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SUMMARY

Preconditioning by incomplete factorization is a well-known method for improving the performance of
iterative methods. We give a short history of some main ideas in point incomplete factorizations and
block incomplete factorizations. Some recent results and applications are also presented. Specially we
consider the solution of the linear elasticity problem, where we also comment on the parallel solution
of the preconditioning system. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Background

We consider the iterative solution of large sparse systems of linear equations Az = b, where A
is a symmetric positive definite matrix. In some cases more general matrices will be considered.

It is well-known that the rate of convergence of the iterative methods very much depends on
the spectrum of the coefficient matrix. In order to improve the rate of convergence, the linear
system has to be transformed by a linear transformation in order to get a matrix with more
favourable spectral properties as well as a linear system with the same solution as the original
system. The transformation is performed by the matrix called the preconditioner.

With C, a symmetric positive definite preconditioner, the rate of convergence of the
preconditioned conjugate gradient, PCG method is directed by x(C~/2AC~1/2?) and also
in some cases by the distribution of the eigenvalues, see for instance the papers by Axelsson
and Lindskog [1] and van der Vorst and Sleijpen [2]. The preconditioner can be introduced in
the conjugate gradient algorithm by the solution of a linear system Ch = g, see for instance
the books by Axelsson and Barker [3] and by Golub and van Loan [4].

A good preconditioner C' shall be an approximation to A and the system with matrix C'
shall be much easier to solve than the system with matrix A. Introducing a preconditioner
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PRECONDITIONING BY INCOMPLETE FACTORIZATION. 1

in an iterative method will cause an extra cost for the construction and for applying the
preconditioner in each iteration. For a preconditioner to be efficient, the rate of convergence
must be improved enough so that the total amount of work decreases.

The present paper deals with preconditioners being incomplete LU-factorizations of the
matrix A. The basic idea in incomplete factorizations is to allow fill elements only if certain
conditions are satisfied, which are given by positions or by values. Before we give an overview
of various incomplete factorization preconditioners in the following sections, we will here
shortly give some historical remarks and also shortly mention some other frequently used
preconditioning techniques. The remainder of the paper is organised as follows: In Section 2
we give some strategies in preconditioning by point incomplete factorization. In Section 3 we
compare two recent ideas on point incomplete factorization preconditioning. Some examples
of incomplete factorization based on block matrices are given in Section 4. In Section 5 we use
incomplete factorization preconditioners for the solution of a linear elasticity problem.

1.2. Historical remarks

Some early ideas on the use of preconditioners are from the 1950’s by Lanczos [5] and by Stiefel
[6]. They suggested the use of polynomials as preconditioners. In 1956, Hestenes [7] formulated
an algorithm equivalent with the use of preconditioners in the conjugate gradients. A simple
preconditioner is the point Jacobi preconditioner, where C' = diag(A), the diagonal of A. No
extra work is needed for the calculation of this preconditioner. Forsythe and Strauss [8] showed
in 1955 that among all preconditioners on diagonal form, the point Jacobi is optimal or close
to optimal in the sence of reducing the condition number for matrices with property A. In
1969 van der Sluis showed this for general sparse matrices, see [9]. In the 1960’s, some early
papers on incomplete factorization were presented, see Buleev [10] and Oliphant [11] . As we
have mentioned above, the development of incomplete factorizations will be reported on in the
following sections.

In the beginning of 1970’s, Axelsson suggested to use the SSOR method as a preconditioner
for the conjugate gradient method, see [12]. With the decomposition A = D + L + LT where
D = diag(A) and L and LT are the strictly lower and upper triangular parts of 4, the SSOR
matrix is given by C(w) = 52=(1D + L)(1D)=Y(1D + L)”. For an optimal value of w the
spectral condition number k(C—'/2AC—1/?) = \/k(A), for a certain class of model problems,
and hence, the number of iterations will be reduced to a lower order. The construction of the
matrix C(w) needs no extra work. For details see for instance the book by Axelsson and Barker

[3]-

1.3. Some frequently used preconditioners

The examples of preconditioners, diag(A), SSOR and LU are approximations to the given
matrix A. Another class of preconditioners is based on the idea of approximating the inverse
of A. Members of this class are the polynomial preconditioners. If A =T — B and p(B) < 1,
A~! =37 Bk Hence A~! can be approximated by a finite number of terms in the sum,
see a paper from 1979 by Dubois, Greenbaum and Rodrigue [13]. Another possibility given by
van der Vorst in 1982, is to use Neumann expansions for approximating the inverse of the LU
factors, see [14]. Methods of this type became popular in the 1980s in connection with the use
of parallel computers. Another idea to construct a preconditioner being a direct approximation

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
Prepared using nlaauth.cls



2 G. LINDSKOG AND I. GUSTAFSSON

to the inverse of A is to find a sparse matrix M which minimizes ||AM — I|| for some norm.
One reason for the investigation of the sparse approximate inverses is the fact that incomplete
LU factorizations may result in an ill-conditioned factorization for indefinite or nonsymmetric
matrices. Another reason is the use of parallel computers. An early proposal of this type of
method was given in 1982 by Benson and Frederickson [15]. Many authors have considered
methods of this kind. Here we just mention papers by Kolotilina and Yeremin from 1993 [16]
and 1994 [17].

Other important preconditioners are the multilevel preconditioners and methods of domain
decomposition type. These are however outside the scope of this paper.

2. SOME STRATEGIES IN PRECONDITIONING BY POINT INCOMPLETE
FACTORIZATIONS

An incomplete factorization of A, C = LU where L is a lower triangular matrix and U is an
upper triangular matrix, is a modification of the Gaussian elimination of A such that fill-in is
allowed only due to certain restrictions.

One way to define an incomplete factorization is to choose an index set S where fill-in is
allowed. During the factorization, elements in all positions outside S are set to zero. With the
set S = {(4,7); ai,; # 0} we have the Incomplete LU factorization ILU(0).

In 1977, Meijerink and van der Vorst proved the existence of the ILU factorization for M-
matrices for any choice of S including the diagonal, see [18]. Further they showed that the
ILU preconditioned conjugate gradient method could result in a fast solution method. The
paper by Meijerink and van der Vorst became a breakthrough on preconditioners as well as
on iterative methods.

The asymptotic rate of convergence when the Incomplete Cholesky, IC preconditioner is
applied to elliptic, second order partial differential equations is the same as by use of the
unpreconditioned matrix. To be more precise, the condition numbers x(C~'/2AC~'/?) and
k(A) are of the same order O(h=2) , h — 0 with respect to the mesh size parameter h. This
is called first order convergence rate, while x(C~'/2AC~1/?) = O(h™1) is called second order
convergence rate.

A modification of the ILU factorization, the MILU factorization, where entries which appear
in positions outside S are not disregarded but added to the main diagonal of U was suggested by
Gustafsson in 1978 [19]. This was a generalization of a so called generalized SSOR method for
the standard five-point matrix given by Dupont, Kendall and Rachford [20] and by Axelsson
[12]. In the thesis by Gustafsson from 1979 [21], the existence of the modified incomplete
factorization is shown for diagonally dominant matrices and the theory is confirmed in a paper
from 1983 [22].

The development of the basic ILU and MILU factorization methods include methods for
allowing more fill-in in the factors in order to improve the performance. One possibility is to
extend the set S of specific positions where fill-in is allowed. This is considered by Gustafsson
[19] and by Meijerink and van det Vorst [18]. See also the book by Axelsson and Barker [3].

Another possibility is to use a drop by size condition, where the fill-in which is lower a given
absolute value, the drop tolerance, is dropped. This idea was suggested in 1973 by Tuff and
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Jennings [23] and also in 1983 by Osterby and Zlatev [24] and by Axelsson and Munksgaard
[25]. For applications, see for instance papers from 1992 by D’Azevedo, Forsyth and Tang [26],
[27].

The effect of orderings of the unknowns on the performance of the preconditioned conjugate
gradient method is investigated by Duff and Meurant in 1989, see [28]. They considered
for instance nested dissection, minimum degree and red-black orderings. The conclusion was
that the ICCG method in general does not perform much better from reordering. However,
in a recent paper by Benzi, Szyld and van Duin from 1999 [29], it is shown that certain
reorderings for direct methods such that reverse Cuthill-McKee can be very beneficial for
the solution of nonsymmetric linear systems by preconditioned Krylov subspace methods.
The good performance is reported in the number of iterations and in the deviation of the
preconditioned matrices from identity.

3. TWO RECENT IDEAS AND A COMPARISON

As is already mentioned, The IC factorization exists for M-matrices and the MIC factorization
exists for diagonally dominant matrices. Many realistic applications will of course be excluded
by these restrictions. In this section we present two recent ideas being remedies to these
restrictions. At first we present the idea by Gustafsson from 1996 [30], where a modification
on element level is performed. The assembled matrix corresponding to these modified element
matrices then becomes a weakly diagonally dominant M -matrix and is hence appropriate for
incomplete factorization. Next, we consider a recent preconditioning method presented by
Kaporin in 1998 [31], which is shown to exist for general symmetric positive definite matrices.
A comparison of the methods will also be done.

3.1. Modification of element matrices giving an M -matrix

The method by Gustafsson is considered for symmetric and positive definite matrices A,
arising in the finite element discretization of second order partial differential equations. By
a premodification on element level, the assembled matrix denoted A(™) becomes a weakly
diagonally dominant M-matrix. The premodification is performed if there exists positive off-
diagonal entries in the element matrices. The positive off-diagonal entries are replaced by zeros
and the corresponding values are added to the diagonal in the same row. The matrix A(™ can
be factorized by the standard IC or MIC methods. The condition number of the preconditioned
matrix is only increased by a constant factor independent of the mesh size parameter h. Thus,
the IC factorization of A™ will give x(C~Y/2AC~1/2) = O(h~2), h — 0 i.e. first order
convergence and the MIC factorization will give k(C~Y/2AC~1/2) = O(h™'), h = 0, i.e.
second order convergence. Hence, the rate of convergence is of the same order as for problems
where IC and MIC factorization can be applied to A itself. We denote these methods EIC and
EMIC, respectively, where E stands for element modification. It is evident that the E(M)IC
preconditioned conjugate gradient method can be applied to a much wider range of problems
than standard (M)IC. For details, see [30].

Computer experiments verify the good behaviour of the method. In one example, quadratic
finite elements are used for the solution of an isotropic model problem with right isosceles
triangles. The assembled matrix A without using element modification is neither a diagonally
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4 G. LINDSKOG AND I. GUSTAFSSON

dominant matrix nor an M-matrix. Hence, element modification is used and the IC and MIC
factorizations are performed on A(™) instead of A. Other examples considered are anisotropic
model problems discretized by bilinear finite elements, where the element matrices have some
positive off-diagonal entries. Also, anisotropic problems on right isosceles triangulations are
solved with various angles between the triangles and the coordinate system, such that the
standard IC or MIC factorizations of A fail. For all examples, computer tests verify first order
convergence for the EICCG method and second order of convergence for the EMICCG method.

A variant of element matrix modification is the so called partly element modification where
a certain fraction of positive off-diagonal elements are moved to the diagonal. This technique
could be seen as stabilization although it does not give an M-matrix in general.

3.2. Preconditioning by the UTU + UTR + RTU — S factorization

Here we shortly present the incomplete factorization method recently developed by Kaporin
[31]. This method exists for general symmetric positive definite matrices. The preconditioner is
denoted the Robust Incomplete Cholesky 2nd order Stabilized, RIC2S factorization. An earlier
method of this kind but only of first order of accuracy was given by Ajiz ans Jennings in 1984
[32], the Robust Incomplete Cholesky method, RICI.

For the systems of linear equations Ax = b, where A is a sparse and symmetric positive
definite matrix, the preconditioning by Kaporin is based on the decomposition

A=UTU+UTR+R"U-S

where U is an upper triangular sparse approximation to the Cholesky factor, R is strictly
upper triangular and S is nonnegative definite. The matrices R and S are error matrices with
small elements.

The preconditioning matrix is C = UTU and the factorization method is based on a drop
tolerance, i. e. the amount of fill-in is restricted by some condition on its relative size. It is
also based on a control of pivot entries. The properties of the decomposition implies that pivot
breakdowns will not occur and that U is relatively well-conditioned.

It is shown that the condition numbers for the preconditioned matrices satisfy k; <
2 + clm for the RIC1-method and ks < 4 + ¢5 )\m::( 7y for the RIC2S-method. Here
T is the drop tolerance parameter.

According to these estimates, RIC1 is said to be of first order of approximation and RIC2S
is said to be of second order of approximation. It follows from these estimates however, that
both methods are first order of convergence rate with respect to the mesh-size parameter h.
This is so since these estimates of the condition numbers assume that diag(A) = I and then
Amin = O(h?), h = 0.

A general property of the method is that the cost for factorization is sensitive to the
parameter 7 and for the method to be efficient 7 has to be adapted to each problem. It is
shown that the RIC2S preconditioning essentially reduces the number of iterations in the
PCG method with a relatively few number of nonzero elements in U.

In a recent report by Axelsson et al, [33], the RIC2S preconditioned conjugate gradient
method is used for the solution of some real-life problems, for instance a dam buildt on a rock
massif and a bridge problem. We refer to [33] for a detailed description of the problems. In
this short overview we will just refer some results for one of the most ill-conditioned problems,
a part of the full 3D model of the bridge construction. The bridge is of homogenuous material
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Figure 1. Discretization and nodenumbering

and there are no forces applied. The results show the characteristics of the method. The times
for the construction of the preconditioner increases for lower values of 7 i.e. for larger density
of the matrix. However, the times for the iterations are about equal or somewhat decreasing
for larger density leading to totally increasing times for larger density. With the optimal value
of the threshold parameter, a significant decrease in time is shown compared to the Jacobi
preconditioner.

3.8. A comparison of the EMIC and RIC2S

We compare the EMIC method with the RIC2S method. Most problems are also problems
used as testproblems by Kaporin [31]. The results we present here are quite recent.

The testproblems are the following;:

1. The 5-point approximation for a discontinuous problem — 7 (a v u) = f on
the unit square and with a = 10* inside the four subdomains [0.125,0.25]x[0.125,0.375],
[0.125,0.25]x[0.500,0.875], [0.375,0.875]x[0.125,0.375] and [0.375,0.875]x[0.500,0.875] and a = 1
outside these subdomains.

2. The 13-point approximation for a biharmonic problem.

3. Quadratic finite element for Laplace equation on a uniform rightangled triangulation.

4. Linear finite element for the anisotropic problem —u,,; — 0.001uy, = f, with a special
triangulation and nodenumbering suitable for parallelization, see Figure 1. (For an explanation
of the rotated coordinate system, see 5.3.)

We comment that Kaporin expects the RIC2S method to be preferable for testproblem 1,
compared to incomplete factorization by position, because the elements in the subdiagonals of
A differ quite a lot in size.

For the solution of testproblem 2 we use an idea presented in [34] for the finite element
approximation of the biharmonic problem based on a mixed variable variational formulation.
Here we just use (UTU)(UTU) as a preconditioner for the 13-point matrix, where UTU is
a (M)IC factorization of the 5-point matrix. For testproblem 3, we present the number of
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Figure 2. The number of iterations for testproblem 3.
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Figure 3. The total work for various methods and testproblem 3.

iterations , see Figure 2, and the total work for some methods, see Figure 3.

In comparison we present the work for different methods (with RIC2S as the norm) applied to
the four testproblems, see Table I. Cholinc is a method in MATLAB, based on just dropping
elements i.e. this method is not robust. For instance, the figure 0.97 for problem 2 is very
sensitive for the choice of drop-parameter. In all tests the optimal drop-parameter (found by
trial and error) has been used for RIC2S and Cholinc. For the E(M)IC methods, we had to use
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Problem RIC2S Cholinc EIC(0) EMIC(0) EMIC(1) EMIC(2)

1 1 1.2 2.4 0.92 0.70 0.70
2 1 0.97 1.7 0.71 0.52 0.46
3 1 1.3 1.3 0.68 0.59 0.56
4 1 1.7 3.6(3.7) 1.80(2.0) 0.65(1.4) 0.69(1.6)

Table I. The work for different methods with RIC2S as the norm.

partly element modification for testproblem 4 in order to get the optimal performance. Within
parenthesis we also give the figures for complete modification on element level. We have used
a constant function as the right-hand side, the zero vector as starting approximation and a
relative residual stopping criterion with e = 1074,

3.4. Conclusions

We have compared two different techniques for pointwise incomplete incomplete factorization;
RIC2S based on a drop tolerance and EMIC based on fix sparsity pattern. Both techniques
are applicable to general symmetric positive definite systems.

We conclude that for our testproblems, a proper implementation of the EMIC method is
faster and simpler than the RIC2S method. Before stating a final recommendation of method,
however, more general, realistic problems have to be implemented and tested.

4. SOME EXAMPLES OF INCOMPLETE FACTORIZATIONS BASED ON BLOCK
MATRICES

A block partitioning of a matrix A can be made in a natural way for instance when the domain
of the problem is a grid of n x n points in 2D or n x n x n in 3D. The block partitioning is
then based on the grid lines in 2D or grid planes in 3D. The size of the blocks and the number
of blocks increase with increasing line/plane size.

A Dblock partitioning can also be based on the physical problem. For instance, the linear
elasticity problem, which we will consider in Section 5, naturally gives a 2 x 2 block matrix in
2D and a 3 x 3 block matrix in 3D. In Section 5 we will compare various block preconditioners
for the 2D problem.

4.1. Block tridiagonal matrices

The block partitioning, based on lines of grid points often results in a block tridiagonal
structure if a regular grid is used.

Let us assume that the matrix A is a block tridiagonal, symmetric and positive definite
matrix,

Al Bl
B .
A=| "
. Bn—l
Bn—l An
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8 G. LINDSKOG AND I. GUSTAFSSON

In performing a complete factorization on block level, the pivot blocks have to be inverted.
Consider the block factorization

A=(D+L)DYD+L").
Here D = diag(D;, ..., Dy,) is the block diagonal matrix of pivot blocks, where
Dy=A,;, Di=A;—B; «D'\BL,, i=2,..,n.

The matrix L is the strictly lower block triangular part of A. In practice the matrices
A;, ¢ = 1,...,n are often sparse, typically bandmatrices. However, the inverse matrices D; 1
become full matrices.

In an incomplete block factorization one wants to preserve a sparse structure in calculating
approximations to the matrices D;, i« = 1, ...,n. Hence, the inverses D;l, i=1,...,n—1 have
to be approximated by sparse matrices. The use of the incomplete block factorization as a
preconditioner will then cause an easily solvable preconditioning system.

A general proof of the existence of incomplete block methods, when the coefficient matrix
is an M-matrix, is given by Axelsson [35] in 1986.

We will here shortly mention two forms of incomplete block factorizations.

In the standard form of the incomplete block factorization the preconditioning matrix C' is
as follows,

C=(X+DX'X+LT=(X+L)([IT+Xx7'L7),
where X = diag(Xy, ..., X,) is a block diagonal matrix satisfying the relations

X1 = A1
Xi = Ai - Bi_1Qi_1(X[_11)B,-T,1, 1= 2, ey T

Here Qi_l(Xi__ll) is a sparse approximation of the inverse of X;_;. Examples of Q;_; (X, 11)

are given later. In the solution of the preconditioning system, linear systems with matrices
X;, i = 1,...,n have to be solved in each iteration for instance by (incomplete) Cholesky
factorization of X;. Eventually the matrices X; have to be approximated by sparse, symmetric
positive definite matrices Q}(X;) in order to control the sparsity pattern and hence the
computational complexity.

This method is studied by many authors. Two basic references are by Concus, Golub and
Meurant [36] and by Axelsson [37]. See also the papers by Axelsson and Polman [38] and
Kolotilina and Polman [39].

In a paper from 1992 [40], Kolotilina and Yeremin show the existence of the incomplete
block factorization and the positive definitness of X and hence of C' under certain general
assumptions on the sparse approximations of the pivot blocks and their inverses. For details
and for choice of sparse approximations to the inverse of a symmetric positive definite matrix
by factorized sparse approximate inverses we refer to [40].

In the inverse free form of the incomplete block factorization, the preconditioning matrix is
given by

C={"'+L)I+YL"),
where Y = diag(Y1, ...,Y,,) is a block diagonal matrix given by
Y, = (S, i>1
S1=4A;
Si=A;—B;_1Yi.1BL |, i>2.
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PRECONDITIONING BY INCOMPLETE FACTORIZATION. 9

Also here Q;(S; 1) is a sparse approximation to the inverse of the matrix S;. Solving the
preconditioning system with matrix C' here involves multiplications with the Y; blocks and
hence the method is on inverse free form.

This method was introduced by Axelsson in 1985 [37] and is also studied by for instance
Axelsson and Polman [38] and Kolotilina and Polman [39] and by Kolotilina and Yeremin [41].

The existence of the incomplete factorization and positive definiteness of the preconditioning
matrix is shown by Kolotilina and Yeremin [40] for general assumptions on the sparse
approximations of the inverses. The approximate inverses may for instance be calculated as
the main tridiagonal part of the inverse. This choice is done by Concus, Golub and Meurant
[36]. Here, also a modified version is given, where the row sum is preserved by modifying the
diagonal. Chan and Meurant [42] showed in a paper from 1990 an improved condition number
for the latter method.

Factorized sparse approximate inverses were introduced by Kolotilina and Yeremin 1993,
[16] and may be used as sparse approximations of the inverses. Kolotilina and Yeremin have
shown that these approximations satisfy the conditions for existence and positive definiteness
of the preconditioner, which was given in their paper [40]. In a paper that has just appeared
Kharchenko et al have presented a new method called AINV-A for the construction of sparse
approximate inverse preconditioners for positive definite matrices, see [43].

Related methods, for instance using row sum criterions are presented and analysed by many
authors, see for instance [35], [38], [44] [45] and [46].

4.2. Unstructured matrices

In a recent paper by Kolotilina, Nikishin and Yeremin from 2000 [47] incomplete LU-
factorizations based on general non-singular unstructured matrices are presented. The methods
denoted IBBLU use a block partitioning of the given matrix, i.e. A = {A;}7;; and
compute a lower block triangular matrix L = {L;;}}';_; and an upper block triangular matrix
U= {Uij}?,j:r

The off-diagonal blocks L;;, ¢ > j and Usj, ¢ < j are stored explicitly, whereas the diagonal
blocks L;; and U;;, which are lower and upper triangular respectively, are not stored explicitly.
Instead their sparse inverses f/i_il and (71.;1 are computed and stored. Hence, L and U are
represented in an explicit-implicit block form, which is an advantage when the incomplete LU-
factorization A = LU is used as a preconditioner. The solution of a preconditioning system
reduces to multiplications of the sub-matrices L;;, ¢ # j and Ujj, ¢ # j by vectors and
multiplications of i;il and U'i;l by vectors, i.e. we have an inverse free solution process. This
is obvious beneficial on parallel computers.

Without going into too much details of the calculation of the factors L and U we will mention
some main points:

- The calculation is based on the principal submatrices of A,

A(k—1) Ag’;)

AN = 4, AW =
AR Aw

, k=2,..,n

- The factors L and U are calculated recursively on principal submatrix level by calculating
factorized sparse approzimate inverses of the pivot blocks as follows, where g, € and €
denote approximation operators:
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10 G. LINDSKOG AND I. GUSTAFSSON

- At first G; and Fi, an upper and a lower sparse triangular matrix are calculated,
GiFi =y [A']and let L = F71, UM =Gl
- Then for k = 2,...,n the following is computed
x (k) — Qk(Agi) (U(k—l))—1)7 vy — Q'k((mk—l))—%gg))
and the factorization of the pivot block,
GrFie = O [(Ae = XWY®)=1]

after which

Lk=1 ¢ ytk-1  y&)
(k) — (k) —
= g | v= 700 G

- The incomplete factorization is
A= LU where L=L™ and U = U™,

We note that the IBBLU algorithm gives a pointwise incomplete LU-factorization.
Theoretically it is shown that the preconditioning matrices are correctly defined and non-
singular for M- and H-matrices under certain general assumptions on the approximation
operators € , O and O, k=12,..,n.

Kolotilina, Nikishin and Yeremin have shown that for both symmetric and unsymmetric
problems the IBLLU algorithm is competitive with the best available preconditioners. As is
alraedy mentioned, the IBLLU algorithm is designed mainly for unstructured sparse matrices.
For block tridiagonal matrices, the traditional incomplete block factorization is recommended
since the IBBLU algorithm gives in general not a block diagonal error matrix in this case.

5. APPLICATION OF INCOMPLETE FACTORIZATION PRECONDITIONERS TO A
LINEAR ELASTICITY PROBLEM

In this section we compare a number of preconditioners based on block incomplete
factorization, which are combined with pointwise incomplete factorization, for the solution
of the linear elasticity problem.

This is an overview of the main results presented in two recent papers, [48] and [49] and a
paper under preparation [50].

5.1. The problem

We consider the plain strain case of the linear elasticity problem with isotropic material and
Dirichlet boundary condition. For the formulation of the three-dimensional problem we refer
to [48].

Let u(z) = (u1,u2) denote the displacement vector , ¢ = (o;;) the stress tensor and € = (¢;;)
the strain tensor, satisfying

- 1(6U, 8uj
E 2 BIL']' Bmz

)
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PRECONDITIONING BY INCOMPLETE FACTORIZATION. 11

in a domain € in R? with boundary I . The body is assumed to be fixed along the part I'p of
the boundary and loaded by body forces f(x) = (f1, f2) and boundary forces g(z) = (g1, g2).
The equations and boundary conditions are as follows,

divo+ f=0inQ

O'“ E czgkl 6li:l )

k,i=1

u=wuonTp,o-n=gonTny =T\Tp.

Here n is the outward pointing normal on I'y . The material coefficients c;;; () are bounded
on  and satisfy the relations

Cijkl = Cjikl = Cijik = Cklij; CO Zf?j < Zcz'jkl (7)&ij€rt
i,j ijkl
for ¢o > 0 and all symmetric tensors £ . Further, (in the isotropic case) cizii = A+ 24, Ciij; = A
and c¢;ijij = cijji = |, 4 # j , where X and p are the Lamé coeflicients related to the contraction
ratio v and the modulus of elasticity E through A = (1+y3’(}f_2u), u= 2(1‘3”).
A variational formulation of the problem leads to the problem: find u such that v —ug € V'
and

a(u,v) = L(v) ,Vv € V where V = {v € [H}(Q)]? ,v=00nTp}

with H'(f2) being the usual Sobolev space with norm || ||;.
We consider the boundary conditions I'p = I and ug = 0. Then the bilinear form can be
formulated

_ Ou; Ov; 1—-v Ou; 81), 1 + 1% 8u] 81),
u,v) = / 2 Ox; Ox; ; 8.2:] — Ou; 8.1:1

where 7 = % For details, see [48].

In practice 0 < v < % i,ee0<pP<land v — %, i. e. 7 — 1 represents an incompressible
material.

The discretization is made by the finite element method on a triangulation €, and with
variation over the finite dimensional space

Vi = {Uh € V;Uh|K € [Pl(K)]2 VK € Qh},

where Py (K) is the space of piecewise linear basis functions over the elements K. In a later
subsection we will also consider hierarchical linear-quadratic finite elements.

With the set of basis functions for V4, {<I>(1) <I>(2)} where <I>( ) = = (9;,0) , @(2) (0, ®;) for
the usual first degree polynomial basis functions {®;} , and the numbering in order {<I>£ )} ,
{<I>§2)}, the assembled matrix becomes

A A
A= .
| ]

It is shown that A is not an M-matrix, since it has positive off-diagonal entries.
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5.2. Block preconditioners

We first mention the block-diagonal preconditioners based on the separate displacement

component of a, i. e.
_ ou; 61}, 1-— 6“1 8’1],
v) = /Q{; ox; Gm,

The assembled matrix corresponding to & is

_ A11 0
co= " A]

When Cp is used as a preconditioner, the subsystems with matrices A;;, ¢ = 1,2 are solved
by the MIC(0) preconditioned conjugate gradient method, i. e. inner iterations are performed.
An alternative preconditioning, the approximate block-diagonal preconditioning method is
obtained by replacing the matrices A;;,i = 1,2 by their incomplete Cholesky factors, i. e.
L1L1 , L2L2 respectively. Then the precondltloner is
5 _[Ll 0 ][Lf O]
Cp = ~ =7
0 L, 0 L;
In this case no inner iterations are performed.
Next we consider the full block incomplete factorization method

O — L, 0 LT L7'Awn | _ [ An Ap
F= ALLTT L, 0 LY T AL Ay |
where A22 = Ale A12 +A22 and L1L1 = All; L2L2 = A22 are the Cholesky factors of A11

and Ajs. In the solutlon of the preconditioning system Cpr = g with matrix C, the following
block system is solved,

Agory = go — AL AT g1
A = g1 — A
i. e. three inner systems have to be solved, two with matrix A;; and one with matrix Ass.
Hence, inner iterations are performed. L o
If we replace Aj; and Ay by their incomplete Cholesky factors Ly LT and Lo LT we get the
approximate full block incomplete preconditioning method,
. El 0 LT LA
CF T 7T ’
Al L1 Ly 0 Ly
where no inner iterations are performed. In [48] and [49] preconditioners based on a modified
separate displacement component are also considered and we refer to these papers for details.
The condition numbers for the preconditioned matrices with preconditioners Cp and Cpg
are shown to be bounded as follows,

2

~\2
n(CBl/zACBI/Z) < = &(0_1/2AC’_1/2) 3-7)

~8(1-w)’
i. e. the condition numbers are independent of the discretization i. e. of the mesh size parameter.

We observe that for almost incompressible materials (7 = 1) the bound for the full block
diagonal method is about a factor 4 smaller than the bound for the block diagonal method.
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Figure 4. The work per unknown for the elasticity parameter # near 1. In methods (1), (2), (3) and
(4) we use Cp, Cp, Cr and Cr

5.8. Comparison between the preconditioners

The preconditioners are used for the solution of the problem with constant body force f =1 on
the unit square with various orientations 6, the angle between the z1-axis and the hypotenuses
in the triangulation of the domain. The reason for using different values of 6 is given in Section
3.1. Further, a uniform right isosceles triangulation with nodenumbering giving a partially
parallel solution method is used, see Figure 2.

We have compared the block-diagonal and the full block incomplete factorization
preconditioners, specially for almost incompressible materials.

Numerical tests on the rate of convergence confirm the theory that the condition number
for the full block incomplete factorization preconditioning method is about a factor 4 smaller
than for the block diagonal method.

As is expected the approximate versions of the preconditioners, where no inner iterations
are performed give a slower rate of convergence. However, the approximate block-diagonal
and full block preconditioners give a smaller amount of work per iteration and in fact these
methods give the smallest work per unknown with a certain relative stopping criterion for the
iterations.

In Figure 4 we report on the total work per unknown for the problem with § = % and
close to 1. The parameter ¥ is transformed by ,/ﬁ in order to discern the behaviour for
v close to 1. The problem size is about 4000 and the relative residual stopping criterion is
10~* for the outer iterations and 10~! for the inner iterations in the case of the Cp and Cr
preconditioners.

The same good behaviour for the C’D and C’F preconditioners as is seen in Figure 4 is also
shown for other problems, e.g. a discontinuous elasticity problem.
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5.4. Block preconditioners by use of linear-quadratic finite elements

In a paper during preparation [50] we have generalized the methods to higher order by using
the hierarchical two-level method presented in [51]. We consider two-level linear-quadratic
finite elements, where the linear basis functions are associated with the vertex nodes and the
quadratic basis functions are associated with the other nodes. If the latter basis functions are
numbered first, the stiffness matrices A;;,7 = 1,2 in Cp takes the form

The size of Ag ) is about 1 /4 of the size of Aj;;. It is well known that the condition number
k(A2 is of order O(1), b — 0 and k(A'V) is of order O(h=2), h — 0.

The simplest preconditioner is chosen as the block diagonals of A;;, giving the preconditioner
denoted the diagonal-diagonal preconditioner

A 0 0 o0

Du 0 o AY o o

ne [ 0 Dw] 0o 0 4D o
o 0o o0 AY

The condition number of the corresponding preconditioned matrix is shown to be independent
of the mesh size parameter in the finite element discretization. The systems with matrices Aszl )
can be solved by inner iterations by the PCG method or one can avoid the inner iterations by
replacing the matrices by their modified incomplete factors giving the approximate diagonal-
diagonal preconditioning matrix. The matrices Ag?) can simply be replaced by their diagonals.

The diagonal-diagonal preconditioners are compared to full-block incomplete factorization
preconditioners. Here we mention just one of them,

| Fin O
Cpr = [ 0 Fy ],

where Fj; are full block incomplete factorizations of A;; of the Schur complement kind,

@ 2T 2)~1 (2) T
| W0 ] le L? TGT]= Al G |
T
where Lgk)Lgk) are (formal) complete Cholesky factorisations of Agf) as before.

Numerical tests show also here that the simplest method, the approximate diagonal-diagonal
preconditioner is the fastest method for our model problem with almost incompressible
material.

5.5. Conclusions

We have demonstrated how a linear isotropic elasticity problem can efficiently be solved by the
PCG method based on block-incomplete factorizations combined with incomplete pointwise
factorization. The most efficient, and in fact also the simplest methods, show a moderate

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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increase in the required work per unknown when the problem turnes to become incompressible.
In the papers [49] and [50] we have introduced proper nodenumberings for high degree of
parallelism if the MIC(0) method is used. Computer tests confirm a fairly high degree of
speed-up in practice.
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