ON SUMMABILITY OF
MEASURES WITH THIN SPECTRA

M. ROGINSKAYA AND M. WOJCIECHOWSKI

ABsTRACT. We study different conditions on the set of roots of the Fourier
transform of a measure on the Euclidean space, which yield that the mea-
sure is absolutely continuous with respect to the Lebesgue measure. We
construct a monotone sequence in the real line with this property. We
construct a closed subset of R% which contains a lot of lines of some fixed
direction, with the property that every measure with spectrum contained
in this set is absolutely continuous. We also give examples of sets with such
property that every measure with spectrum contained in them is locally LP
summable for suitable p > 1. We discuss some related problems; among
them we show that if a measure on the real line is such that its Fourier
transform vanishes on the sequence (n'/ ’“)?le, then both its singular and
absolutely continuous parts share this property.

1. Introduction.

According to the general uncertainty principle a distribution (a measure
in our case) and its Fourier transform can not be both too concentrate. In
particular, if the Fourier transform of a measure is supported on the set of
a special form then it has no singular part. We call a set with this property
a Riesz set. Many different sufficient conditions for Riesz sets are known
- we refer to [M], [Sh], [A], [H]], where the conditions for T¢ are given -
roughly speaking the set should be concentrated on a halfspace and it can
not contain a line. Another sufficient condition (both for R? and T¢) is
given in [R], where the set is required to be strongly antisymmetric. In
the present paper we study fenomena which occur only in the non-compact
setting. We give a new class of examples of Riesz sets on R? which are
symmetric and include a lot of lines.

In Section 2 we prove the following criterion inspired by the de Leeuw
transference method, on which the examples of Riesz sets are based.

Theorem 1. Suppose that a; K N 7% is a Riesz set on Z% for every j =
1,2,... for some K C R?%, and a sequence aj — oo. Then K is a Riesz
set on R?.

As a direct application of the above criterion we prove that so called
f-poles are Riesz sets for every f : Ry — R, which decrease to 0. For
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any positive, decreasing function f : Ry — Ry we call the set an f-pole
iff it is an image of the set {(xy,2') € R? : |2/| < f(|z1|)} under a linear
transformation.

Corollary 1. For any function f: Ry — Ry decreasing to 0, any f-pole
15 a Riesz set.

We also show an example of the Riesz set in R? (d > 2) whose interior
contains all lines of some direction with except of a set of small Lebesgue
measure.

The formulation of Theorem 1 is in the spirit of the criterion given by
Meyer for compact group (cf. [M]), however, instead of using the argu-
ment of topological nature, we rather transfer the results from tori to the
Euclidean spaces.

In Section 3 we study special cases of Riesz sets for which the L!-
summability can be improved. It is easy to see that if the Fourier transform
of a measure . € M (R?) is supported on a set K C R? of a finite Lebesgue
measure, then  is a bounded continuous function, and it belongs to LP(R%)

for 1 < p < oco. Moreover, ||p|l, < |K|pT?1||,u||M We consider the class
of sets K C R? such that the function assigning to t € R the (d — 1)-
dimensional Lebesgue measure of the intersection of K with the hyperplane
{z1 =t} is LP-summable. We prove the following result.

Theorem 2. Let 1 < p < 2, K € R* and there exists y € R* such that
the function

h(t) = mas (K N{E 1< y,€ >=1})

belongs to LP(R). Then any finite measure with Fourier transform sup-

ported on K is locally L' -summable where % + 1% =1.

We also give in this section several results about sharpness of this state-
ment. Among them, we show that there exists a Riesz set which is not
a Hardy set, i.e. there exists a function with spectrum contained in it,
which does not belong to the class H!(R%).

In Section 4 we study conditions on a sequence of zeros of the Fourier
transform of a measure which imply that the measure is absolutely con-
tinuous. We call a sequence A C R? a co-Riesz sequence iff every finite
measure with Fourier transform vanishing on A is absolutely continuous
with respect to the Lebesgue measure. We prove that the co-Riesz se-
quences exist: we construct a co-Riesz sequence on R with a sequence of
differences tending to 0 arbitrarily slowly. More precisely, we prove the
following result.

Theorem 3. No matter how slowly the sequence r, tends to 0, there exists
a co-Riesz sequence A such that dist(A,, A\{\n}) > 7.

We also show that vanishing of the Fourier transform of a function on
any sequence without concentration points does not guarantee any addi-
tional summability of the function (compare with the Theorem 2). We also
study some properties of co-Riesz sequences and formulate some problems.

In Section 5 we apply the method developed in the previous sections
to the so called co-Lebesgue sequences. We call a sequence A C R? a
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co-Lebesgue iff for every measure p € M (R?) with the Fourier transform
vanishing on A, the Fourier transforms of its singular and absolutely con-
tinuous parts also vanish on A. We formulate a criterion for being co-
Lebesgue which is applied to the sequences (n'/*)°%; (k = 2,3,...) and

(logm)se ;.
We denote by R? the d-dimensional Euclidean space with the scalar
product (-,-) and Euclidean norm | -|. By T¢ we denote d-dimensional

torus identified naturally with the cube (—3, 3] C R?. All measures are

supposed to be finite Borel measures. The space of finite Borel measures of
bounded total variation on R? is denoted by M (R?). By ||-|| we denote the
usual norm on this space, i.e. the total variation of a measure. We denote
by ps the part of p singular with respect to the Lebesgue measure (cf.
[HR, Chapt. III, Th. 14.22]). If a measure y is absolutely continuous with
respect to the Lebesgue measure mg, there exists a density f € L'(R?)
such that du = f dmg. In this case we write for shortness u € L1(R?), i.e
we identify the measure with its density. The restriction of a measure p to
a Borel set Q is denoted by p|Q. By fi(¢) = [ e™*2™(®) dy(z) we denote the
Fourier transform of the measure p € M(R?). For A, B C R? by A+ B we
denote the Minkowski sum; 7 A denotes the set {ra € R? : a € A} (r € R).
By dist(x, A) we denote the distance between 2 € R? and the nonempty
set A C R?. The symbol C (possibly with indexes) denotes a non-negative
constant which can change in value from one occurrence to another.

2. Symmetric Riesz sets.

We begin with the proof of Theorem 1.

Proof of Theorem 1. Suppose that K is not a Riesz set. Then there exists
p € M(R?) such that supp i C K and p, # 0. Let us choose an integer j
such that |ps|(a;I%) > 2||us|| (here I¢ = {z € R* : =5 <z < 3}). Let
v € M(T?) be the measure defined by v(E) = p(a; E + ;Z%) for E C T¢.
It is easy to see that ¥(€) = /’Z(O%) for every ¢ € Z%. Since supp i C K, the

Fourier transform of v vanishes outside some Riesz subset of Z%. Hence
vs = 0. But vs(E) = D ¢ cpa pis (@ E + a;€) and therefore

1
sl > [l Gelog I%)s || = Nl IRE\ 0 1951 > <llassll > 0.

This contradiction completes the proof. 0

Corollary 1 is a direct consequence of Theorem 1. One just have to shift
the f-pole in such a way that it does not contain any line with rational
points.

Example 1. Given ¢ > 0 there exists a closed symmetric (with respect
to the origin) set E C L = {z; = 0} C R? and a Riesz set K C R? such
that mp(L\ E) <e¢ and Rx E C Int K.

Let A C L be an open symmetric set of measure mr(A) < ¢ and
A C Ay C --- C A be a sequence of open symmetric sets such that
3



%ZdﬂLCAn and A, C Aforn=1,2,.... Then we put K =R%\ |JF,
where

n
Fn = {(CEl,ZEl) - Rd : |.Z']_| > m —1 and (0,.’1)'1) - An}

We put E = L\ A. Clearly nK N Z¢ C {|z;| < n+| 0
finite subset of Z%. Hence, by Theorem 1, K is a Riesz set. The remaining
property R x E C int K is obvious. O

It might happen (however we do not know it) that strengthening of
Corollary 1 is valid and every L! function with the Fourier transform
supported by an f-pole is better then L' integrable (i.e. belongs to some
fixed Orlicz space), and this could be the reason for being a Riesz set.
The next result shows however that this possible improvement can not be
uniform for all functions f.

Let ® be a Young function which define the Orlicz norm on R?¢; we
denote the corresponding Orlicz space by L®(R?) (cf. [RR]). We say that
a function f belongs to Ly (R?) iff for every z € R? there exists a neigh-
bourhood U such that f - xy € LE(R?).

Proposition 2. Let the Young function ® be such that L*(R?) ¢ L®(R?).
Then there exists f : Ry — Ry and a function F € L'(R?) with the
Fourier transform supported on the f-pole K¢, such that F' ¢ Lloc( .

— n} which is a

Proof. Let ¢ € C™ (Rd) be a positive function such that [|||; = 1 and its
Fourier transform 7,b is positive and supported on the unit cube 7¢. We can
get such a function as the square of an L' function with smooth positive
Fourier transform supported on £I¢. Clearly we have ¢(z) > o > 0 for
x € rI¢ for some r > 0. Let f : R, — R, be a function decreasing to 0
(to be fixed later). For n =1,2,... we define v,, by

/

~ n_ T ﬂ €T
Yp(21,2") = ¢(2n, —f(2n)).
Note that
1) supp ¢, C Ky
2) Y > 0;
_ _ RV = R
3) Y >2"f1(2")0 on E, = 27"l x (W) 14t
4) ||¢n||1 =1.
Then we put

o0
1
= E -_27!)71]'7
—1J
J=1

where an increasing sequence of integers (n;) will be fixed later. We are
going to show that if f is chosen properly then [ ,, ®(a|F|) = oo for every
e > 0and a > 0. Put ¢(t) = t 1®(¢). Since L'(R?) ¢ L®(R?), we have
¢(t) — oo as t — oo. Since @ is superadditive, we have

[ el =3 [ o5
4



Thus, using properties 1) - 4), we get that for j such that n; > j(ao)™?,

ef(2™) <rand 2" > T
o X n rde1jon;
[ oGz [ aGem i)
erd J eIINE,, J

d—1_"T  pd—1/0n;
> € %‘I’(j—ﬂn’f (2")o)

= e o [T )92 T (2 )e),

Put now

1 gLt 4
f(t): { ma“X(loth’(ZS d(IOggt)) for t > 2%,

max (3, ¢74(27)) for t < 2¢.

Choose sequence (n;) such that ¢(2™ nj_d) > j% and n; > j3. Then, using
the above estimation and the definition of f, we get for large values of j

[ @Cm,) > i o o g ng

> 5d_17‘a0j_2¢>% (2™ nj_d)

> e lrao - 7L

Hence the integral [ ,, ®(a|F|) is estimated from below by a tail of a
divergent series. g

Using now the well known fact that H} (R%) C (Llog L)ioc(R?) (cf. [St,
Chapt. I11.5.3]) and that the constructed function is positive, we get as a
corollary that on R? the class of Riesz sets is wider that the class of Hardy
sets.

Corollary 2. There exists an f-pole Ky C R? which is not a Hardy set,
i.e. there exists F € L'(R?) with Fourier transform supported by K such
that F ¢ H'(RY). O

3. Proof of Theorem 2.

We can assume that y = (1,0,...,0). Let u € M(R?) satisfies supp i C
K. Fort > 0 we put p = p* P, where {P;};~o are Poisson kernels.
Clearly p; € LY(R?) N C®(R?) and ||y < ||u|l. It is also clear that
supp iy C K and fi; € L*(R?Y) N C(R%). We have

o) = [ (et ag
Rd

= [ Pr©eme ) g)eniee ag

—0o0

= (Pri(fie(&s, )™ )N (—0),
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where

Pri(f)(s) = / f(a1,2') dmay ().
{z1=5}

Since [7:(£)e™ 0| < el < |lull, and mg—1({z € K : 21 = s}) =
h(s), we get

1P (e (Ex, )™ ) | Logagsy < lell - 1Rl

Hence, if ;1) + 1% = 1, by the Hausdorff-Young inequality,

1(Pry(@e(€r, )™ )My < [lull - [1Al-

Thus [|ue(-, @)l < llpll - [|Bllp for every o’ € R,

Let y = (y1,9') € R? and U = Rx Q be an open neighborhood of 3 such
that € R¥~! is an open neighborhood of ' with finite (d—1)-dimensional
Lebesgue measure. Then

/|Nt|pldmd=//|Mt($1,$')|p,dﬂf1d$'
U oJr

< mg—1(2) - ||pl[? [R5 -
Hence there exists C > 0 such that for ¢ > 0,

”,U't”LP’(U) <C

By the assumption () — p in the *-weak topology. Since ||(pt) vl
is bounded for ¢ > 0, we get that uy € LP(U). O

The f-pole with f(t) = £~ 7D i called a g-pole.

Corollary 3. Let 2 < p < 00. If the support of the Fourier transform of
a measure | 1s contained in a finite union of q-poles, where q > p, then
peLP (RY).

loc

Corollary 3 gives another proof that g-poles are Riesz sets for ¢ > 2.
However, by applying Theorem 2, one can construct Riesz sets which do
not seem to be treated by Theorem 1.

Example. Let K € R? be any g-pole (¢ > 2) which does not contain a
line orthogonal to the first coordinate. Let K, = K N{n < z; < n + 1}.
If (r,)%% _., C R? is any sequence with bounded first coordinate then the

set U, ez (Kn + ) satisfies the assumption of Theorem 2 for p > ¢'.

Corollary 3 shows that every g-pole is a “local” A, for every ¢ > p > 2.
Next remark shows that (a) locAy ¢ A, for 2 < ¢ < oo and 1 < p < o0,
and (b) locA, # locA, for p,q > 2 and p # q.
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Proposition 3.

a) Let 1 < q < oo. There exists a function F € L*(R?) with the
Fourier transform supported on q-pole, such that F ¢ LP(R?) for
any 1 <p < oo.

b) Let1 < g < co. There exists a function F with the Fourier trans-
form supported on q-pole, such that F ¢ LY (R%) for every p > q.

loc

Proof. We use the function F' constructed in the proof of Proposition 2.
-1
This time f(t) = min(l,t_qu—n) and n; = j . Hence

1]y > 5 2l1m, |y
. s rd—1romn, 1
> 72| By, | - (27 f41(27) o)) P

— j_27'd/p0'(2nj fd—1(2’nj)) ijl

= j_2rd/pa2"f(%'71) — 00

as j — oo. This proves part (a). For part (b) we have

/ FP > / P
eld eld

Z j_2|8Id N Enj| . (2nj fd—1(2nj)0_)P
= j_2ad_1rap2"j(§_1) — 00

as j — oo for any fixed € > 0. O

4. co-Riesz sequences on R.

We call A = (A\,)%2; C R? a co-Riesz sequence iff every measure y €
M (R?) such that zi(\) = 0 for A € A is absolutely continuous with respect
to the Lebesgue measure on R.

We do not know if every sequence A = (A\,)S%,; C R such that
lim ;| oo dist(A,z) = 0 (resp. limg_,o dist(A,z) = 0) is a co-Riesz se-
quence. (Note that if A is monotone then the second condition is equiva-
lent to lim, o0 A — Ant1| = 0).

On the other hand we can show that some very particular sequences
from this class are indeed co-Riesz. This is in the case when Theorem 1
could be applied. Note that, despite the fact that Theorem 1 is formulated
for Riesz sets which by definition are closed, it remains valid in this setting
- in the proof of Theorem 1 we only use the values of the Fourier transform
at the points from some special (countable) set.

Proof of Theorem 3. Without loss of generality we can assume that (r;)
is a non-increasing sequence consisting of powers of 2. Moreover we can
assume that Y- r; = co. Then we put A, = Y7_grj forn =1,2,.... Tt
is easy to check that for every n = 1,2,... the intersection 2"(R\ A)NZ
is a set contained in a halfline. Hence it follows from the theorem of F.
and M. Riesz (cf. [HJ, 1.1.3, p.13]) and Theorem 1 that A is a co-Riesz
sequence. Il



Remark. An obvious modification of the proof of Theorem 3 gives its
analogue for several variables. Namely one can prove that for every se-
quence (r,,) decreasing to 0 there exists a co-Riesz sequence A = (),,) C R?
such that dist(A,, A\ {A\n}) >r, forn=1,2,....

It appears that there is no estimation for the growth of the distribution
of the values of a function with the Fourier transform vanishing on a
sequence A.

Proposition 4. For every sequence A C R? with no condensation points,
and every Young function ® such that L*(R?) ¢ L®(R?), there exists

f € LYR?)\ L® (R?) such that f(A) =0 for A € A.

Proof. Put ¢(t) = t~'®(t). Since L*'(R?) # L®(R?), ¢(t) — oo as t — oo.
Let v be the function from the proof of Proposition 2 which is, additionally,
uniformly decreasing to 0 at infinity. Let zq = (1,0,...,0) € R? and put
for m,k € Z

Fnk(x) = 2™ 4p (2™ ) — 2™y (2™ + 2™ k).

Obviously fm,k(ﬁ) =(1- ei27”“(€’w°))12)\(§2_m). Thus the Fourier transform
of fm i is supported on the cube 2™1 @ and its absolute value is less then
1 — ei2mk(&z0)| for ¢ € RY. Since 3 > 0 and ¢ is uniformly decreasing
at infinity, for every m € Z there exists kK = k(m) € Z such that f,, j is
positive on the cube 1% and fy, x(z) > 2™4o for z € r2=™I%. Since the
set A N 2m[? is finite, for every € > 0 we can always find an (arbitrarily
large) integer N such that dist(N (X, zo),Z) < € for A E AN2mI¢. Hence
there exists integer k,, such that we have fm,km (N < for AeAN2mIe,

where M = #(A N 2™T4). Clearly fm g, (A) = 0 for A e A\ 2714, Put

hl = Z %fmn,kmna

where the numbers m,, (n = 1,2,...) are going to be fixed later. We prove
that for every a > 0 the function ®(ahq) is not integrable on any fixed
neighbourhood of the origin, say aI? (note that we can assume that h; is
positive in aI?). Since ® is a superadditive function,

[ 0002 5, Wt

If r2=™» < g we have
o oo
D(— fom > o (—2mnd
/aId (n2f ) 2 /rz mnId (n2 )
=2r —¢( 7 gmnd).

If m,, is chosen to satisfy ¢(n=32™n%) > n, then for n sufficiently large

/ , ¢(%fmnykmn) > 2raon” L.
al
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Thus hy & LY _(R?). Let us consider now the functions g,,, defined by

I = D Frukm, VY (\f )
A€AN2mn 4
where 7, = min{1,[A = X|: XX € An (2™ +1)I% X # X}. Then,
obviously, gm, (A) = fm, k., (A) for all A € A. Also

AEAN2Mn Jd

and

”gthLm < ”@mnnl

<Y Fmakn, W, V- ll9]

AEAN2™n Jd

< Va=4||s.

Thus the function hy = ) n% 9m, is bounded, summable, and ha (A =

a(X) for all A € A. Hence the function f = hy — hy € L*(R%), its Fourier
transform vanishes on A and f is still not in L (R?). O

loc
Remark. If ®(x) = zlog(z+1) then one can modify the above construc-
tion to get the function which does not belong to H'(R).

Proof. After some minor modification we can assume that hs is contin-
uously differentiable. Indeed, during the construction, when we define
numbers k,,, we replace the condition fy, k (A) < ﬁ by the condition

fm,km (N < m Then we get the estimation on the gradient of g,,,
in the same way as the estimate for the sup norm of g,,, in the proof
above. Let x be a smooth function supported on 2I¢ such that x = 1 on
I?. Since the function

hs(z) = ha(z)x(x) — ho(xz — 3z0)x(z — 3x0)

belongs to the space H!, the function f belongs to H' iff f + hs does.
The function f + hg is positive on the cube I¢, because it coincides there
with h;. Hence, by [St, Chapt. II1.5.3], the restriction (f + h3)|7a = h1 |74
should agree with an L log L-summable function on every compact subset
of I¢, which is not the case. O

In the proof of Theorem 3 the arithmetic relations between elements of
A were crucial. On the other hand, the set of non co-Riesz sequences is
open in the following sense.

Proposition 5. For any finite measure pp € M(R) and a sequence A =
(An) C R which has no condensation points, there exists a sequence of
positive numbers (r,) such that for every sequence A' = (N) C R such
that | A\, — AL| <71, (n=1,2,...), there exists a measure i’ € M (R) such
that w(A\,) = W' (AL) forn=1,2,... and ps = pl,.

Proof. Without loss of generality we suppose that ||u|| = 1. Let f,(r) =
||(R\ [=7,7]). We need the following lemma.

9



Lemma 1. Given c € (0,1), r > 0, z € R and a measure p € M(R)
with ||p|| = 1, there exists a measure v = v(c,r,x) € M(R) absolutely
continuous with respect to Lebesque measure, such that supp v C [x—2r, z+
2r], fi(z) = (p=v)"(y) for everyy € (z—r,z+r), and ||v|| < C(c+fu(5)),
where the constant C does not depend from c,r,z and p.

We show first how Proposition 5 follows from the lemma. Let (r,) and
(¢n) be sequences of positive numbers such that the intervals [A,, —27,,, A, +
2ry] are pairwise disjoint, > ¢, < oo and ) fu($) < oo. Then p' =
p— > V(CnyTny An) is a finite measure which satisfies all the requirements.

Proof of Lemma 1. Let ¢ € L(R) be such that |[¢|; < C, ||¢']|ec < C,
' (z)] < &, supp ) C [~2,2] and 9(z) = 1 for z € [—1,1]. Put pr(z) =
SUPyeo—R,o+R] |V ()| It is easy to see that [|pr[l1 < C1max(1, R). We
denote 9 (z) = ty(tz). Without loss of generality we suppose that x = 0.
We consider first the case 12(0) = 0. Then we have ||u * 9| < Ca(c+
f(£). Indeed, since 1i(0) = 0, we can represent pu = pf + pp where pg is
supported on the interval [—R, R], [, dur = 0 and ||p®|| < 2f(R). Then
we estimate the convolution separately for up and pf:

1 % el < Bl - Nlells < C - F(R),

(kR * ) (@)| = |/¢r(£€— ) —tr(z)dur| <R sup  |ir(y)|- [luel.

Since suPyc(y—p 2t r] V(W) = rprr(rz) We get
lr * e (2)][1 < CrRmax(1, rR)]|p]-

Putting R = 7 we get the desired estimation. Hence the measure v =
p * 1, satisfies the conditions of the lemma. If 7(0) # 0 we put v =
(1= (f du)do) * ¢y O
Remarks. 1) It follows from the proof that if A satisfies assumption of
Proposition 5 and (A) = 0 for A € A then there exists p' € M(R) such
that ps = p, and 7’ vanishes on some open set containing A.

2) Proposition 5 can be easily extended to a multidimensional case.

The next result shows that in the previous proposition the sequence
(rn,) could not be chosen uniformly for all measures.

Proposition 6. For every positive sequence (r;) there exist sequences A =
(An) and A" = (A},) and p € M(R) such that |A; — X;| < r; and there is
no p' € M(R) such that p(A,) = p'(A]) forn=1,2,....

Proof. We set A’ = Z. We index the sequences A and A’ by integer
numbers rather then natural ones. Let (a,) be a decreasing sequence of
positive numbers such that »  a,, < oo and (k,,) be the sequence of positive
integers such that Y kna2 = co. Put b, = a; where j is the unique index
such that k1 +---+kj_1 <n <ki+---+kj_1+k; (here we put kg = 0).
Set

\ {m ifm#£2,(j=1,2,...)

m+jw;t fm=2" ki+-t+kii<n<k+--+kj,

10



where (w;) is a sequence of positive integers satisfying for j =1,2,...

1) (2wj)lwjt ;

2) wj_l <min{rgn :n < k1 +---+k;}.
Let pn, = (20)71(0, —0_w,) and g = anp, We have i, (t) = sin mw,t.
Hence 71;(A2n) is positive for n < ky + -+ + k;j_1, equals 1 for k1 + -+ +
ki1 <n < ki +---+ k; and vanishes for k; + -+ + k; < n. Thus
fi(Agn) > by, for n =1,2.... Clearly fi(\,) =0 for n # 27, (j =1,2,...).

Suppose to the contrary that there exists a finite measure y’ such that

1 (j) = B(Aj). By the de Leeuw transference theorem (cf. [deL], [StW,
Chapt. VII, Th. 3.8]), there exists a bounded measure v € M(T) such that
Ivllaeery < ||y and D(n) = i@’ (n) for n =1,2,.... But 3 [7(n)|*> =
> b% = oo which contradicts the fact that A = {2 : k=1,2,...} isa A,
set, i.e. v € L2(T) and ||v||2 < C||v|| s for every measure v € M(T) with
the Fourier transform vanishing outside A. (]

The above construction has one more application. We can use it to
construct a sequence which does not allow co-balayage.

Proposition 7. There ezists a sequence A = (\,) such that

/{Ielfj‘\ dist(\, A\ {A\}) > 0,

and measure j1 € M (R) such that there is no measure ' € M (R) supported
on a compact set such that (\,) = ' (M) forn=1,2,....

Proof. Let A and p be the same as in the proof of Proposition 6 with one
modification: the condition 2) on the sequence (wj;) is replaced by another
condition

2’) wj_l < j"tay.
Suppose that there exists p/ € M(R) such that g'(\,) = (A,) for n =

1,2,... and supp p’ C [-T,T] for some T > 0. Then the derivative of
is bounded by T - ||¢'||ar- Hence, for sufficiently large n, we have

(2" = [ Aan)[ = T~ [|W'llag - [Agm — 27
= [ Qo) =T | llas - (2w5) ™

1A/
— Aon )|.
>2|M(2)\

Thus Y | (n)|? = oo, and we finish proceeding as in the proof of Propo-
sition 6. 4

Remarks. 1) Note that for A = Z measure p' with properties postulated
by Proposition 7 exists and it is supported be the interval of length 1.
This is exactly what the de Leeuw theorem says.

2) We say that a sequence A C R has de Leeuw property iff for every
measure p € M(R) there exists a measure p/ € M(R) with compactly
supported Fourier transform, such that z’'(\) = z(A) for every A € A. By
the de Leeuw transference theorem, for every finite set /' C R and r € R,
any subset of the set F' 4 rZ has the de Leeuw property. We do not know
whether the converse is true.

11



3) It is much easier to construct a sequence A without the de Leeuw
property if we skip the condition infy¢a dist(A, A\ {A\}) > 0. Moreover,
every sequence A which contains an increasing subsequence () such that
lim z,, = oo and lim(z9,, — Z2,+1) = 0, has no de Leeuw property. Indeed,
let v € L'(R) be a measure with Fourier transform supported on the
interval [—1,1] such that »(0) = 1 and let v, € M(R) be defined by
Up(t) = U(L). Passing, if necessary, to a subsequence we can assume that

1/2
Zrn/ < oo where 7, = Topt1 — Tap < Toy — Top—1 for n = 1,2, .. ..

Put p = Zr,ll/zz/rne%”%t. Then we have |u| < ||v|| - Zr}lm < o0,
w(xan) = 7‘,1,/2 and fi(z2n41) = 0 for n = 1,2,.... Hence the supremum

of the derivative of i on the interval (z2,,Zan+1) is greater then 1/2

Therefore the derivative of i is unbounded, which means that p is not
compactly supported.

5. co-Lebesgue sequences.

We call the sequence A € R? a co-Lebesgue sequence iff for every mea-
sure u € M (R?) such that 7i(¢) = 0 for £ € A its singular part p, shares the
same property, i.e. ls(§) =0 for £ € A. Clearly every co-Riesz sequence is
co-Lebesgue. A slight modification of Theorem 1 allows to formulate the
following criterion.

Proposition 8. Assume that A € R? has the following property. For
every & € A there exists o € R such that Z% \ aA is a Riesz set, and
af € Z%. Then A is a co-Lebesque sequence.

Proof. Let £ € A and o € R be such that aé € Z? and Z¢\ aA is a Riesz
set. Let v € M(T?) be the measure defined by v(E) = u(aE + oZ?) for
E C T¢. Clearly vs(E) = ps(aF + aZ?). Tt is easy to see that for every
keZs,

v(k) = n(Lk),
as well as
vs(k) = As(ék).

Since (&) = 0 for £ € A, the Fourier transform of v vanishes outside some
Riesz subset of Z%. Hence, by the assumption, v, = 0. Since o € Z¢, the
above formula yields that pus(§) = vs(af) = 0. O

Examples. 1) Let k = 2,3,.... Then the sequence A = (n'/*)%2, C R
is co-Lebesgue one. Indeed, let a € Aj. Then a* € Z. Therefore j*a* € Z
for j =1,2,.... Hence ja € Ag for j = 1,2.... Therefore %Ak NZ =74,
and, by F. and M. Riesz theorem, Z \ (%Ak) is a Riesz set.

2) Let Ag = (logn)s%,. If a = logm € Ay then na = logm™ € A for
n=1,2,... and hence, similarly as in Example 1, Z\ %AO = Z_ is a Riesz
set.

Remarks. 1) In fact, Proposition 8 together with the above example
give something more, namely if [i(§) = 0 for £ € Ag then fs(&) = 0 for
E €N U—Ag.
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2) We do not know whether Ay are co-Riesz sequences.

[St]

[StW]
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