If we consider all (n — 1)-permutations that avoid p and all possible extending of these permu-
tations to the n-permutations by writing one more letter to the right, then the number of obtained
permutations will be nA,,_;. Obviously, the set of these permutations is a disjoint union of the set
of all n-permutations that avoid p and the set of all n-permutations that quasi-avoid p. Thus we get
(1). Multiplying both sides of (1) with 2" /n! and summing over all natural numbers n, observing
that A5 = 0, we get the desired result. O

Definition 5. Suppose {09,01,...,0,} is a set of GPs with no dashes and p=01 —02 —--- — 0y,
where each letter of o; is incomparable with any letter of o; whenever 4 # j. We call such POGPs
multi-patterns.

Definition 6. Suppose {09,01,... ,0} is a set of GPs with no dashes and a;as .. .ay is a permu-
tation of k letters. We define a shuffle pattern to be a pattern of the form

0o —Q1 —01—0Q2 — "= Og—1 — A — O,

where for any ¢ and j, the letter a; is greater than any letter of g; and for any ¢ # j each letter of o;
is incomparable with any letter of o;. We also allow o¢ and o, but not the other ¢;, to be empty
patterns.

The pattern from Example 1 is an example of a shuffle pattern. It follows from the definitions
that we can get a multi-pattern from a shuffle pattern by removing all the a;.

Let Soo denote the disjoint union of the S, for all n € N. The POGPs (which include the GPs, as
well as the classical patterns), can be considered as functions from Sy, to N that count the number of
occurrences of the pattern in a permutation in Sy. This allows us to write a POGP (as a function)
as a linear combination of GPs. For example,

'-2-1" = (1-3-2) + (2-3-1),

from which, in particular, we see that to avoid 1’ — 2 — 1" is the same as to avoid simultaneously
the patterns 1 —3 —2 and 2 — 3 — 1. A straightforward argument leads to the following proposition.

Proposition 7. For any POGP p there exists a set S of GPs such that a permutation © avoids p
if and only if T avoids all the patterns in S.

The following theorem can be easily proved by induction on k:

Theorem 8. Letpy =0p—a; —01 —as —-+-— 01 — a — Of (resp. p2 =09 —01 — -+ — o) be
an arbitrary shuffle pattern (resp. multi-pattern) with |o;| = £; for alli =0,... k. Then to avoid
the pattern py (resp. p2) is the same as to avoid

ﬁ bo+ly+--+ 4\ [(lo+Llr\ [lo+ 11+ Lo b+0+---+ 4
¢ B 4 4y Ly,

i=1

ordinary GPs.

Example 9. Let p = 1’2’ — 3 — 1", That is ¢ = 12 and 7 = 1. By Theorem 8, to avoid p is the
same as to avoid (3) = 3 GPs simultaneously, namely 12 —4 — 3,13 —4 — 2 and 23 —4 — 1.
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There is a number of results on the distribution of several classes of patterns with no dashes.
These results can be used as building blocks for some of the results in the present paper. The most
important of these is the following result by Elizalde and Noy [ElizNoy]:

Theorem 10. [ElizNoy, Theorem 3.4] Let m and a be positive integers with a < m, let 0 =
12...a1(a+1) € Sy y2, where T is any permutation of {a+2,a+3,...,m+2}, and let P(u, z) be the
b.g.f. for permutations where u marks the number of occurrences of o. Then P(u,z) = 1/w(u, z),
where w is the solution of

zm—a+1

(m—a+1)!
with w(0) = 1, w'(0) = —1 and w®*)(0) = 0 for 2 < k < a. In particular, the distribution does not
depend on T.

w4+ (1 —w) w' =0

3. GPSs WITH NO DASHES

In order to apply our results in what follows we need to know how many patterns avoid a given
ordinary GP with no dashes. We are also interested in different approaches to studying these
patterns. The theorems in this section can be proved using an inclusion-exclusion argument similar
to the one given in the proof of Theorem 30 and we omit these proofs. This allows us to get explicit
formulas for the e.g.f. in terms of infinite series instead of having to solve differential equations as
done by Elizalde and Noy [ElizNoy] for the same e.g.f.. However, in particular cases, we use certain
differential equations to simplify our series.

Theorem 11. [GoulJack] Let Ap(z) be the e.g.f. for the number of permutations avoiding the
pattern p = 123...k. Then
Ar(z) = 1/Fy (),
ki kit
Fi(z) = - .
where Fi(e) = 3 Gt = 2 G+ 1)

i>0 i>0

For some k it is possible to simplify the function Fi(z) in the theorems above. Indeed, Fy(z)
satisfies the differential equation Flgk) () = Fr(z) with the k initial conditions F}(0) =1, F},(0) = —1
and Flgz) (0)=0for all ¢ =2,3,...,k — 1. For instance, if kK = 4 then

1
Fy(z) = i(cosx —ginz + e 7).

Theorem 12. Let k and a be positive integers with a < k, let p = 12...a7(a + 1) € Sy1, where
T is any permutation of the elements {a +2,a+3,... ,k + 1}, and let Ay o(x) be the e.g.f. for the
number of permutations that avoid p. Let

B (_1)i+1xki+1 i jk—a
Flo(z) = ;Wg (k—a)'
Then

Apo(2) =1/(1 = & + Fro(z)).

If kK =2 and a = 1 in the previous theorem, corresponding to the pattern p = 132, then from
Theorem 12 the function F5 1 (z), which is the same for the patterns p, 231, 312 and 213 because of
the trivial bijections, can be written as:

_ N (DR /w —£/2
Py (2) —;i!(k!)i(kiH) —o— | et

1
Az

1= z N s
1—/ e /2 gt
0

which is a special case of Theorem 4.1 in [ElizNoy].

That is
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4. THE SHUFFLE PATTERNS

We recall that according to Definition 6, a shuffle pattern is a pattern of the form o9 — a1 — o1 —
as — -+ — Og—1 — a, — Ok, where {0g,01,... ,01} is a set of GPs with no dashes, ajas...a; is a
permutation of k letters, for any ¢ and j the letter a; is greater than any letter of o; and for any
i # j each letter of o; is incomparable with any letter of o;.

Let us consider a shuffle pattern that in fact is an ordinary generalized pattern. This pattern is
p = o — k, where o is an arbitrary pattern with no dashes that is built on elements 1,2,... ,k — 1.
So the last element of p is greater than any other element.

Theorem 13. Let p = o —k and let A(z) (resp. B(x)) be the e.g.f. for the number of permutations
that avoid o (resp. p). Then B(z) = eF(@AW)  where

F(z, A(y)) = / " Aly) dy.

Proof. Suppose that m € S, 41 and that 7 avoids p. Suppose the letter (n + 1) is in the i-th position
and 7 = w1 (n + 1)ma, where m; and 72 might be empty.

Since 7 is p-avoiding, m must be o-avoiding, because otherwise an occurrence of ¢ in m; together
with the letter (n + 1) gives an occurrence of p in 7. But if m is o-avoiding then there is no
interaction between m and 72, that is, if 72 is p-avoiding and m; is o-avoiding then 7 is p-avoiding.
To see this it is enough to see that if an occurrence of ¢ in 7 contains the letter (n + 1), then this
occurrence of o can not lead to an occurrence of p = 0 — k containing the letter (n + 1).

From the above, considering all possible positions of (n + 1), we get the recurrence relation

n
Buy1 =3 (i)AiBn_z-,
2
where B; (resp. A;) is the number of j-permutations that avoid p (resp. o), because we can choose

the elements of 7y in (7) ways.
Multiplying both sides of the equality by z™/n! we get

Bny1 o, Ai ; Bnoi i
nl " _2733 (n—i)!aj '
Taking the sum over all natural numbers n leads us to
B'(z) = A(z)B(x)
where the derivative of B is with respect to z. Since B(0) = 1, the solution of the differential
equation is B(x) = eF(*-4W) O
Example 14. Let p=1—2. Here 0 =1, so A(z) = 1 since 4, =0 for all n > 1 and Ay = 1. So
B(z) = @1 = ¢,

This corresponds to the fact that for each n > 1 there is exactly one permutation that avoids the
pattern p, namely 7 =n(n —1)...1.

Example 15. Supposep = 12—3. Here o = 12, s0 A(x) = e”, since there is exactly one permutation
that avoids the pattern o. So

B v .
B(z) = Z n—?x" = F(@e”) = ge" 1,
n>0

According to [Claes, Proposition 2], for all n > 1, B,, is the n-th Bell number and the e.g.f. for the
Bell numbers is e¢” 1.

The table below gives the initial values of B,, for several patterns p = o — k. These numbers were
obtained by expanding the corresponding B(z). The functions A(x) are taken from the previous
section.
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pattern initial values for B,
132-4 | 1, 2, 6, 23, 107, 585, 3671, 25986, 204738
123-4 | 1, 2, 6, 23, 108, 598, 3815, 27532, 221708
1234-5 |1, 2,6, 24, 119, 705, 4853, 38142, 336291
12345-6 | 1, 2, 6, 24, 120, 719, 5022, 40064, 359400

Theorem 16. Let p be the shuffle pattern o — k — 1. So k is the greatest letter of the pattern, and
each letter of o is incomparable with any letter of 7. Let A(x), B(z) and C(z) be the e.g.f. for
the number of permutations that avoid o, 7 and p respectively. Then C(x) is the solution of the
differential equation

C'(z) = (A(z) + B(z))C(z) — A(z)B(2),
with C(0) = 1.

Proof. As before, we consider the symmetric group S,+1 and a permutation 7 € S, 41 that avoids p.
Suppose the letter (n + 1) is in the i-th position and # = 71 (n + 1)7a, where m; and 7y might be
empty.

There are exactly four mutually exclusive possibilities:

1) m does not avoid o, 5 does not avoid 7.

2) w1 avoids o, m2 does not avoid T;

3) w1 does not avoid o, w2 avoids 7;

4) m avoids o, mo avoids T;

Obviously, the situation 1) is impossible, since an occurrence of ¢ in 7 with (n + 1) and with
an occurrence of 7 in 72 gives us an occurrence of p in 7. On the other hand, if p occurs in « then
it is easy to see that the letter (n + 1) cannot be one of the letters in the occurrences of o or 7, so
all p-avoiding permutations are described by the possibilities 2)—4). We count these permutations
in the following way.

In (T;) ways we choose first 7 elements from the letters 1,2...n, that is, the elements of 7;. Let
A;, B; and C; be the number of i-permutations that avoid o, 7 and p respectively.

If my is o-avoiding, we let 7y be any p-avoiding permutation of the remaining (n — 4 + 1) letters.
This accounts for all "good” permutations from the possibilities 2) and 4). There are (T:) A;Cp
such permutations.

If my is 7-avoiding, we let m; be any p-avoiding permutation of chosen i letters. This covers all
“good” permutations from 3) and 4). There are (?) B;C,,_; such permutations.

But we have counted p-avoiding permutations that correspond to 4) twice, so we must subtract
(7)AiBp_;, which is the number of such permutations.

So we have

Cny1 = Z (7) (AiCri + BiCy s — Ai B ).

Multiplying both sides of the equality by z™/n! we get
Cn+1 " = Z (Az + Bz $i Cn—i Ill'n_i _ Az IL'i Bn—i ‘wn_i> ,

n! il (n—i)! Wt (n—i)!

K3
)
C'(z) = (A(z) + B(2))C(z) — A(z)B(z).
([l
Example 17. Let p=1'—2—1". Thatis, c =1 and 7 = 1. So A(z) = B(z) = 1 and we need to
solve the equation
C'(z) =2C(z) — 1
with C(0) = 1. The solution of this equation is C(z) = 1(e*® + 1), so for all n > 1 we have
C,, =2"!, as in Example 1.

In the table below we record the initial values of C), for several patterns p =0 — k — 7.
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o T initial values for C,

1 12 1, 2, 6, 21, 82, 354, 1671, 8536, 46814
1 132 | 1, 2, 6, 24, 116, 652, 4178, 30070, 240164
1 123 | 1, 2, 6, 24, 116, 657, 4260, 31144, 253400
1 12341, 2, 6,24, 120, 715, 4946, 38963, 344350
12 12 | 1,2,6, 24, 114, 608, 3554, 22480, 152546
12 | 132 | 1, 2, 6, 24, 120, 710, 4800, 36298, 302780
12 | 123 | 1, 2, 6, 24, 120, 710, 4815, 36650, 308778
12 | 1234 | 1, 2, 6, 24, 120, 720, 5025, 39926, 355538
123 | 123 | 1, 2, 6, 24, 120, 720, 5020, 39790, 352470
123 | 132 | 1, 2, 6, 24, 120, 720, 5020, 39755, 351518
132 | 132 | 1, 2, 6, 24, 120, 720, 5020, 39720, 350496

Remark 18. The pattern p = o—k from Theorem 13 is a particular case of the pattern p = o —k—7
from Theorem 16 when 7 is the empty word. The e.g.f. for the number of permutations that avoid
the empty word is zero, because no permutation avoids the empty word. So if 7 is empty, we can
use Theorem 16 to get Theorem 13. Indeed, B(z) = 0, and after renaming C with B we get in
Theorem 16 exactly the same differential equation as we have in Theorem 13.

We now give two corollaries to Theorem 16.

Corollary 19. Suppose we have the shuffle pattern p = o — k — 7. We consider the pattern ¢(p) =
p1(0) —k — @o(7), where p1 and @y are any trivial bijections. Then p = @(p).

Proof. We just observe that if A(z) (resp. B(z)) is the e.g.f. for the number of permutations that
avoid o (resp. 7) then A(z) (resp. B(x)) is the e.g.f. for the number of permutations that avoid
¢1(0) (resp. p2(7)). O
Corollary 20. We haveo —k—1=7—k — 0.

Proof. This follows directly from the differential equation of Theorem 16 (A(z) and B(x) are sym-
metric in that equation), but we can also obtain this as a corollary to Corollary 19. By Corollary 19,

the pattern o — k — 7 is equivalent to the pattern o — k — R(7). Reversing the pattern o — k — R(7),
we obtain the pattern

R(oc — k— R(1)) = R(R(1)) —k — R(c) =7 — k — R(0),
which thus is equivalent to ¢ — k — 7. Finally, we use Corollary 19 one more time to get
T—k—R(o)=7—k—R(R(0))=7—k—o0.

O

5. THE MULTI-PATTERNS
We recall that according to Definition 5, a multi-pattern is a pattern p = oy — 03 — - - - — 0y,
where {09,071, ... ,01} is a set of GPs with no dashes and each letter of o; is incomparable with any

letter of o; whenever ¢ # j.

We first discuss patterns of the type p = 0 — 7 which are a particular case of the multi-patterns
to be treated in this section.

If o or 7 is the empty word then we are dealing with ordinary GPs with no dashes, some of which
were investigated in [ElizNoy] and Section 3. The analysis of the case when o or 7 is equal to 1 can
also be reduced to the analysis of ordinary GPs. For example, suppose that o = 1, that is, p=1—7,
and we want to count the number of permutations in S, that avoid p. We can choose the leftmost
letter of a permutation avoiding p in n ways, then the remainder of the permutation must avoid 7,
so we multiply n by the number of permutations in S,_; that avoid 7. For instance, if p =1 — 1’2/
then the number of permutations in S,, avoiding p is exactly n.

Theorem 21. Let p = 0 — 7 and q = p1(0) — p2(7), where o1 and @2 are any of the trivial
bijections. Then p and q are equivalent.
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Proof. The theorem is equivalent to the following statement:

Let p=0 — 7 and ¢ = 0 — ¢(7), where ¢ is a trivial bijection. Then p and ¢ are equivalent.

It is obvious that the statement follows from Theorem 21. Conversely, suppose we have p = o — 7.
We observe that any two trivial bijections commute, that is for any trivial bijection v, we have
Y(R(z)) = R(¢(x)). This observation, the statement and the fact that x = R(x) give

p=0—-1=0—¢(1) = R(p2(7)) — R(0) = R(pa(7)) — ¢1(R(0)) =

R(p2(7)) — R(p1(0)) = ¢1(0) — pa(7).

So to prove the theorem we now prove the statement.

Let p =0 — 7 and ¢ = 0 — ¢(7), where ¢ is a trivial bijection. Let A,, (resp. B;) be the number
of n-permutations that avoid p (resp. ¢). We are going to prove that A, = B,,.

Suppose 7 avoids p and m# = mo'm2, where m o' has exactly one occurrence of the pattern o,
namely ¢’. Then 7 must avoid 7, ¢(m2) must avoid ¢(7) and m, = mi0'p(m2) avoids gq. The
converse is also true, that is, if 7, has no occurrences of ¢ then m has no occurrences of p. If 7
has no occurrences of ¢ then 7 has no occurrences of p as well as no occurrences of ¢q. Since any
permutation either avoids ¢ or can be factored as above, we have a bijection between the class of
permutations that avoid p and the class of permutations that avoid ¢. Thus A,, = B,,. O

We get the following corollary to Theorem 21:
Corollary 22. The pattern o — T is equivalent to the pattern 7 — o.

Proof. We proceed as in the proof of Corollary 20. From Theorem 21 we have:

oc—17=0—R(1) = R(R(1)) — R(0) =7 — R(R(0)) =7 — 0.
O

We observe that the presence of the dash in the patterns in Theorem 21 is essential. That
is, generally speaking, the pattern o7 is not equivalent to the pattern ¢; (0)¢2(7) for any trivial
bijections 1 and ¢s. For example, there are 66 permutations in S5 that avoid the pattern 122'1'
but only 61 that avoid 121'2'. In Section 6 we investigate the pattern 122'1'.

Theorem 23 and Corollary 24 generalise Theorem 21 and Corollary 22:

Theorem 23. Suppose we have multi-patterns p =01 —0s —---—op and q =7 — T — - - — Tk,
where 1Ty ... T @S a permutation of 0102 ...0,. Then p and q are equivalent.

Proof. We proceed by induction on k. If k¥ = 2 then the statement is true by Corollary 22. Suppose
the statement is true for all ¥’ < k. Suppose p has exactly k blocks. If a permutation 7 avoiding
p has no occurrences of o; then it obviously avoids both p and ¢. Otherwise we factor # as 7 =
mi o2 where w101’ has exactly one occurrence of the pattern oq, namely o1’. Then 72 must avoid
03 — - -+ — o}. Moreover it is irrelevant from which letters 7101’ is built and therefore we can apply
the inductive hypothesis. We can rearrange o3 ...0}, of 02...0} in such a way that the blocks in
TiTy ... T corresponding to o2,... 0y are arranged in the same order as the 7’s. Now we consider
separately two cases: 7 # o1 and 7, = 01. In the first case we use the following equivalences:

p=01—03—--—0p=01 —09 —--—0}, = R(0o},) — -+ — R(d}) — R(o1).

For the pattern R(o},) —- -+ — R(0}) — R(01) we use the factorisation of a permutation 7 avoiding
this pattern, where the role of oy is played by R(o},). So by the inductive hypothesis we put the
pattern R(o1) in the right place somewhere to the left of R(c%) and apply R to get that p = q.

In the second case we have:

p = R(o}) — -+ — R(03) — R(01) = R(0}) — -+ - — R(01) — R(03)

! [— !
Oy — 01—+ —0), =0y —-""—0), — 01 =(

The first equivalence here is taken from the considerations above; the second one uses the inductive
hypothesis; then we use the fact that R(R(z)) = x and apply the inductive hypothesis again. O

Corollary 24. Suppose we have multi-patterns p =01 — 02 — -+ — 0} and g = p1(01) — pa2(02) —
-+« — pk(or), where each @; is an arbitrary trivial bijection. Then p and q are equivalent.
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Proof. We use induction on k, Theorem 23 and the factorisation of permutations, which is discussed
in the proof of Theorem 23. If k¥ = 2 then the statement is true by Theorem 21. Suppose the
statement is true for all k' < k. Then

p=01—02— " —0p =01 —p2(02) =+ —pr(ox) =
p2(02) — o1 — -+ = @r(ok) = p2(02) —p1(01) =+ — pr(ox) =
p1(o1) — p2(02) — - — pr(ow) = ¢,
where first we apply the inductive hypothesis then Theorem 23 then the inductive hypothesis and
finally Theorem 23 again. O

Theorem 25. Suppose p = o — p', where p' is an arbitrary POGP, and the letters of o are incom-
parable to the letters of p'. Let C(x) (resp. A(x), B(x)) be the e.g.f. for the number of permutations
that avoid p (resp. o, p'). Moreover let A*(x) be the e.g.f. for the number of permutations that
quasi-avoid o. Then

C(z) = A(z) + B(z)A* ().

Proof. Let A,, B,, Cp be the number of n-permutations that avoid the patterns o, p' and p
respectively. Also A% is the number of n-permutations that quasi-avoid ¢. If a permutation 7
avoids ¢ then it avoids p. Otherwise we find the leftmost occurrence of ¢ in w. We assume that this
occurrence consists of the |o| rightmost letters among the ¢ leftmost letters of 7. So the subword of
7 beginning at the (i 4+ 1)st letter must avoid p'. From this we conclude

Co = Ap + zn: (Z‘) A*B,_;.

i=|o]|

We observe that we can change the lower bound in the sum above to 0, because A7 = 0 for

i =0,1,...,|0] — 1. Multiplying both sides by z™/n! and taking the sum over all n we get the
desired result. O
Corollary 26. Suppose p = 01 — o3 — - -+ — o, is a multi-pattern where |o;| = 2 for all i, so each

o; s equal to either 12 or 21. If B(z) is the e.g.f. for the number of permutations that avoid p then
11— (1+ (z—1)e?)*

B l—z '

Proof. We use Theorem 25, induction on k and the fact that A(z) = e® and A*(z) = 1+(z—1)e”. O

B(z)

The following corollary to Corollary 26 can be proved combinatorially.

Theorem 27. There are (n — 2)2"~! + 2 permutations in S,, that avoid the pattern p = 12 — 1'2’
or, according to Theorem 21, the pattern p =12 — 2'1'.

One more corollary to Theorem 25 is the following theorem that is the basis for calculating the
number of permutations that avoid a multi-pattern, and therefore is the main result for multi-
patterns in this paper.

Theorem 28. Let p = 01 — 02 — -+ - — 0, be a multi-pattern and let A;(x) be the number of permu-
tations that avoid o;. Then the e.g.f. B(x) for the number of permutations that avoid p is
k i—1
B(z) =) Aix) [[ (@ - 1)A4;(z) +1).
i=1 j=1

Proof. We use Theorem 25 and prove by induction on £ that
k i—1
B(z) =) Ai() [ 45().
=1 j=1

Then we use Proposition 4 to get the desired result. O



10 SERGEY KITAEV

Remark 29. One can consider the function B(z) from Theorem 28 as a function in k variables
B(z) = B(A1(x), Aa(x), ... , Ar(z)). Then, by Theorem 23, this function is symmetric in the vari-
ables Ai(x), A2(z), ..., Ax(x). That means that we can rename the variables, which may simplify
the calculation of B(z).

6. PATTERNS OF THE FORM o7

Theorem 30. Let B(x) be the e.g.f. for the number of permutations that avoid the pattern p =
122'1'. Then
11 ) , 1
B(z) = 5t Ztan:z:(l +e*” +2e"sinz) + iez COS .

Proof. Let B, be the number of n-permutations that avoid p and A,, be the number of n-permutations
that avoid p and begin with the pattern 12. Let also A(z) be the e.g.f. for the numbers A4,,. We set
By = Ag = A; = 1. Suppose 7 is a (n + 1)-permutation that avoids p. There are three mutually
exclusive possibilities:

1) 7= (n+1)mey;

2) # =m(n+1);

3) m=mi(n+1)m and 7, m #e&.

Obviously, in 1) and 2) the letter (n + 1) does not affect the rest of the permutation 7, and
therefore in each of these cases we have B, permutations that avoid p. In 3), it is easy to see
that if 7; has more than one letter then 7; must end with a 21 pattern whereas if 75 has more
than one letter then 75 must begin with a 12 pattern. The key observation is that the number of
n-permutations that avoid p and end with a 21 pattern is the same as the number of n-permutations
that avoid p and begin with a 12 pattern. To see this it is enough to apply the reverse function to
any n-permutation 7 that begins with 12-pattern and avoids p and observe that R(p) = p, that is,
R(m) avoids p and ends with a 21 pattern. Obviously this is a bijection. So if |71| = ¢ then we can
choose the letters of 7y in (7;) ways and then choose a permutation 7 in A; ways and a permutation
mo in A,_; ways, since the letters of m and w9 do not affect each other. From all this we get

n—1 n
Bui1 =2B,+ Y (’ZL) Aifn_i=2B,+ Y (Z‘) AiAn_; — 24,
i=1

i=0
We multiply both sides of the last equality by z™/n! to get

Z'n (E" n A'i . A s . [L-n
el i i) n—: n—i __ -
Bu1 iy = 2B +; T ot T M

Summing both sides over all natural numbers n we get:
(2) B'(x) = 2B(z) + A*(z) — 2A(x).

To solve this differential equation with the initial condition B(0) = 1, we need to determine A(z).
One can observe that if a permutation 7 avoids p and begins with the pattern 12 then 7 has the
structure m = aibjasbsasbs - - -, where a; < b; for all i. Moreover, if by < a then we must have
a; < by < az < by <az < --- since otherwise we obviously have an occurrence of the pattern p.
A first approximation is that A, = (3)An_2, because we can choose a;b; in 7 in (3) ways and
then pick an arbitrary (n — 2)-permutation that avoids p and begins with the pattern 12, to be
asbsasbs ..., in A, > ways. But it is possible that b; < ay in which case bjasbsas can be an
occurrence of p in 7, and it is an occurrence of p unless as < by < az < ---. So in order to avoid
this we must subtract the number of permutations of the form abedn’, where a < b < ¢ < d and
7' is any (n — 4)-permutation that avoids p, from the first approximation of A,. Thus the second
approximation is that A, = (})An_2 — (}) An_s. We observe that in the second approximation we
do not count the increasing permutation 123...n. Moreover, among the permutations counted by
(1) An—4, there are the permutations that begin with 6 increasing letters. Except for the increasing
permutation, such permutations are not counted by (})A,_2. We must therefore add the number
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of such permutations. So the third approximation is that A, = (3) An—2 — () An—4 + (§) An—6 and
so on. That is,

(3) A, = (;‘) Ao — (Z) Aps + (Z) Ap_g — (z) Ancg+---= Y (-1 (;) Ap_ai.

i>1
We observe that if n = 4k or n = 4k + 1 then we do not count the increasing permutation in our
sum. This, together with Equation 3, gives us

Di("\a .. — 1, ifn=4korn=4k+1,
Z(_) 2i )7 H T 0, ifn=4k+2o0rn=4k+ 3.

i>0
Multiplying both sides of the equality with z™/n! and summing over all natural numbers n we
get

Ay 22 gt 0 © Ak k1
£2 4 I . A TR .
Ao+ A+ ora” )0 —Gr+p -+ kz_; @ " @k 1)

The left hand side of this equality is equal to A(x)cosz. Let F(z) be the function in the
right hand side of the equality. Then it is easy to see that F(z) is the solution to the differential
equation F*)(z) = F(z) with the initial conditions F(0) = F'(0) = 1, F®(0) = F®)(0) = 0. So
F(z) = L(cosz +sinz + %) and

A@) =2 (14 tanz+ -5
r) = — nr .
2 COs T

Now we solve the differential equation (2) and get

1 1 1
B(z) = ot1 tanz(1 + €2* + 2e”sin ) + §em Cos .

Remark 31. The series expansion of B(z) in Theorem 30 begins with

3 11 7 7 103
== 2 3 - 4 - 5 — 6 —_— 7 —_— ...
Bz)=14+z+2*+2 +4:17 +20$ +2051: +30:1: +720w +

That is, the initial values for B,, are 1, 2, 6, 18, 66, 252, 1176, 5768.

7. THE DISTRIBUTION OF NON-OVERLAPPING GPSs

A descent in a permutation © = @14z . .. ay is an i such that a; > a;41. The number of descents in
a permutation 7 is denoted des 7 (and is equivalent to the generalized pattern 21). Any statistic with
the same distribution as des is said to be Eulerian. The Eulerian numbers A(n, k) count permutations
in the symmetric group S, with k descents and they are the coefficients of the Eulerian polynomials

Ay, (t) defined by A (t) = #1+des T The Eulerian polynomials satisfy the identity

n An(t)
>kt = (s

k>0

TES,

Two descents ¢ and j overlap if j = i + 1. We define a new statistic, namely the mazimum
number of non-overlapping descents, or MND, in a permutation. For instance, MND(321) = 1
whereas MND(41532) = 2. One can find the distribution of this new statistic by using Corollary 26.
This distribution is given in Example 33. However, we prove a more general theorem:

Theorem 32. Let p be a GP with no dashes. Let A(z) be the e.g.f. for the number of permutations

||
that avoid p. Let D(z,y) = ZyN(”)% where N (m) is the mazimum number of non-overlapping
.
occurrences of p in w. Then
Az
D('r7y) = ( )

1—y((z —1)A(x) +1)
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Proof. We fix the natural number k& and consider an auxiliary multi-pattern P, = p—p—---—p
with k copies of p. If a permutation avoids Py then it has at most k — 1 non-overlapping occurrences
of p. From Theorem 28, the e.g.f. By (z) for the number of permutations avoiding Pj, is equal to

k i1 k+1 i1
ZA(w) H((:v — 1)A(z) + 1). If we subtract By(z) from the e.gf. Bgyi(z) = ZA(x) H((:t: —

1)A(x)+1) for the number of permutations avoiding P41, which is obtained by applying Theorem 28
to the pattern Pyy1, then we get the e.g.f. D (x) for the number of permutations that have exactly
k non-overlapping occurrences of the pattern p. So

Dy (z) = ZDn,k'Z—T; = Bry1(z) — Bi(z) = A(z)((z — 1)A(z) + 1)E.

Now
A(z)

1—y((z—1D)A() +1)

l.n
D(z,y)= > Dn,kykﬁ =Y Dp(z)y* =
k>0 "

All of the following examples are corollaries to Theorem 32.

Example 33. If we consider descents then A(x) = e®, hence the distribution of MND is given by
the formula:
e$
D(z,y) = .
(2,9) 1—y(1+4 (z—1)e)
Example 34. Theorems 11 and 32 give the distribution of the maximum number of non-overlapping
occurrences of the increasing subword of length & (the pattern 123...k), which is equal to

1
D(z,y) = (1-2)y+ (1 —y)Fr(x)’
ki kit
were Fy(z) = Z (ki)! - Z (ki +1)!"

i>0 i>0

Example 35. If we consider the maximum number of non-overlapping occurrences of the pattern
132 then the distribution of these numbers is given by the formula

1
1—ym+(y—1)/ e V12 gt
0

Example 36. The distribution of the maximum number of non-overlapping occurrences of the
pattern from Theorem 12 is given by the formula:

1
D(;z:,y) = 1—z+ (]_ - :Ij)frkr,a(g’.)7

| ()it e g
where Fy, o(z) = Z NCES H k—a)
i>1 J=2

D(w,y) =
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