CONVERGENCE FOR THE SQUARE ROOT OF THE
POISSON KERNEL IN RANK ONE SYMMETRIC SPACES
AGAINST BOUNDARY FUNCTIONS WITH REGULARITY

JAN-OLAV RONNING! AND OLOF SVENSSON!

ABSTRACT. We consider the square root of the Poisson kernel in a Rie-
mannian symmetric space of real rank one. It is known that for a boundary
function in L? one has convergence in a region strictly larger than the ad-
missible regions and also that the region increases with p. We consider

boundary data in Sobolev spaces L?, and prove convergence within even

larger regions which increases with p and a.

1. INTRODUCTION

Let X = G/K be a Riemannian symmetric space of the noncompact type
and of rank 1. (The notation is explained in Section 2.) On X we consider the
A-Poisson operator PAf(g-0) = [y, f(kM)P**(kM, g)dkM , where P(kM, g)
is the Poisson kernel of G/K, f € LP(K/M) and A+ p € a. We know that
P, f satisfies the equation

APy = (1A = o) Prf,

where A is the Laplace-Beltrami operator on G/K. If A > 0 it is known that
P, f(g) does not necessarily converge to f(kM) as g tends to kM. To obtain
convergence we need to consider the normalization Py f = Py f/P,1. We know
that Py f converges admissibly to f almost everywhere on the boundary for
fer’ p>1.

In [Sj688] Sjogren extends his previous L' result on the unit disk U [Sj684]
to general symmetric spaces X of rank 1. In X the weakly tangential regions
are defined as

{n1exp(tHo)n -z : x € C,n € B(Ct?),t > c}

m and B(Ct?) are balls in N. It
is the factor n which makes these regions larger than the ordinary admissible
convergence regions. In a previous paper [R6n97] the first author proved that

if X is a general symmetric space of rank 1 and A = 0, we have convergence

where C is a compact subset of X, ¢ =
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in larger regions which we call L? weakly tangential regions (1 < p < 00).
These regions increase with p, and coincide with the weakly tangential regions
in [Sj688] if p = 1. We would like to give an intuitive geometric view of the
weakly tangential regions. If we only consider admissible convergence regions,
that is, ignore the factor n in the above expression, we can consider the region
as a tube along the curve n; exp tHy. This is because for each fixed value gy, we
dilate ny exp toHo with a fixed compact set C. (Observe that the fact that we
approach a boundary point when ¢ tends to infinity, gives us the possibility to
identify this boundary point with the asymptotic direction of n; exp t Hy, which
gives one unique boundary point to each tube.) If we now multiply n; exp tHy
with an arbitrary point n € B(Ct9), we make a dilation of n; exp tHy in certain
directions determined by N. The fact that the radius of B increases to infinity
with ¢, ensures that this enlargement of the admissible region does not produce
another (wider) tube. Instead we get a region which increases in width as ¢
tends to infinity.

In the case of Euclidean spaces it has been observed by several authors that
if one demand that the boundary function has some prescribed regularity (such
as belonging to Sobolev or Besov spaces) the typical convergence regions will
be larger than the ordinary nontangential convergence regions, it was proved
in [NRS82] using potential theory, another proof was given in [NS84] and other
related papers are [Dor86] and [Sue90]. This has also been studied in other
settings by e.g. [CDS92]. The interesting fact is that the enlargement of the
convergence regions both when one consider regular boundary functions and
for the square root of the Poisson kernel is given by a simple multiplicative
factor which increases with p.

We will investigate the situation for the square root of the Poisson kernel in
a general symmetric space of rank 1 with boundary functions in the Sobolev
spaces LP. 1 < p < oo and a > 0. These spaces are defined in terms of
the Bessel potentials J, * f as in [Sak79]. In the Euclidean spaces one can
easily adopt the proof in [NRS82], they consider the convolution with the
Poisson kernel against potentials like K * f where K is an unbounded L'
function. The size of the convergence regions are determined by the L? norm
of K * P, (for f in L? and ¢ the dual exponent). However, it is easy to see
that the Poisson kernel can be replaced by e.g. the square root of the Poisson
kernel without any modifications of the proof, other than some trivial technical
details, unfortunately their method does not extend to symmetric spaces.

It should also be noted from [NRS82] that for every f € LP(R™) one can
find a kernel K such that f = K % F' for some F' € L?, and thus every f in L?
does indeed have boundary limits in the translates of a tangential convergence
region, but the region depends of course on the given function. (that any f
has a tangential approach region which is not translation invariant was already
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noted in [Lit27]). This result does not follow in our setting since the class of
kernels we consider is to small. If one could prove the boundedness of the
maximal operator for the Banach algebra generated by the Bessel potentials
then it would follow that any LP function has a convergence region which is
strictly larger than the LP-weakly tangential convergence region.

For f € I2, 1 < p < oo and a > 0, we will now extend the result in [NRS82]
to obtain a.e. convergence of Pyf to f in the L? weakly tangential regions,

{niexp(tHo)n -z :x € C,n € B(Ctpqemp'q), t>c, p'<p}

The reader should observe that the difference between these regions and the
weakly LP tangential are that the radius of the balls are now CtP%¢!?'¢ instead
of C't??. We have the following result:

Theorem 1.1. Let rank X = 1. Let Hy be a fized element in a, and let

qg= 2(p1H0>. Let f € IP, p>1 and 0 < ap < D, where D is the homogeneous

dimension of the boundary. Then for almost all ny € N,
Pof(n1exp(tHo)n' - x) — f(k(ni) M)

ast — 00,  stays in a compact subset of X andn' stays in the ball B(CtPleter'e)
for some fized constant C' and for all p' < p.

The condition ap < D is natural; if ap > D then the the function f will be
continuous and we then have convergence within any region. We prove this
result by establishing the usual maximal function estimate. The proof of this
estimate is rather technical, and rests heavily on a lemma given by the first
author in [R6n97), generalizing an earlier version by Sjogren in [Sj688]. The
main point is that we split the kernels into pieces with small support, which
gives us control of the corresponding operators.

Lemma 1.2. Let L C N be a compact set, and let p > 1 be given. Assume
that the sublinear operators Ty, k = 1,2,..., are defined in LP(L), that they
take values which are nonnegative measurable functions on L, and satisfy the
following conditions for some C' > 0:

(1) Each Ty is of weak type (p,p) with constants at most C4.
(2) Each Ty, is given by

Tif(n) = sup [ f[ * Ki(n),

1€l
where Iy, is an index set and the kernels K; satisfy supp K; C B(%;)
(3) [ K;(n)dn < Cy
Here, fori € Iy, K (n) = SUDpy € B , 1) K;(nn'), for some natural number N,
and the positive numbers vy satisfy the following condition: vy is decreasing

and ’y,i/ﬁ < Yk—c for some C(B) > 0 and all fired > 0, where § will depend

on the group N.
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Then the operator T f(x) = sup, Tif is of weak type (p,p) with constant only
depending on L, N and C}.

The structure of this paper is as follows: In section 2 we explain the nota-
tion and give the necessary structure theory of symmetric spaces, including a
definition of A-Poisson integrals. In section 3 we develop the expression for the
kernel. In section 4 we establish the necessary estimates for these expressions
of the kernel and in section 5 we use these estimates and Lemma 1.2 to prove
Theorem 1.1.

2. PRELIMINARIES

Let X = G/K be a Riemannian symmetric space of real rank one. Then
G is a semisimple Lie group with finite center, and K a maximal compact
subgroup. The Lie algebras of G and K are g and &, respectively. Let 6 be the
Cartan involution. The Cartan decomposition of g is g = € @ p, where p is a
linear subspace of g. This is the eigenspace decomposition of g with respect
to the Cartan involution 6, where £ are the elements with eigenvalue +1, and
p are the elements with eigenvalue —1. Let a be a maximal abelian subgroup
of p, and A the corresponding connected subgroup of G.

The real rank is the dimension of a; in our paper we assume it to be equal to
one. By the adjoint representation ad we arrive at the root space decomposition
of the Lie algebra, g = @g,; if X € g4, then ad (H)X = «(H)X, for H € a.
The nonzero a:s are called (restricted) roots. The dimension of the root spaces
are my. Let a, be one of the components of the subset of a where none of
the roots vanishes; this is called the positive Weyl chamber. A root « is called
positive if a(H) is positive for all H in a;. Let « and possibly 2« be the
positive roots. Let p = (mq + 2ma,)a/2 denote half the sum of the positive
roots counted with multiplicity. The Killing form (X,Y) = Tr(ad(X)ocad(Y))
allows us to identify the dual of a with a.

Let n be the sum g, @ go, of the root spaces. The sum over the root
spaces corresponding to the negative roots is n, which is also the image of
n under the Cartan involution §. The connected subgroups of G associated
with n and n, are N and N, respectively. Any n € N can be written as
n = exp(X;) exp(Xs), X; € giq- For N there is a similar expression where the
product is taken over the negative roots.

The Iwasawa decomposition is G = KAN. This means that any ¢ € G
can be uniquely written as g = k(g) exp(H(g))n(g), with k(g) € K, H(g) € a
and n(g) € N. From the Iwasawa decomposition we obtain the N A model of
the symmetric space. In this decomposition the group N corresponds to the
Furstenberg boundary K /M. The decomposition NA is the description of the
symmetric space we will work with.
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We fix an Hj in the positive Weyl chamber a,, such that a(Hy) = 1. The
conjugate of n, n! | is exp(H)n exp(—H). We choose a homogeneous gauge |n/|
in N as

] = (1Xa]* + 4e| Xo ),

Here | X | is the norm coming from the Killing form, that is | X | = (—(X, 0X))'/?
for any X € g and 4c = (mq + 4my,)~". The reason for the choice of ¢ and
the gauge will be clear after we have defined the Poisson kernel. We have
In'n| < C(|n'| + |n|) for some C > 1, and |n'fe| = ¢ t|n|.

The ball with radius r in N centered at the origin is B, = {n; |n| < r}, and
the ball with radius r centered at n is nB,. The measure of the ball B, is
proportional to 7P, where D = my, + 2my, is the homogeneous dimension of
N.

In a rank one symmetric space, we have an explicit form for the Poisson
kernel, see e.g. Theorem 3.8 page 414 in [Hel78|. If n = exp(X)exp(Xs),
where X; € g_;, then

P(n) = !

(1+ 2¢| X4 |2 + | X |* + 4c| X |2) P2

The last two terms in the denominator sum up to |n|*, which is the reason for
the definition of the homogeneous gauge. The Poisson integral of a function f
in L' on the boundary N is then

Pf(ny exp(tHy)) = e*(PtHo) /P(n_tHo)f(nln)dn.
N

From this expression we also get the normalized A-Poisson integrals. We are
studying the operator related with the normalized square root of the Poisson
kernel Py:

62<patH0>
Po f (n1 exp(tHo)) = /P1/2<n-tH°>f<nm>dn

where t is coming from the normalization Py1.

3. EXPRESSIONS FOR THE KERNEL

We consider PyF where F' is a function in a Sobolev space, here given as
the convolution of an I” function with the Bessel potential J,. J, is defined
as

Ja=/ 537 te"*hy(n)ds,
0

where the heat kernel h;(n) comes from the sublaplacian on the nilpotent Lie
group N see [VSCC92].
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The operator PyF' is given by
e2<patH0>

t

Po| o f|(n1 exp(tHy)n') = /(Ja*f)(n)P1/2((n_1n1(n')tHO)_tHO)dn =

62<P;tH0> ~1/9
= (o x ) x B (na(n')™),
where P(n) = P(n!) and ]Zzz(n) = P1/2(p tHo),
We would like to see this as a convolution between f and a kernel ;. We
therefore need to rewrite the above expression as

Piie+ ok 1)) = (P # Jo) + f(ma),
and we get the following expression
eQ(p,tHo)

t

To estimate the kernel 15;14? x J, we first need to simplify the convolution of
P2 with the heat kernel:

PY2 x hy(n) = / () B2 (n ') dn =

PolJa * f|(n1 exp(tHo)n') = £ (P2 * Jo) (ny (n) ).

— /hs(n)pl/Q((n—l,ﬁ)—tHo)dn — /h,s(n)PI/Q((n_tHO)_l’r_l_tHO)dn —
— eDthsezt (n—tHg)pl/Q((n—tHo)—lﬁ—tHo)dn —
= eDt/eDthsezt (n)PY?(n 1n tHoydn =

= /hsem (n) P2 (n " 'a tHoYdn = PY? x hyga (7 1H0),

In this sequence of equalities we have used known properties of the heat ker-
nel, like hge2(n7'H0) = e Pth (n), see e.g [Sak79], and the standard variable
substitution n=tHo — n,

4. ESTIMATES OF THE KERNELS

Our next step is to obtain estimates of the kernel above.
Lemma 4.1. We consider Q;(ny) = hy * P'?(ny); We have that Q; satisfies
the following estimates; If |ni| < 1.
Q:(ny) <t P21 4+ logt).
If Inq| > 1;
Iny| " P(log|ni| +1) t << |ny|? ort~ |ny|?

Qi(n1)
ni) StP2(1 +log(t))  t>> myf?

S
Qi(n) S
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Proof of Lemma 4.1. ;jFrom [Sak79] we see that the heat kernel can be esti-

mated with
—D/2 2
ha(n) < t In|* <t
~VNinlP n2>t

We divide the proof in two parts, depending on the size of n;.

The case |ni| < 1. We now prove the above estimates. We take |n;| < 1
and split the integral in two part, according to the above estimates of the heat
kernel. First we consider |n|? < t:

1

hy(n)PY?(n'n dn<tD/2/ dn
/| A L P (N

This can easily be seen to be bounded by t~”/2log(1 + v/t). The other part
can be estimated by

~ 1 1
/ he(n)PY2(n " ny)dn < / dn
[n|2>t

2>t (2|7 (1 4+ [n~tna )P

which can be bounded by the same expression by simple estimates ¢t~ /2 log(1+
V).

The case |n;| > 1. Here we need a further division, where we compare the
size of n; to t.

When t << |n;|? we first look at the “local” part,

t‘g/ L d
n.
n2<t (L+[n71ng|)P

This integral is easy to take care of, we just estimate the denominator with
Ini|P and get the desired estimate.
Next we consider the ”global” part

1 1
dn.
/n|2>t n|P (1 + |n~tny|)P

We can take care of the contribution of this part by dividing the integration
area into three parts;

(1) vt < |n| < |n1|/2. This part is easy, because here [n"'n;| ~ |ni|. A
polar coordinate substitution implies that this part of the integral can
be estimated with

-D 7
n log —.
(|~ log i

(2) |n| ~ |ni|. This again falls into two categories, either [n'n;| ~ |n|
which can easily be seen to give a contribution |ni|~?, or |[n7'n,| is
small, which require a further decomposition. We take the last case
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to be {n;|n"'ni| < |n1|/2}. We then make the decomposition, Ay =
{n;|n"'ny| ~ 27%|ny|} N {n;|n""ny1| < |ny|/2}. This gives us

/ 1 1 p
n ~
o, [P (L |n~tny )P

|n1|
NZ/ (1+ 2[m )P Z2kD+ZQkD|n1|D

The best choice of N is to make both sums approximately equal, and
this is obtained if we chose 2% |n;| ~ 1. This finally gives the estimate

1 1
dn ~ |n|7P(1 +log, |n
o PTG 0+ o )

(3) |n| > 2|nq|, as in the above cases, this part of the integral can be
estimated with |n|P.

When ¢ ~ |n;|?, we again begin with the “local” part

t_g/ ! d
.
np2<t (L+[ntng|)P

The integral can be split into two parts that can easily be handled, the first
part is where the denominator 1+ |n 'n;| ~ 1 + |n|. This is approximately
half of the ball and here one gets that the integral can be estimated with
|n1‘—D ~ t—D/Z'

The other part can be estimated using dyadic annulus as above, and the
integral gives the contribution |n;|~"log, |ni| ~ t=/?log, |n|.

It remains to consider the “global” integral

/ 1 1 p
n.
>t (0[P (14 [ntna[)P

For the part where |n| is sufficiently large i.e. |n| > 2|n;| we can forget the n;
part, and the integral is approximately t?/2 ~ |ni|=P.

When |nq| < |n| < 2|ny| we split the integral into two parts, depending
on the value of [n"'n;|, (remember that here |n| ~ |ni|). The part where
In"!ny| ~ |ny| can easily be evaluated and one gets the contribution (1 +
In1|)P. The other part follows by using the dyadic annulus 4 = {n;|n"1n.| ~
2% Ini |} N {n: |m| < |n| < 2|ny]}-

1
1 1 1 1
dn ~ ——= j/ S — -
ENE / A+ )P TP 2=, (U + 2]y

-N
O SN o
Iy |P " 1 ‘D 2kD|p,[D”
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where N is chosen so 27 |n;| ~ 1. This sums up to |n;|"P(1 + log, |n4|).
When ¢ >> |n; |, we start with the “local” part

t—%/ ! d
n.
npp<t (L+[n7tng|)P

Since |ny| is comparatively small, we divide the ball {|n|*> < ¢} into dyadic
annulus defined by [n~'n;| ~ 2%(|n;| + V/#) where k = —oo...0. This gives
the estimate

1
\n|<¢z (1 + [n~tm[)P Z (142* |n1|+\f))

D2 Z kD 4 4=D/2 Z 22282} j: ?;D £~ P2 (1 + log(Jn| + V1)),

where N is chosen so 27V (|n;| + /1) ~ 1.
It only remains to deal with the integral over large n, where we can assume
that |n 'n;| ~ |n|. For this case we get the estimate

1 1 ©
dn ~ / r2PpP=ldp ~ —[p7P = ¢ D2
/|n2>t [P (1 + [n1tny])P Vi =

5. PROOF OF THE THEOREM

We want to estimate the operator M, , f(n;) which is defined as the supre-
mum of the following expression, where we take the sup over n’ and t satisfying
In'| < tP9etor'e p' < p:

e(2p,tH0> a

We split the integral over N in two parts Ny and Ny, where
Ny = {n: |n"#Ho| > C’tp'qetaplq} and N, = {n:|n "] < Ct”'qem”'q}.

In the integral over N; we can get rid of n' and this leaves us with the usual
Hardy-Littlewood maximal operator, which is known to be bounded on L”.

This leaves us with the integral over N,. We first decompose N into dyadic
annulus

Ay ={n: ok—lpagtap'ap—t o In| < thqetap'qe_t}, k=n(,qt),...,N@®, q,t1)
where N(p/, ¢,t) = [¢(p' —1) log, t] = O(logt) and the lower bound is such that

we get 2MPadeler'a 1 ie. n(p,q,t) ~ —tap'q. Actually the first annulus
should be replaced by a ball, but the value is constant (not depending on t) so
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not doing this will not have any significant effect on the estimates. We make
a dyadic decomposition in ¢, B; = {t : 2771 < t < 27} for j > N, for some N,
large enough. We also make the transformation (n')#° — n’, and get

My of(n1) S sup sup o X
§>No teB;
|n'\<2jp’qe’tet°‘i"lq

N (p ,45t)
/ 271 Fln'n™ Qe (n™ ) dnds <
Ap

’q’

tN(p,q,) o0 tHo |2 2t
6 @ _1 _ 1 —1 10g(|n 0‘ + se )
S (Z, t)/o S AR e
n(p',q,

Here we need to divide the s-integral into two pieces, in order to separate the
cases when |n *°|? and se? is the dominant term in the kernel.

5.1. Small s. When 0 < s < age 2 and a; = 2%¢29¢**P'? the dominant
term is [n "0 |2, We continue the above computation and call this part of the
maximal operator M, ,

M]}”af(nl) SJ

i~ A 1y log(In =)
S Sup 55 Z / 52 f( )deds S
J;n,at ( I,q t)

p',q,t) ’
log(2Ftietorq)
< sup — / flun'n ™) ——— Ldnds <
'yt z,q,t) A o ) 2kPtetor
',q,t) ’
log(2ktaetorq)
< — 22T nds =
Zq/ [ S
=CsupT; f(m)
j

where we made the linear change of variables n'n=t — n~! in the last inequal-
ity. Now we estimate the operators le with a sum of operators lek where we
have moved the sup over n’ and ¢ inside the sum. We have

—at N9t
1
I < =; Tk

k=n(p’,q,t)
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where
lekf (m) =

W o 2log(2ktaetor'a)
su e 33_16_3/ nn ! . dnds
p /0 iy ) D

P !
|n!|<279P e~ tetor'a
teB;

The reason for introducing the factor e * outside the sum is to get rid of
an exponential factor below. We replace the integration region Ax(n')~! with
the largest region occurring in the sum: Ay 4 (n')”" which is contained
in a ball B with radius comparable to the radius of Ay 4. Using that
|An(ran| ~ 27% ~Detor’e=Dtt the same is also true for the ball B, and we get
the following estimate;

—2t .

age N 2i(p'=1) Jog(2kteetar’e
p/ Sfflefs Og( € ) %
0

lekf(nl) 5 Sli okD

eat

2i(p'—1)tetop’ o—

Dt/Bf(nlnl)dnds,S
—2t

ape N 2j(p'—1)1 ok4a tap’q
S eat/ sz e %ds og(2t"e )Mf(nl)
0

okD

where ¢ ~ 27. Here M f(n;) is the usual Hardy-Littlewood maximal operator,
which is well known to be bounded on LP. To deal with the remaining integral
we see that we can ignore the exponential factor without any loss, since s
is small. The estimate of the integral together with the other constants will
be a bound on the weak type (1,1) norm of the operator lek, and by routine
calculations we get that the expression in front of the maximal function can
be estimated by

1 w2 o 2i(p'-1) log(2k2jqe2jap'q) i a/22j(p’—1) log(2k2jq62fap’q)
S0 e kD e ~a, kD

The logarithm can be estimated with ap'qj2’ since we have the bound k <
clog2’. If we use this, together with the trivial L*° bound, Marcinkiewicz
interpolation theorem gives the following bound on the operator in L";

5 j 20" =1)d\ 1/r
1Tl < W or) (o205

Now we will see that the operator le has L™ norm uniformly bounded with
respect to j: first sum in k. The sum of the factors that do depend on £ is
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(remember that o < D)

N@'g,2) Qka/r N(p',q,27) '
E kD/ E 2k(a—D)/T ~ 2n(a—D)/r ~ (2jq€23ap'q)(D—a)/r‘
2 r
k=n(p',q;t) k=n(p’,q,2)

The L™ norm of the operator le can thus be estimated by
e (21'(1*&4)62jap’f2ja2p’q2jaqe2ja2p’q2j(p’*1)2]’) M ~ e ¥ (Qj(p’+1)€2jap’)1/r_

27 2
If we consider the exponential factors we see that we in total have e~
The exponent will be negative if r > p' and the exponential factors will kill
the polynomial factors.

So we can bound the L™-norm of le independently of j. To check the rest
of the conditions in the lemma is routine. A detailed description of this can
be found in [R6n97]. We have thus completed this part of the proof and we
continue to the case where s is large.

a2l tap' 27 [r

5.2. Large s. This is the part where s > are 2, with a; = 2%¢2ae%er'e,
Denote the corresponding maximal operator by M;’,a f(n1).

M;?’,af(nl) SJ

Dt N(p”qzt) o0 1 2t
< sup e_j Z / s2 e [ f(my n’nil)%dnds <
a

jyn,’t k:n(pl q t) kei2t Ak SgeDt
N(p'q:t)
< sup — Z / s/ flnn'n ) log(se*)dnds =
VEGH t2 Ic (0 a,t) ¥ € -2t Ag(n')—1
=Csup T} f(m)
j

In this series of inequalities we made a linear change of variables; n'n=! — n=1.
We again move the sup inside the sum and see that the operators Tj2 can be

estimated with a sum of operators Tj?k:

—at N 1q7t)
Z Jk’

k=n(p'.q,t)

with
o f(m) =
*° a—D
sup e“t/ s 2 les/ f(nin Y log(se*)dnds

t,n’ age—2t Ag(n')~1

teB;, |n'|<2i9(®’ ~1) =ty
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We again replace the integration regions A;(n')~! with a ball B, which contains
Ag(n')~! for all £ in the sum and has radius comparable to the radius of
AN qn- For the volume we know |Angy gp| ~ 29FVeleP Dt and the
same is also true for the ball B, and we get the following estimate;

[e.e]

a—D o] ’
T3 f(n) < sup eat/ 577 e " log(se)2i W TVelor ¢~ Plyds x
tEB] ake—2t

1 1
- <
2j(p'_1)@t04p'e—Dtt /l;f(nln )dn ~

< e / P log(se?? )2/ D2 P =D 95 4 M f (ny)
a

ke—2-2j

Again M f(n,) is bounded on LP. To deal with the remaining integral we
see that we can ignore the logarithmic factor without any loss, by choosing a
slightly larger a. We can then get an estimate of the integral by using partial
integration in s. The integral together with the other constants will be a bound
on the weak type (1,1) norm of the operator Tj2k, and we get that the norm is
bounded by '
al(ca—D)ﬂeap’?J 9ip"

If we use this together with Marcinkiewicz interpolation theorem, and the

trivial L* estimate, we get the following bound on the operator in L":

17201 < (af™ ZeaP’Z"QJ'P’)l/ "~ ((2’“27"1@&?"1”)(“‘D)eap’”zﬂ")l/r
jkllr ~> :

Now we can see that the operator Tj2 has L™ norm uniformly bounded with
respect to 7, because if we sum in k, the sum of the factors that do depend on
k is
N(p'sq:t) D-a 1
Z ok(a=D)/r <2jqe2jap’q> [ (Qj(lfaQ)erap’ﬂjan’q) T
k=n(p’,q;t)

This gives that the L™ norm of the operator sz can thus be estimated by

ﬁ (QJP'erap’) L
97
which is bounded independently of j if r > p’. To check the rest of the
conditions in the lemma is routine, just as in the first case.

This gives that Mj,,a is bounded on L" if r > p' and the proof of the theorem
is completed.



14

[CDS92]
[Dor86]
[Hel78]

[Lit27]
[NRS82]

[NS84]
[R6n97]
[SakT9]

[Sj584]

[Sjo88]
[Sue90]

[VSCC92]

J-0. RONNING AND O. SVENSSON

REFERENCES

P. Cifuentes, J.R. Dorronsoro, and J. Sueiro, Boundary tangential convergence on
spaces of homogeneous type, Trans. Amer. Math. Soc. 332 (1992), no. 1, 331-350.
J.R. Dorronsoro, Poisson integrals of regular functions, Trans. Amer. Math. Soc.
297 (1986), no. 2, 669-685.

S. Helgason, Differential geometry, Lie groups, and Symmetric Spaces, Academic
Press, 1978.

J.E. Littlewood, On a theorem of Fatou, J. London Math. Soc. 2 (1927), 172-176.
A. Nagel, W. Rudin, and J. Shapiro, Tangential boundary behavior of functions
in Dirichlet-type spaces, Ann. of Math. (2) 116 (1982), 331-360.

A. Nagel and E.M. Stein, On certain mazimal functions and approach regions,
Adv. in Math. 54 (1984), 83-106.

J.-O. Ronning, On convergence for the square root of the poisson kernel in sym-
metric spaces of rank 1, Studia Math. 125 (1997), no. 3, 219-229.

K. Saka, Besov spaces and Sobolev spaces on a nilpotent Lie gruop, Téhoku Math.
J. (2) 31 (1979), 383-437.

P. Sjogren, Une remarque sur la convergence des fonctions propres du laplacien
& valeur propre critique, Théorie du potential (G. Mokobodzki and D. Pinchon,
eds.), Lecture Notes in Mathematics 1096, Springer, 1984.

P. Sjogren, Convergence for the square root of the Poisson kernel, Pacific J. Math.
131 (1988), 361-391.

J. Sueiro, Tangential boundary limits and exceptional sets for holomorphic func-
tions in dirichlet-type spaces, Math. Ann. 286 (1990), 661-678.

N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and Geometry on
Groups, Cambridge University Press, 1992.

INSTITUTIONEN FOR NATURVETENSKAP, HOGSKOLAN SKOVDE, Box 408, SE541 28
SKOVDE, SWEDEN
E-mail address: jan-olav@inv.his.se

INSTITUTIONEN FOR TEKNIK OCH NATURVETENSKAP, LINKOPINGS UNIVERSITET CAM-
PUS NORRKOPING, SE601 74 NORRKOPING, SWEDEN
E-mail address: olosv@itn.liu.se



