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Tree influence on understory vegetation:
an edge correction and a conditional model

Sharon Kühlmann-Berenzon
Department of Mathematical Statistics

Chalmers University of Technology and Göteborg University

SUMMARY

The relation between the understory vegetation species and the surround-
ing trees was studied using data collected in the permanent sample plots
of the 1985-86 National Forest Inventory of Finland. The influence poten-
tial index quantified the effect of the trees with an exponential function of
the spatial location and size of the tree.

The observed values of the influence potential, however, were censored
by the plot borders. An edge correction was therefore developed, which
calculates the expected influence potential outside the plot borders; this
was achieved with the Campbell theorem for a marked point process. The
correction removed the bias in the influence potential of the large trees,
but overcompensated in the case of the small trees.

A model for the presence of an understory vegetation species was then
derived that avoided the large-scale factors implicit in the data. The re-
sult was a conditional logistic regression for the pattern of presence and
absence in the quadrats of the plot. Observations of cowberry (Vaccinum
vitis-idaea) were fitted using the edge-corrected influence potential of pine,
spruce, and birch as explanatory variables; the results show that higher
influence from pine and spruce reduce the odds of the observed pattern.

Keywords: edge correction, spatial point process, marked point process,
conditional logistic regression, influence potential, forestry.
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Introduction

The understory in a forest is composed of those plants that grow under-
neath the canopy of the taller trees, and include grasses, herbs, dwarf
bushes, and mosses. It plays a vital role in giving shelter to animals, pro-
tecting and enriching the soil, and providing fodder and timber. Sum-
mary statistics at the level of tree stands (e.g. total crown coverage) have
already been used to describe the understory vegetation. These measures,
however, do not account for the diversity found within a stand, and it is
possible that more accurate results may be obtained by including species,
size, spatial patterns, and other characteristics of the trees. Information
on the relationship between trees and understory vegetation can bring
further understanding to the ecological processes that take place in the
forest between trees and understory, which may have consequences for
forestry management and biodiversity policies.

The data collected in the permanent sample plots of the National Forest
Inventory of Finland provides a rich source of observations on trees and
understory species. In collaboration with the Finnish Forest Research In-
stitute (METLA), this project was set up to study the relationship between
single trees and individual understory species using that data. The influ-
ence potential was chosen as the index to quantify the ecological effect of
the trees; this measure has been previously applied to similar studies on
small and homogeneous areas (Kuuluvainen and Pukkala 1989; Kuulu-
vainen et al. 1993; Økland et al. 1999; Saetre 1999).

1



2 INTRODUCTION

The use of the permanent sample plots provided additional challenges to
the analysis. First, since the study area covers all of Finland, it is very
heterogeneous, including diverse environmental conditions and manage-
ment practices; second, the measurements were carried out within small,
delimited plots, which cause the observations on trees to be censored.

This thesis starts by presenting the main ideas on ecological field theory,
which serves as background for the concept of influence potential. A de-
scription of the permanent sample plots and of the model of influence
potential adopted in this study are then provided. In Part I we develop
an edge correction method for the influence potential, and in Part II, a
conditional model for the presence of an understory species. Additional
exploratory results from this study are reported in Kühlmann, Heikkinen,
Särkkä, and Hjorth (2001).

1 PART I

Before attempting any modeling, we first had to find an edge correction
method for the influence potential measurements. This was necessary be-
cause the observations on the trees were censored by the borders of the
plots; that meant that possible relevant information from trees standing
outside the borders was missing. The method proposed is based on the
Campbell theorem for a marked point process. The development of the
edge correction and its application to the data from the permanent sample
plots is presented in Part I of this thesis. Comparisons of the distribution
of the influence potential with and without the correction show that the
method works in a satisfactory way for the larger trees, but overcompen-
sates for the smaller trees measured in the inner plot.

2 PART II

In Part II we derived a model for the presence of an individual under-
story species, where the influence potential of the three dominating tree
species served as explanatory variables. The result was a conditional lo-
gistic model which avoids the large scale factors that were implicit in the
data. This is the first attempt to find a relation between the characteristics



INTRODUCTION 3

and spatial pattern of the trees, and the presence of an understory species.
The model was fitted to observations of Vaccinum vitis-idaea and signifi-
cant results were obtained that show a connection between the influence
potential of pine and spruce, and the presence of this species.





Background

1 ECOLOGICAL FIELD THEORY

Ecological field theory (EFT) was originally introduced by Wu, Sharpe,
Walker, and Penridge (1985) as a theoretical approach to the study of in-
teractions among individual plants. Based on the field theory of Physics,
EFT assumes that a field or domain exists around every plant where the
plant influences the availability of resources according to its own charac-
teristics and other environmental factors. As the plant adds or subtracts
resources, it facilitates or suppresses the growth of other plants situated
inside the influence field. This general framework allows different indi-
viduals from the same community to be compared because it considers
specific characteristics of each plant, and it also incorporates the spatial
configuration since it defines a physical domain. Furthermore, the way
the plant influences its domain may be described mathematically.

The mathematical description of the influence on the domain is chosen
empirically. Wu et al. (1985), for example, defined interference potential,
a measure of the interference that a plant in a specific location is subject to
and which must overcome in order to grow. The interference is a function
of different system parameters that are determined by the surrounding
plants. The parameters quantified were water, nutrient, and light avail-
ability, which themselves were functions of the crown, stem, and roots
of the surrounding plants. Walker, Sharpe, Penridge, and Wu (1989) pre-
sented a simpler version of EFT where the interaction intensity between

5



6 BACKGROUND

two plants depended on the size of their influence domains, their individ-
ual response functions to environmental stress, and the overlap of the two
domains.

Kuuluvainen and Pukkala (1989) applied EFT to study the relationship
between Scots pine seed trees, and seedlings and understory vegetation
in a Finnish forest. They introduced a single-tree index that quantified the
influence of trees on a specific location, in this case, where the vegetation
was observed. The calculation of this influence potential consisted of two
steps: the first described the effect of an individual tree on the location; the
second part combined the effect of the surrounding trees into the influence
potential ��� affecting the location.

An exponential decay based on the distance �����	��
 between the tree � and
the location � , and a parameter � described the effect 
 � of a tree as


����	��
���
����	��
����������! "�#�$�������	��
&%�')(

The parameter ��� was determined by trial and error as *,+��	��(.-�/0�1
 , where
/2� was the height of the tree; and the effect 
"�1�	��
 at the tree location was
estimated as 34�,+15�6 , 37� standing for the diameter at breast height (DBH)
of the tree. In this model the effect of a tree is strongest at the stem and
decreases with distance from the tree.

The influence potential ���"�	��
 at the location � was obtained as

�&�8�	��
��9*: <; � ��*= >
 � �	��
?
@( (1)

This index ranges continuously between 0 and 1: low values indicate that
the location � suffers of no interferences, i.e. it is at a greater distance from
the trees; and high values mean that, because it is close to trees, the loca-
tion is subject to high influence.

Økland, Rydgren, and Økland (1999) derived a formula for 
A�	��
 using
more parameters and characteristics of the tree, such as height, crown
radius, distance from the tree, and DBH. They concluded, however, that
the best representation of the tree effect was a function of distance and
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DBH, and then they modeled �&� multiplicatively as in (Kuuluvainen and
Pukkala, 1989). Their model of 
4�	��
 , estimated with data collected in a
Norwegian spruce forest, was


����	��
���� 37�� -���� ��� ���� =6 (
	���
�� ��( � 	�*=� �&���	��
� ��3���� ������ �������
in order to find the parameters � , � , and � , they recommended to optimize
the previous function to the data using constrained ordination.

Another study, performed in a mixed spruce-birch stand by Saetre (1999),
applied yet another formulation of the concept of influence potential. The
main differences to the previous ones were the use of the linear distance
from the tree and lack of additional parameters in 
4�	��
 , and the additive
function instead of a multiplicative one for ��� ; thus


��1�	��
 � 37������� � �� :�&���	��
?

�&�=�	��
 � � � 
��1( (2)

The interpretation of Eq. 2 is the same as for Eq. 1, but there is no upper
bound with this model, i.e. it increases as the number of trees increases.

Although the mathematical expressions for the tree effect 
A�	��
 and for
the influence potential ���"�	��
 differed among the three studies, two key
assumptions of EFT are present: there is an influence domain defined,
and the individual characteristics of the trees are considered; the former
is carried out by an exponential function, and the latter by the DBH and
the height. Furthermore, implicit in the definitions of tree effect as an
exponential model is the assumption that the effect is symmetrical around
the stem.

Kuuluvainen and Pukkala (1989), Økland et al. (1999), and Saetre (1999)
related their �&� functions to the abundance of understory vegetation and
seedlings, and to soil measurements, using statistical methods such as
correlation, variogram analysis, linear regression, and constrained ordi-
nation. For the analysis of the understory vegetation, the species were
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grouped in categories such as mosses, grasses and herbs, and dwarf shrubs
(Kuuluvainen and Pukkala, 1989), or vascular plants and cryptograms
(Økland et al., 1999); or described by principal components (Saetre, 1999).
The data was obtained in all cases from boreal forests with one type of
stand and relatively small study areas: pine in a 140 m % plot (Kuuluvainen
and Pukkala, 1989), a spruce stand of 2 km % (Økland et al., 1999), and
mixed spruce-birch forest in an area of 14 m x 22 m (Saetre, 1999); another
similar study that applied the formulas of Kuuluvainen and Pukkala (1989),
was carried out in a 1 ha Scots pine stand in Finland by Kuuluvainen,
Hokkanen, Järvinen, and Pukkala (1993).

2 DATA: PERMANENT SAMPLE PLOTS (PSP)

The data for this study was collected in the permanent sample plots (PSP)
established by the Finnish Forest Research Institute (METLA) as part of
the 8th National Forest Inventory (1985-1986). PSP consists of 3009 plots
located on a regular grid covering all of Finland (337 000 km % ) (Fig. 1).
In Southern Finland four plots were assigned to each cluster, with 400 m
between the plots and 16 km between the clusters. In Northern Finland
three plots at 600 m distance formed each cluster, and 24 km in N-S direc-
tion and 32 km in E-W direction separated the clusters.

The plots were located on forestry land and were circular with a radius
of 9.77 m (area of 300 m % ); figure 2 shows a schematic plot. Trees with
DBH greater than 10.5 cm were measured in those circles, and their spatial
location recorded, while trees with DBH between 4.5 cm and 10.5 cm were
observed within a second radius of 5.64 m (area 100 m % ) from the plot
center. The stands within the plots were also identified. The dominating
tree species were Scots pine (Pinus sylvestris), Norway spruce (Picea abies),
and birch (Betula pubescens and B. pendula).

Within each plot six quadrats of 2 m % were systematically assigned: four
at distances of 3 m and 8 m from the plot center on the N-S axis, and two
more at 6 m from the plot center on the E-W axis. These were classified
according to laying on mineral soils or peatlands. The understory vegeta-
tion was recorded by species and measured visually as percentage of the
quadrat covered. Not all quadrats were consistently measured in every
plot, but in 95% of the plots at least three were measured.
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Figure 1: Permanent sample plots (PSP): Sampling grid.

This data has been used to monitor the health of the forest as well as to
study the understory (e.g. Tonteri, Mikkola, and Lahti 1990; Korpela and
Reinikainen 1996).

3 ECOLOGICAL MODEL: INFLUENCE POTENTIAL

The formulation for the influence potential ��� used in this study is a com-
bination of those from Kuuluvainen and Pukkala (1989), Økland et al.
(1999), and Saetre (1999). We defined the effect of a tree of species � on a
quadrat � as


������ �	��
 � 38�:� ��� � �  � �A <� � %� � �
� 3 � � ��� � �  �����	��
 %� � � (

The parameter � � is a scale for the size of the domain of the influence field
for the tree species � ; �!���	��
 represents the Euclidean distance between the
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Figure 2: Permanent sample plot (PSP): Quadrats 1 and 4 (Q1 and Q4) are at
8 m, quadrats 2 and 3 (Q2 and Q3) at 3 m, and quadrats 5 and 6 (Q5 and Q6)
at 6 m from the plot center (O); quadrats are 2 m % . Within the plot of R = 9.77 m
(solid line), all trees with DBH greater than 10.5 cm were measured. Within the
plot of R = 5.64 (dashed line), trees with DBH between 4.5 cm and 10.5 cm were
also measured. Illustration at scale.

tree � and the quadrat � ; and 3A� is the DBH of tree � . This expression
of 
A�	��
 is symmetric around the stem; it assumes that the largest effect is
found at the tree location and that the magnitude of the effect decreases
with distance. Moreover, the domain for the species grows with � � ; in
other words, effects from the species are expected at larger distances when� � is larger as in Fig. 3.

For the influence potential �&� we adopted an additive model for all trees
of species � in plot � , i.e.

�&�����	� � ��� � 
�� ������ 
4�	� � � 
#(
For each quadrat in the plot, a measure of the influence potential of a spe-
cific tree species is calculated. That measure will depend on the distances
between the trees of the species and the quadrat, the scale � of the tree
species, and the size of those trees; e.g. large trees at short distances and
with a high value of � will result in a high value of influence potential.
Whether the calculated ��� has a positive or negative influence on an un-
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Figure 3: Function ����� �� ��!���	��
 % + � 
 for different values of � . The larger the value
of � , the larger the influence domain is.

derstory species, will depend on the relationship between both species;
i.e. while for some understory species it is detrimental to have trees close
by, for others it might be beneficial. The same ��� is related to all under-
story species observed in the quadrat, since ��� is a function of only the
trees.





Part I

Edge correction for
influence potential

1 INTRODUCTION

The influence potential on a quadrat ���"��� 
 is calculated as a function of
the effects of surrounding trees. The sampling procedure used in the per-
manent sample plots (PSP) ignored the trees located outside the plot, and
consequently the calculation of the influence potential �&� may underesti-
mate the true value. Such a situation is more severe when it is the nearby
trees that are left out, as those are the ones with greater impact accord-
ing to the definition of the tree effect function 
 . Therefore the closer a
quadrat is to the edge of the plot, the fewer nearby and high-effect trees
are taken into account, and the larger the bias.

The same type of problem is also encountered in the analysis of spatial
point patterns, where that the information gathered on the events (i.e. the
points of the point process) is censored by the boundaries of the study
area; this problem is commonly known as edge-effects. The empty space
function (F-function), the nearest-neighbor function (G-function), and the
K-function (see e.g. Diggle, 1983) are some of the statistics often used to
describe relationships among the events in a spatial point process. Sev-
eral corrections that compensate for the edge effects have been developed
for these functions. The trees in the PSP can also be considered as ran-
dom events from a spatial point process, but the existing corrections are
not suitable for this study: in our case we are not concerned with only

13



14 EDGE CORRECTION FOR INFLUENCE POTENTIAL

the trees, but also with the ecological relation between the trees and the
quadrats as quantified by �&� .

In this report we propose a correction for �&� , which is based on the the-
ory of marked point processes. First we summarize concepts and tools
commonly used in the analysis of spatial point processes and include a
survey of edge corrections found in the literature. We then present the ba-
sic theory of marked point processes and derive the new edge correction.
Finally we compare the results of ��� with and without the correction for
the large and small trees of the PSP.

2 SPATIAL POINT PROCESSES

Spatial point processes deal with the study of events occurring on a � -
dimensional space, with � � 	 . The locations of those events are consid-
ered to be random, as may happen with trees, cells, stars, etc. Detailed
discussions on the analysis of spatial point processes can be found, e.g. in
Diggle (1983), Cressie (1991), Stoyan and Stoyan (1994), and Stoyan et al.
(1995).

The processes we discuss here are restricted to those in � % , as well as pro-
cesses where every event within a specified window has been recorded.
The point process � is analyzed within that window � , but we assume
that the process has been generated on a much larger area. The location
of an event ����� is determined by its coordinates � � �
	�� � 	 % 
 , usually
expressed in the Cartesian system.

Two main characteristics can be associated with a process. A point pro-
cess is said to be stationary or homogeneous if its properties do not vary
according to the location, i.e. it is invariant to translation; and it may also
be isotropic, if the properties remain the same independent of direction or
rotation around the origin.

The first-order property of a spatial pattern is described by the intensity
measure 
 :
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8��� 
 � ��� � ��� 
�� (1)

�
�	��


�
� 

� � � (2)

where � is a Borel set.

The intensity function



is defined as

�
� 
�� ������ ����� � ��� ��� � ��� � 
��� � � � � �

where � � is a disc of infinitesimal area centered at � , and
� � � �

is the area of� � ; here we consider � ��� � 
 as a measure that counts the number of events
in � � . The intensity measure of a stationary process can be described by
 �
�

�
, where



is usually estimated by the total number of events divided

by the area of the observation window, � + �
�

�
. In a pattern that is com-

pletely spatially random, the number of events has a Poisson distribution
with parameter


 �
�

�
, and the locations of the � events are distributed in-

dependently and uniformly in � .

The second-order intensity function is defined as

� �
� ��� 
�� ������ ����� � � ��!"� � � � ��� � ��� � 
 � ��� � 
��� � � �#� � � � � (

For a stationary process, � �
� ��� 
�� � �
�  � 
 only depends on the distance
and direction between the events, and not on the absolute location of the
events. In addition, if the process is isotropic, then the second order in-
tensity will depend only on the distance and not on the direction.

There are three tools commonly used to characterize a pattern: the G- and
F-functions explore first-order characteristics, and the K-function carries
out a similar task at the second-order level.

The G-function, or nearest-neighbor function, and the F-function, or empty
space function, are based on distances to the nearest neighbor. The first
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looks at distances between events, and the second one, at distances be-
tween an event and a point, where a point is any location in the area.

The definition of the G- and F- functions are

� ����
 � � � �	�����
	���
������
� ��	���	���� ������	��
� ���������
�����2��	��!���������
 ��� ���������"!#� � � 	��$�% �'& 
 � � � �	�����
	���
������
� ��	���	���� ������	��
� �(� �)���
���"�
 2�*� ��	�������� �������+�,!-& � (

These functions may be estimated from the observed pattern by

.� ����
 �
/102*354 � 2 !#�76

� �
.% �'&1
 �

/189 354 & 9 !:&;6< �

with � 2 as the distances from a point �
2

to its nearest event, and & 9 as the
distance from a sampled point � 9 to its nearest event; � as the total number
of events in � ; < as the total number of sampled points in � ; and

3 ( as the
indicator function counting the number of events or points satisfying the
inequalities. Both � ����
 and % �'&1
 are estimated for a range of distances,
often from � to the maximum possible distance within � .

In a stationary Poisson process

� ����
 �9*� ����� �� 

�=
� % 
 � � � � � (5)% �'&1
 �9*� ��� � �� 


$=
& % 
 � & � ��(

The K-function was proposed by Ripley (1976) as a tool to summarize
second-order properties. It requires a stationary and isotropic process.
The function counts the number of other events within a determined ra-
dius around an arbitrary event:
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��
� �?
)��� ��� ��� �������+�
� 	�� �	�����
	��$
�� ! � ���
� � 	�� 	���� ������	��
� ����������� � (

A naive estimator for
�
� �?
 is

.� � �!
 � *.
 % �
�

� � � ����� ! 354 �#�
�  � �#� ! ��6 � (7)

where the sum counts the number of ordered pairs of events �
� ��� 
 , such
that � is at distance � or closer from � . As before



can be approximated

by
.
 � � + �

�
�
.

3 EDGE-CORRECTION

When a process is observed through a delimited window, some of the
information is omitted. This problem, called edge effects, biases most an-
alyzes of spatial point processes. In the G-function, for example, nearest
neighbors that might be situated outside the borders are ignored; the re-
sult is that the probabilities are underestimated.

The guard, toroidal and border methods presented next are general strate-
gies for correcting edge effects, and which can be applied in any analysis.
The other strategies show how edge effects can be corrected in the estima-
tion of the F-, G-, or K-functions. The emphasis of the presentation is on
the reasoning behind each methodology; the formal theoretical deriva-
tions can be found in the appropriate references. Ripley (1982, 1988),
Cressie (1991), and Stoyan et al. (1995) have more complete surveys of
edge corrections.

3.1 GUARD AREA

This approach defines a guard area around the sampling window � . The
analysis is carried out on those events that are located inside � . More-
over if information from outside the window is required, e.g. the nearest
neighbor, then the events in the guard area are considered. This assures
that the information is never censored.
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Depending on the size of the sampling window and the guard area, the
extra work to measure the location of and gather other information on
the events in the guard area may be considered infeasible or unrealistic
in terms of resources, especially since the additional information will not
be fully utilized during the analysis. A study that used this correction is
described by Rathbun and Cressie (1994), where the growth of a longleaf
pine forest in space and time was modeled.

3.2 TOROIDAL CORRECTION

For certain shapes of sampling windows, such as rectangles, it is possible
to use the principle of a torus. A circular torus is obtained by rotating a
circle around a tangent, creating a three-dimensional object similar to a
doughnut. Such an object has the particular characteristic of being con-
nected on every side.

If the window is a rectangle, a torus can be created by copying the window
around the original (and central) window. In this way the upper edge is
connected to the bottom, and the left edge, to the right. The analysis is car-
ried out only for those events in the central window, but any information
necessary from outside the edges is taken from the neighboring window.

The approach is difficult to achieve with circles and irregular shapes, but
convenient for windows with straight edges. For this reason it is often
used in simulation studies.

3.3 ISOTROPIC CORRECTION

This correction was developed by Ripley for the K-function in Eq. 7 (Rip-
ley 1976, 1977). For an event close to the border, some of the other events
within distance � may have fallen outside � and not been observed. Rip-
ley’s strategy is to give weights to those pairs of events that have been
observed, and in this way, estimate how many pairs of events were not
recorded. This is achieved by counting every pair of events ( � , � ) *,+ � �
� ��� 

times. Considering a circle with center at � and passing through � , the
weight � �
� ��� 
 is the proportion of length of the circumference that is in-
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side � ; i.e.

� �
� ��� 
$� � �������
 4 ����� �1�
� � �#� �  � �#� 
�6	 = �#�
�  � �#� ( (8)

In Eq. 8, �1�
� � �#� �  � �#� 
 is the circle centered at � and with radius
�#�
�  � �#�

;
and � � �
� � �#� �4 � �#� 
 represents its border. In general, � �
� ��� 
 is proportional
to the probability of observing another event at distance

�#�
�  � �#�

from � .
The weight will be * if the complete circle falls inside � , in other words, if
the distance between � and its closest edge is larger than

�#�
�  � �#�

.

The corrected estimate of
�
� �?
 is

.��� � �?
��
�
�

�
� % � � ����� ! 3$4 �#�

�  � �#� ! ��6
� �
� ��� 
 ( (9)

This method assumes that the process is stationary and isotropic, and uses
� + �
�

�
as an estimate for



. Cressie and Brant Collins (2001) applied this

type of correction to the global estimate of the so-called product density
(derivative of the K-function) and to the product density of local indica-
tors of spatial associations (LISA functions).

3.4 TRANSLATION

Ohser and Stoyan calculated the number of possible translations to correct
the K-function (Ripley, 1988; Stoyan and Stoyan, 1994). As in the isotropic
correction the observed pairs of events are given weights �@�
� ��� 
 , which
are calculated as the proportion of translations of � inside the window � ,
such that � remains inside � . Alternatively the weights can be measured
in terms of rigid motions. In the first way, the weight is calculated as the
intersecting area from translating � by � and � :

�0�
� ��� 
 � �
� � � � ! ��
�

� �
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where � � � 4 ��� ��� � � � 6 is the translation of � by � , such that � lies at
the origin of � ; and analogously for � . To apply this method, stationarity
is necessary but not isotropy. The estimate of the K-function is calculated
as in Eq. 9, but � �
� ��� 
 is substituted by �@�
� ��� 
 .
The same idea was applied by Fiksel (1988) to correct kernel-estimates of
the product density function and to the nearest-neighbor distance distri-
bution; Gavrikov and Stoyan (1995) applied it to the product density of a
marked point process; and Capobianco and Renshaw (1998) employed it
also in a marked point process case, but to correct the correlation function
for marks. In both (Gavrikov and Stoyan, 1995), and (Capobianco and
Renshaw, 1998) the correction is carried out for a process in a rectangular
window, where the area of the intersection is easy to calculate. No appli-
cation of this method has been found for other shapes in two dimensions,
although Stein et al. (2000) used and modified it for a process on � � .

3.5 BORDER METHOD

This correction approach has been mainly applied to the G- and F-functions,
but it is general and intuitive enough to be applied in any analysis as long
as enough events exist in the window. Ripley (1988), for example, refers to
it in connection with the K-function. This procedure was first mentioned
in (Ripley, 1977) and then explicitly presented by Diggle (1979).

The idea behind this approach is to create a variable guard area inside the
window. When it is applied to � ����
 , for example, only the events that are
at least at distance � from the edge are used in the estimate. If � � is the
distance from � to its nearest neighbor, and / � is the distance from � to the
nearest edge of the window, then the corrected version of the G-function
is computed as

.� �
� ����
 �

/ � 354 � � !#� � ��� / � 6/ � 354 ��� / � 6 ( (11)

This represents the proportion of events with nearest neighbors at dis-
tance less than or equal to � , from those located at a distance greater than� from the nearest edge. In analogous way the F-function can be corrected,
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Table I.1: Ordering of � , / � , and � � : Use in
.� �
� ����
 , .� �

% ����
 , and
.� �

� ����
 (1 if yes, 0
if no), and presence of nearest neighbor within distance � , 3$4 � � ! �76 (1 if yes, 0
if no, ? if unknown).

Case Description
.� �
� ����
 .� �

% ����

.� �

� ����
 354 � � !#�76
1 � ! / � � � � 1 0 1 0
2 � ! � � � / � 1 1 1 0
3 � � !#��� / � 1 1 1 1
4 � � ! / � �#� 0 1 1 1
5 / � � � � !#� 0 0 1 1
6 / � �#��� � � 0 0 0 ?
From: Doguwa (1989).

except using distances from a sampled point.

Hanisch (1984) modified Eq. 11 to include events whose nearest neigh-
bor is known, i.e. those events whose nearest neighbor is closer than the
nearest edge; thus

.� �
% ����
)�

/ � 3$4 � � ! � � � � � / � 6/ � 354 � � � / � 6 (

Doguwa (1989) analyzed both methods and stated that these estimates
actually count over different subsets of events. Each of them includes
different situations: e.g.

.� �
� ����
 includes the case when � ! / � ! � � , but

not
.� �
% ����
 ; and the latter uses � � ! / � � � , but not the former.

The disadvantage of either formulation is that number of events decrease
as � increases, thus making the estimates more variable for larger � .

3.6 AREA

The discrepancies between
.� �
� ����
 and

.� �
% ����
 in terms of the subsets taken

into account, led Doguwa and Upton (1990) to propose a different type
of edge correction. They included in their estimator all six possible situa-
tions that can occur between � , � � , and / � ; see Table I.1.
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In the first five cases, it is clear whether the nearest neighbor is within dis-
tance � or not. The only situation when the outcome is not obvious is case
6, since the nearest neighbor might be outside the window. The correction
consists in estimating the probability of finding the nearest event outside
the window. If a circle � �
� � ��
 is defined for case 6, then a part of that cir-
cle will lay outside the window. Using notation based on Floresroux and
Stein (1996), let

3 �
� � ��
 represent the area of the circle inside the window,
and � �
� � ��
 , the area of the circle outside. By applying Eq. 5, the probabil-
ity that the nearest event is in � �
� � ��
 for a stationary Poisson process is.� �,�
� � ��
 �9*� ����� �� 


 � � �
� � ��
 � 
 .
The corrected estimate for the G-function is then

.� �
� ����
)� *

� � � 354 � � �#�76 �
�

*
� � � ��*: 354 � � �#�76 
0�?*� 3$4 ��� / � 6 
 .� �,�
� � ��
#( (13)

The first term considers those events whose nearest neighbor is known
(cases 1–5 in Table I.1). The second term is the probability of finding the
nearest neighbor outside � and is applied for case 6, when it is possible
that the nearest neighbor is outside.

3.7 ANALOGOUS EVENTS

If the underlying process is not stationary Poisson,
.� �

� ����
 may be biased.
For that reason Floresroux and Stein (1996) looked for another way to
estimate � �
� � ��
 that would not depend on that assumption. They solved
the situation by looking for analogous points in the window. Let

3 � � �
� � ��


be
3 �
� � ��
 translated to � . Then the event � is analogous to � (where � falls

into case 6), if � � � � ��
 is completely inside the window, and
3 � � �

� � ��
 has no
other event except � . The probability of � finding its nearest neighbor in

� �
� � ��
 is calculated as the proportion of analogous events that have their
corresponding nearest neighbor in � � � �

� � ��
 . This probability is expressed
as
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.�

% �
� � ��
��
/ ! � �
� ��� 
 354 � ! �#�76/ ! � �
� ��� 
 �

where T( � , � ) is * if � and � are analogous, and � otherwise. This method
can also be used for isotropic processes, by including rotations as another
way of determining analogy. The estimate of � ����
 is carried out as in
Eq. 13, but using

.�

% �
� � ��
 instead.

The corrected estimator of Floresroux and Stein for the G-function has the
advantage that it does not need to assume any process in particular, and
it uses the information more efficiently than the other corrections.

3.8 KAPLAN-MEIER ESTIMATE

Baddeley and Gill (1997) suggested a new approach to edge correction, by
comparing this problem to that in survival analysis. The main idea, e.g.
in the case of the F-function, is to think of distance to the nearest event as
failure, and the distance to the edge as a censoring time.

The Kaplan-Meier estimator for the failure distribution � � �?
 is calculated
as

.� � �!
)�9*: >; 9 � *: � 9
� 9 � �

where � 9 is the number of observed failures at � ��� , and � 9 is the number
of individuals who could have failed at ����� , also referred to as those in
hazard.

In a rather straightforward way, % �'&1
 can then be estimated by

.% �
� �'& 
 � *: ;�� � *� / � 3$4 & � � & � & � ! / � 6/�� 3 �����)� 4 & � � / � 6 � &1
 � (

The observed failures is the set of points whose nearest event is within
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distance & and is closer than the border. The set in hazard are those with
distance to the border or to the nearest event larger or equal to & .
A similar approach can be used for estimating the G- and K-functions. An
application to a three-dimensional case is presented by Reed and Howard
(1997).

4 EDGE EFFECTS IN THE INFLUENCE POTENTIAL

In the PSP the calculations of ��� are biased since not all affecting trees
are included, resulting this in edge effects. As the trees located outside
the boundaries of the plot are ignored, the real influence potential is un-
derestimated. Furthermore the tree effect 
 function weighs nearby trees
more heavily than those further away. Therefore the edge effect problem
is more pronounced the closer a quadrat is to the border of the plot, as in
these cases more of the trees at shorter distances are missing.

During the measuring campaign of the PSP, no guard area was consid-
ered. Additionally the plots are too small and do not have enough trees
to be able to use the border method, and the toroidal principal is diffi-
cult to implement for circular plots. The other edge corrections for the
G- and K-functions concentrate on event to event relationships, while this
study is interested in the relationship between an event (tree) and an ar-
bitrary point (quadrat). This suggests that a correction applicable to the
F-function, such as the Kaplan-Meier estimates, could be appropriate.

Nevertheless, since we needed to focus on the ��� function, we decided to
develop a correction specifically for this problem which would adjust the
observed �&� . The basic idea behind the proposed correction is to assume
a stationary process in and around the plot and to calculate the expected
value of �&� in the area outside the plot. This expectation is then added to
the observed ��� to obtain the corrected and final ��� . The theory of marked
point processes provides the tools to compute the expectation, by taking
each tree as an event and the diameter at breast height as the mark. Before
describing the proposed edge correction, however, we review some basic
results for marked point processes.
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5 MARKED POINT PROCESSES

Theory on marked point processes can be found e.g. in Stoyan and Stoyan
(1994) and Stoyan, Kendall, and Mecke (1995). Penttinen, Stoyan, and
Henttonen (1992), Gavrikov and Stoyan (1995), and Stoyan and Pentti-
nen (2000) review the use of spatial point processes in forestry, including
marked point processes.

A marked point process can be considered as a spatial point process with
an additional dimension that contains information regarding each event.
The information may be continuous or discrete, e.g. diameters of trees,
species of trees, volume of a particle. The marked process ��� can be
expressed as ��� � 4 � � 0 � < 0 �'6 , where the � 0 s are the locations of the
events and < 0 the marks of those events.

Stationarity and isotropy are defined as for the unmarked case. The inten-
sity 
�� ����� � 
 must take into account the mark distribution � , which
reflects the probabilities that a mark from a typical event lies in the mark
set � . For the stationary case the intensity is defined as


�� ���	� � 
 � ��� ��� ���	� � 
��
�


 � � � � � � 
#( (17)

Other statistics related to the marks are the mean mark 
< , defined by the
distribution function � as


< �
���

 �

< ��� � < 
 � (18)

and the mark sum measure � 8 ,

� 8 ��� 
)� �� ��� 8�� ����� < 3$4
� � � 6 � (19)

which represents the sum of the marks for all events in � . The expected



26 EDGE CORRECTION FOR INFLUENCE POTENTIAL

value for � 8 in the stationary case is



< � � �

.

The estimate of the mean mark for a stationary marked point process ob-
served in the window � is computed from

.
< � � 8 � �4

� � (20)

and � is the number of events in � . In general the estimated mean mark.
< is not always unbiased, but
.
 .
< is unbiased for




< (Stoyan and Stoyan,

1994, pg. 278). The mark distribution � ���0
 for a continuous mark can be
estimated by

.
� ���0
��

354 < !�� � � � � < � � � 6
� �

that is, the proportion of events in � that have a mark less than or equal
to � .

Another useful tool is the Campbell theorem. This theorem defines the
expected value of the sum of a non-negative measurable function, and
applies to a point process in any dimension; see Stoyan and Stoyan (1994)
and Stoyan et al. (1995) for the application to a spatial point processes,
and Kingman (1993) for the one-dimensional case and detailed proofs. In
general, the theorem for a spatial point process can be seen as

� � �� � � � �
� 
 � � �
� �
� 
 
7��� � 
#(

From Eq. 2, the expectation for a stationary process can be further simpli-
fied to

� � �� ��� � �
� 
 � � 
 �
� �
� 

� �)(

With a parallel formulation, the Campbell theorem can also be obtained in
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a marked point process for a function � of the events and marks (Stoyan
and Stoyan, 1994; Stoyan et al., 1995). In the stationary case, and making
use of Eq. 17:

� �� �� ��� 8�� ����� � �
� � < 
��� �

�
�
� �
� � < 
 
�� � �
� � < 


�

 � �

� �
� � < 
���� � < 
 � � (23)

6 DERIVATION OF EDGE CORRECTION

The influence potential ��� on quadrat � is defined as a function of the tree
effect 
�� , where � are the trees and 3 is the diameter at breast height:

���=��� � � 
 � � � 
 � ��� 
 (24)

� � � 37� ����� �  � �  � � %� �
� � � 37� ����� �  ������� 
 %� � �

here we continue to use the simpler notation from the last equation where� �  � � % � ���1��� 
 % .
The correction of ��� for edge effects is carried out by finding the expected
influence potential of the unobserved trees, and then adding this estimate
to the observed �&� ; i.e.

�&�
�
� �&� 4 �����?���
����� 6 � �&� 4�� �5�����!���
����� 6�( (25)
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In theory �&� can be calculated for an infinite area around the quadrat. For
the purpose of the correction, however, we define a circle � ��� � & � � 
?
 of
significant influence around quadrat � , centered at the quadrat and with
radius & � � 
 . The most important contributions to the ��� of the quadrat
come from trees located in this circle. The radius & � � 
 is obtained by defin-
ing first a minimum significant effect 
:+ 3 , say 0.01. This means that,
independently of their size, only those trees with effects larger than ��( � *
are considered to be relevant. Assuming that the parameter � has been
previously determined, then & � � 
 is obtained from

��( � * � ����� �  & � � 
 %� �
� & � � 
 � �  � �)� �	��( � *,
 (

Depending both on the position of the quadrat with respect to the border
of the plot, and on the radius of minimum significant effect, � ��� � & � � 
?

might be completely contained inside the plot or not. If �1��� � & � � 
?
 is inside
the plot, then we have all the information necessary for determining �&� for
that quadrat. If �1��� � & � � 
?
 is partly inside and partly outside the plot, we
further call those two areas

3 ��� � � 
 and � ��� � � 
 . More formally,

3 ��� � � 
 � � ��� � & � � 
?
 � �1� � ��� 

� ��� � � 
 � � ��� � & � � 
?
����1� � ��� 
 �

where �1� � ��� 
 represents the plot centered at the origin and with radius
� . Figure 1 illustrates all the necessary concepts.

Our objective is to determine the expected value of ��� in � ��� � � 
 , and this
is possible by applying the Campbell theorem for marked point processes.
The possibility of using this theorem depends heavily on the fact that �&�
is defined as an additive model (Eq. 24). Furthermore, to be able to use
the theorem, we consider the trees � as events in a spatial point process,
and the diameter 3 as the mark of the event. If the process is stationary
as well, then the Campbell theorem as defined in Eq. 23 serves as a way
to calculate the expected value of ��� in � ��� � � 
 by
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PSfrag replacements
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Figure 1: Edge correction concepts: The small circles represent trees: the filled
ones have been observed and the empty ones not. The diamonds are the quadrats.
The circle of influence �����������	 "!#! (dashed line) is of the same size for both
quadrats. Since �%$ is closer to the plot border, its circle of influence extends
beyond the borders and therefore a correction for &(' is needed. The correction will
estimate the expected value of &)' in *+�����, -! (dashed area). The upper quadrat
�/. has a circle of influence completely inside the plot, thus all the information
necessary for calculating &(' has been measured and no correction is required.
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��� �&�8� � ��� � � 
?
�� �
� � �� �� ��� 8�� ��� � �
� � < 
 ��
� � �� �� � � � � ������� � ��� 
 � ��� 
 ��
�


 �
� �	���
� � ��� �

�

��1��� 
 ��� �	3A
 � �

�

 �
� �	���
� � ��� �

�
39����� �  �&����� 
 %� � ��� �	3A
 � � (

All the terms in the previous equation are only functions of the events or
of the marks, and therefore it is possible to separate the integrals as

��� �&�7� � ��� � � 
?
�� �
�


 �
�
3 ��� �	34


�
��������� � ��� ��� � �  � � ��� 
 %� � � � (

The first integral represents the mean mark of 3 as expressed in Eq. 18;
thus

��� ���"� � ��� � � 
?
�� � 

3

�
���	����� � ��� ��� � �  ���1��� 
 %� � � � (

The parameter



can be approximated in the usual way with
.
 � � + �

�
�
.

For 3 , we take the estimator in Eq. 20, � � � �7
?+ � . Putting these two esti-
mators together, we have that

.
�
3 �
/ � ��� 3 ��

�
� (
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The estimate of the expected value of ��� in � ��� � � 
 is then

.��� ���"� � ��� � � 
?
�� � .
 

3

�
��������� � ��� ����� �  ������� 
 %� � ���

�
/ ����� 37��

�
� �

���	���
� � ��� ����� �  �&����� 
 %� � ���2( (27)

We can express the previous equation also in polar coordinates to facilitate
the calculations of the boundaries of � ��� � � 
 :

.��� �&�8� � ��� � � 
?
�� �
�

/ ����� 38��
�

� �
� �
����� � ��� � �

� �
����� � ��� � � ����� �  � %� � �;� � � (28)

Several advantages can be pointed out for this correction. It only requires
stationarity of the process in and around the plot. Moreover, if informa-
tion is available on the type of process that generated the trees in the plot,
then a better estimate for



can be utilized. In similar way, information on

the distribution of the diameter may be available and a better estimate of

3 can be included in the correction. Furthermore, ��� may be interesting
for a specific group of events, e.g. tree species, and this method allows for
the correction to be calculated for each group separately, using their indi-
vidual

.

and



3 ; this may be especially significant if the intensity or mean

diameter differ greatly among the groups.

In this study the tree species was considered a relevant characteristic, so
we wished to calculate ��� and its correction for each species. The large
number of plots, however, prevented us from making a detailed study of
the process and distribution of the diameter in each plot. Thus, to estimate

3 for each species and plot, its corresponding

/ � 37�,+ �
�

�
was calculated.

Both the sum of the diameters and the area of the � were based on the
entire plot instead of only

3 ��� � � 
 , since in this way we could take into
account all the trees included in the uncorrected ��� .
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For the tree species � , then we define the influence potential on the quadrat
� , coming from the trees � � � 
 in plot � and of species � as

��� � � � � ��� 
 � �&� 4 �����?���
���������!� ������� �?�0��
 � ��� � �)�A� ����� � 6 �
� �&� 4 
 ���
�!��
 � ���;������� �?�0��
 � ��� � ��� � ����� � 6
� ���� � � � � 37� ����� �  ������� 
 %� � �

�

/ ��� � � � � 37��
�

� �
��������� � ��� ��� � �  ������� 
 %� � � � (

If we assume independence among species, we can calculate a general �&�
for a quadrat based on the sum of the different ��� � ’s, that is, as the sum
of the influence potentials from all the species.

7 APPLICATION

The edge correction for ��� was applied to the data set of big and small
trees separately. The big trees were observed in an circle of radius 9.77 m,
and the small trees in a plot with a radius of 5.64 m. The quadrats were
therefore located at different positions with relation to the borders of these
two plots, which represented different challenges when implementing of
the edge correction.

7.1 BIG TREES

The big trees, those with diameter greater than 10.5 cm, were recorded
in a circular plot of radius 9.77 m. The six quadrats were located at 3, 6,
and 8 m away from the plot center, thus inside the plot. Three possible
situations can occur in terms of � ��� � � 
 and �1� � ��� 
 ; these depend on the
value of � that defines & � � 
 :
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Figure 2: Cases I-III: The plot is represented by the large circle with solid line
(center * and radius � ), and the circle of influence by a dashed line (center � and
radius ���	 -! ). The small circles are hypothetical trees: the filled ones are relevant
trees, i.e. they are inside the circle of influence or the plot. Case II and III require
an edge correction, since not all the relevant trees in the circle of influence have
been observed.

I. ���	 "!�� � ��� * � );

II. � ��� * � !�� ���	 "!�� � � � * � );

III. � �!� * � !�� ���	 "! .
Figure 2 illustrate the three cases. Case I does not require any correction,
because all the trees in �����������	 -!#! needed for calculating &(' have been ob-
served. In case II * ���%�, "! has the shape of a crescent, and in case III that of
an annulus of variable width. We present here explicitly the calculations
of the boundaries of * ���%�, "! for case II; the approach for solving case III
is explained further on, and the formulas for both are included in the Ap-
pendix.

One convenient way of evaluating the integral is by using polar coordi-
nates as in Eq. 28. The limits of the integrals for case II are shown in
detailed manner in Figure 3. The angle "$#&%(' represents the angle of inter-
section between the circle of influence and the plot, and ) �*"�! is the distance
between the quadrat and the edge of the plot at angle " . It follows that the
integral term of the expectation can be calculated from
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 � ����� ����� �  �2� � 
 %� � � �  � � ����� ����� �  & � � 
 %� � � (29)

and the expectations of � ��� � � 
 for quadrat � in plot � and tree species �
is obtained from
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.��� ��� � � � � � � ��� � � 
?
�� � / ��� � � � � 37�� �1� � ��� 
 � �

������ �	 � � ������

 ������� ��� � �  �2� � 
 %� � � �  � � ����� ��� � �  & � � 
 %� �

���� (

In this equation the sum of the diameters is computed over the � � � �
�

trees
of species � in the plot, and

� � � � ��� 
 � is the area of the plot and equal to
300 m % . The remaining integral must be solved numerically. By applying
the law of cosines, �2� � 
 and � ����� can be calculated from

�4% � �2� � 
 % � � � %  	�� � � 
 � � 
 �;� �
=
 � 


� � � � 
 � � � %  � � % � ��� % �  � � 
 �;� � � 
 � (30)

and

� ����� � 	�� 
�
 �;�
	 � %  � � %  & � � 
 %	8� � � � & � � 
 � ( (31)

Equations 30 and 31 allow the estimate of the expectation to be described
now in terms of known parameters:

� �1� � ��� 
 � , � , � , and & � � 
 are the same
for all quadrats, plots, and species; � � depends on the quadrat; and/ � 37� is specific for each species and plot.

The results of cases II and III can be seen in Figure 4, where boxplots of
�&� using � at 20 and 75 are shown with and without the correction. The
computations were carried out on 1240 plots with one stand and with
quadrats located on mineral soils. For each tree species studied, i.e. pine,
spruce, and birch, ��� and the correction were calculated and then added
together to obtain one corrected ��� per quadrat. For each plot, the calcu-
lations were carried out for all the six quadrats, even when less quadrats
had been observed in the field. In this way, every quadrat had the same
number of ��� measurements; this was possible since the formulas for ���
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Figure 4: Big trees ( 3 � * ��( 6 cm) : ��� by quadrat with � at 20 and 75, cor-
responding to cases II (a and b) and III (c and d). A total of 1240 plots with
one stand and with quadrats in mineral soils were analyzed assuming that six
quadrats were measured in each plot. The calculation were conducted separately
for spruce, pine, and birch; then the three corrected ��� were added up to obtain
one ��� for each quadrat and plot.
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and the correction do not require any information from the quadrat beside
� � .

In Figs. 4(a) and 4(c), the distributions of quadrats 1 and 4 concentrate on
a smaller scale compared to the other quadrats. The reason is that those
quadrats are positioned closest to the edge of the plot, so fewer trees are
taken into account when calculating the influence potential. This bias is
more subtle for quadrats 5 and 6 situated further inside the plot. Quadrats
2 and 3, close to the center, also suffer of edge effects with these values
of � , because the �1��� � & � � 
?
 extends beyond the plot borders. For these
quadrats, however, � ��� � � 
 is smaller than for the other quadrats, so a
smaller adjustment is required.

Figures 4(b) and 4(d) show the distributions of all quadrats when the �&�
has been corrected by adding the expectation over � ��� � � 
 . Although the
correction cannot reproduce observations on the tail, it adds an important
proportion of tree effects. The boxes are now almost perfectly aligned, as
was anticipated since ��� for all six quadrats should be in the same range.
These results confirm the presence of edge effects and proves the effec-
tiveness of the proposed correction to reduce bias.

The weight of the correction was also evaluated as the percentage it rep-
resented in the corrected ��� . At � � 	1� , the mean percentages were 51%
for quadrats 1 and 4; 30% and 32% for quadrats 5 and 6, and 9% for both
quadrats 2 and 3. The mean percentages increased for � at �16 : 57% at
quadrats 1 and 4, 46% at quadrats 5 and 6, and 33% at quadrats 2 and
3. Again we observe that the correction needed is larger the closer the
quadrat is to the border. Furthermore the correction is also larger as � ,
and therefore � ��� � � 
 , increases.

Some plots required a correction of 100% of the adjusted �&� . One of these
extreme cases is shown in Figure 5, where only one birch tree was ob-
served. This tree was situated in the exact opposite direction to quadrat 1,
and thus the influence of birch on quadrat 1 was very small, 1.7 � 10 
 � with� � 	1� . After computing the correction with

.
 �9*,+151��� and
/ 3 � *�* cm,

the new adjusted �&� was 0.8. The correction was consequently 100% for
birch, while for Norway spruce it yielded 73%. Quadrat 4, which was
more closely surrounded by trees of both species, required a correction of
only 8% for birch and 24% for spruce. The correction for both quadrat 1
and 4 is the same; the difference lies in the observed ��� .
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Figure 5: Plot 815904: "S"=Norway spruce, "B"=Birch, � =quadrat; not at
scale.

7.2 SMALL TREES

The application of the ��� correction to the small trees ( - ( 6 cm ! 3 �
* ��( 6 cm) of the PSP represented a greater challenge than the big trees.
The plot in this case has a radius of 5.64 m, which means that quadrats 1,
4, 5, and 6 are located outside. We identified seven possible cases; the first
three cases apply only to quadrats 2 and 3 and are equivalent to those for
the big trees, since these quadrats lay inside the plot.

For quadrats 2 and 3, cases are

I. & � � 
 � � � �� � 
 ;
II. � � �� � 
 �:& � � 
 � � � � � � 
 ;

III. � � � � � 
 �:& � � 
 .
Four additional cases for quadrats 1, 4, 5, and 6 were identified (see Fig. 6):

IV. & � � 
 � � � �  � 
 ;
V. � � �� � 
 �:& � � 
 � � � ;

VI. � � �:& � � 
 � � � � � � 
 ;
VII. � � � � � 
 �:& � � 
 .
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Figure 6: Cases IV-VII. The plot is represented by a circle with solid line (center
� and radius � ), and the circle of infuence by a dashed line (center � and radius& � � 
 ). The small circles are hypothetical trees: the filled ones are relevant trees,
i.e. they are inside the circle of influence or the plot.
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Case IV is particular for the quadrats 1 and 4: it happens when the & � � 
 is
small enough that the circle of significant influence does not intersect with
the plot at all. That means that � ��� � & � � 
?
 � � ��� � � 
 , and the correction
integrates over the complete area of � ��� � & � � 
?
 . This does not happen to
quadrats 5 and 6, because they are too close to the border of the small plot.

The integral for cases V, VI, and VII are more easily implemented as the
difference of the integrals over �1��� � & � � 
?
 and over �1��� � & � � 
?
 � �1� � ��� 
 :

�
��������� � ��� ����� �  � � ��� 
 %� � ��� �
�

�
��� � �
� � � � ��� � ��� � �  ������� 
 %� � � �  

 
�

����� � �
� � � � ��� ��� � �
� � � ��� ����� �  ������� 
 %� � ���
The formulas and limits for all cases are included in the Appendix, but
here we will show in detail the procedure for case VI. Figure 7 presents
the geometrical details for this case. The integral for � ��� � & � � 
?
 is straight-
forward: it is a circle centered at the quadrat and with constant radius,
such that

�
��� � ��� � � � ��� � ����� �  � � ��� 
 %� � ��� �
�

����

 �

�
�
����
� � ����� �  � %� � �;� � �

�
= � �

*: ����� � & � � 
 %� �! ( (32)

The area of �1��� � & � � 
?
 � �1� � ��� 
 is separated into two by the intersection
of �1� � ��� 
 and � ��� � & � � 
?
 . The lateral regions require two radii, one from



EDGE CORRECTION FOR INFLUENCE POTENTIAL 41

PSfrag replacements

�

������� �������	




�
� �
�
���

� � � � �

� � � � �
�

Figure 7: Geometry of the edge correction for case VI. The angle � � measures the
intersection between the plot (centered at � and with radius � ) and the circle of
influence (centered at � and with radius & � � 
 ); � � � � 
 is the distance between the
quadrat and the closest border of the plot at angle � ; � � � � 
 is the distance between
the quadrat and the furthest border of the plot at angle � ; � is the tangent to the
plot.

the quadrat to the closest border of � � � ��� 
 , and another to the furthest
border; the central region is integrated between  � � to � � � and from � � � � 

to & � � 
 . Thus the area of intersection between �1� � ��� 
 and �1��� � & � � 
?
 can
be obtained from

�
� ��� � ��� � � � ��� ��� � ��� � � ��� ����� �  ������� 
 %� � ��� �
� 	 ��� � ����

� �

� � � �
��

� � � �
� ������� �  � %� � ��� � �

�

� ����

 ���

�
�
����

� � � �
� ������� �  � %� � �;� � � (33)

The first integral, i.e. the laterals, results in
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and the second in

� ����

 ���

�
�
����

� � �
� � ����� �  � %� � ��� � � �

� �	 � ����

 � �

��� � �  �2� � 
 %� � � �  � � � ����� �  & � � 
 %� � (

To obtain formulations of � � , � � , � � � � 
 , and � � � � 
 in terms of known con-
stants, we first need to find � ; � is the tangent to �1� � ��� 
 that runs through
� , in other words, it is the outermost edge of the area. Furthermore, we
define � ����� as � � � � � . Then, by using the law of cosines, the unknown
terms are solved this way:
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� : � % = � � %  � %
� ����� : � % = � � % � � %  	 � � � 
 �;� � � ����� 


� ����� = 	���
�
 �;� � � ��� � � � 
 � �% � � �
�

= � � � � �

� � : � % = � � % � & � � 
 %  	 � � & � � 
 
 �;�,� � � 

� � = 	���
�
 �;� � � � � � � � ��� � 
 � �% � �

�
�
��� �

� � : � � = � �����  � �
� ��� � � � 
 : � % = � � � 
 % � � � %  	�� � � 
 � � 
 �;� � � 


� ��� � � � 
 = � � 
 �;� � � 
�� � � %  � � % � �)� � � 
 %

As can be observed from Fig 7, � � � � 
 and � �,� � 
 are solved using the same
formulation. The shorter radius results from subtracting the two terms,
and the longer, from adding them.

For each quadrat, the result of Eq. 33 is subtracted from that of Eq. 32.
These values correspond to the integral term of the expectation of �&�
(Eq. 28). The correction is then obtained putting together these values,
the sum of the diameters of the species in the plot, and the area of the plot
(100 m % ).
To illustrate the efficacy of the edge correction on small trees, we chose �
at 0.5, 1, 2, and 10, corresponding to cases IV–VII in quadrats 1, 4, 5, and
6, as well as cases II and III (for both � � * and � � 	 , case II applies) in
quadrats 2 and 3. The censoring effect of the plot boundaries are clear in
Figs. 8(a), 8(c), 9(a), and 9(c). The boxplots of the corrected �&� distributions
(Figs. 8(b), 8(d), 9(b), and 9(d)), however, are not aligned as with the big
trees. In fact, there seems to be an overestimation of ��� after the correction,
related to the distance of the quadrat to the edge of the plot: the closer the
quadrat, the larger the overestimation.

The reason for this problem may perhaps fall on the estimation of
.
 
3 ,

the intensity of the trees times the mean diameter. If the true pattern and
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Figure 8: Small trees ( - ( 6 cm ! 3 !9* ��( 6 cm): ��� by quadrat with � at 0.5 and
1, corresponding to cases I, II, IV, and V. A total of 1158 plots with one stand
and quadrats in mineral soils were analyzed assuming that six quadrats were
measured in each plot. The calculation were conducted separately spruce, pine,
and birch; then the three corrected �&� were added up to obtain one ��� for each
quadrat and plot.
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Figure 9: Small trees ( - ( 6 cm ! 3 ! * ��( 6 cm): ��� by quadrat with � at 2 and
10, corresponding to cases II, III, VI and VII. A total of 1158 plots with one stand
and quadrats in mineral soils were analyzed assuming that six quadrats were
measured in each plot. The calculation were conducted separately spruce, pine,
and birch; then the three corrected �&� were added up to obtain one ��� for each
quadrat and plot.
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mark distribution for this subset of trees deviates greatly from the station-
arity assumption, then the estimate of the expected �&� in � ��� � � 
 will be
over- or underestimated. The more they deviate from the assumptions,
the more biased the expectation will be.

8 DISCUSSION AND CONCLUSIONS

The initial measurement of the influence potential ��� from the PSP are
biased due to edge-effects. Edge corrections for spatial point patterns are
available. The measurements of �&� , however, requires a method that takes
into account the relationship between trees and quadrats as defined by a
function. For this reason a new correction was proposed, which consisted
of estimating the expected ��� outside the plot, and adding it to the ob-
served ��� . The correction is based on the Campbell theorem for a marked
point processes.

The method integrates the formula for tree effect over � ��� � � 
 , the area
of the circle of influence that lies outside the plot. The limits of the inte-
gral are defined by polar coordinates and simple geometrical properties
such as the law of cosines. The quadrat as reference point for the inte-
gral limits is important, since the tree effect is measured according to the
distance from the quadrat. The integrals are solved numerically, but this
is only done once for each quadrat, as they depend solely on the distance
between the plot center and the quadrat, and therefore are the same for all
plots and species. Once the integral is obtained, the sum of the diameters
for each species and plot, and the area of the plot remain to be inserted
in the formula. For other plot shapes, similar procedures should also be
possible.

We applied the correction to observations of big and the small trees from
the PSP. In each case we assumed that all six quadrats in the plot had been
measured, so that each distribution was based on the same number of
observations. The results for big trees were satisfactory, and the correction
eliminated most of the bias that was present in the original ��� calculations.
For small trees, the corrections over-adjusted, adding more influence than
what was anticipated.

The procedure we have introduced is based on stationarity of the process
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in and around the plot, which might not necessarily be true. The PSP
are very heterogeneous in terms of types of forests that were measured.
Some of the plots are located in natural forests, others in harvested forests;
within the latter different treatments might have been employed (e.g. thin-
ning strategies). Together with environmental factors such as latitude, this
leads to different species composition and age structures between stands,
which in turn may affect the intensity and the diameter distribution of
the trees. As a result, the assumption of stationarity in all plots seems
unrealistic.

Because of their size and age, the big trees might be expected to have a
more uniform diameter distribution. In the small trees, however, more
variation due to treatments and dependence between trees, might allow
for inhomogeneous processes and different distributions of the diameters.
The following quote summarizes the difficulties found in characterizing
the distribution of the diameters:

"[In] even-aged, one species crops (. . . ) the distribution and frequency
of different diameters in a crop may vary enormously with the crop’s
species, age and history. Even-aged crops that have been regularly thinned
may have a small variation in diameter around the mean; in contrast,
plantations that have not been thinned may have a much larger range
in diameter. Usually even-aged crops tend towards a simple distribution,
normal or slightly skewed, although in some instances thinning may pro-
duce bimodal distributions. (Philip, 1994, p. 111).

The difficulties pointed out are enhanced by the large number of plots
in a large study area analyzed in this study. It remains to be seen if the
problems encountered with the small trees can be overcome with homo-
geneous plots, e.g. one stand composition, even-aged, equally treated.
Simulated non-stationary processes with different diameter distributions
could also be used to determine if the stationary assumption causes the
overestimation. It would also be interesting to see if the satisfactory re-
sults with the big trees are obtained with datasets collected in other types
of forests.
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NOTATION

Notation Definition
� Window where spatial point process is observed.�
�

�
Area of � .�

�  � �
Euclidean distance between event � and event � .

� �
� � ��
 Circle centered at � and with radius � .
� � � ��� 
 PSP defined as a circle centered at origin

and with radius � .
� ��� � & � � 
?
 Circle of influence, centered at � ,

and with radius & � � 
 .
� �1�
� � ��
 Border of the circle centered at � with radius � .
3 Diameter at breast height (DBH) of a tree.354 � 6 Indicator function that takes the value * ,

if � is true, and the value � otherwise.
�&� Influence potential.3 ��� � � 
 Inside part of a circle of influence �1��� � & � � 
?
 .


Intensity of the point process.
� Number of points in � .

� ��� � � 
 Outside part of the circle of influence � ��� � & � � 
?
 .
� Plot origin, i.e. center of plot.
� � Euclidean distance between plot origin � and quadrat � .
� Spatial point process.
� � Marked point process.

�� Tree effect of tree � .
� Location of quadrat.
� Radius of the plot.& � � 
 Radius of minimum significant tree effect.
� ����� Maximum angle for integration.
�&����� 
 Euclidean distance between tree � and quadrat � .
� Random event in a spatial point process.
� Location of a tree.
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Figure 10: Case II: Geometry of the edge correction

A APPENDIX: FORMULAS BY CASE

A.1 CASE II FOR QUADRATS 2/3, 5/6 AND 1/4, BIG TREES ( � = 9.77 M);
AND QUADRATS 2/3, SMALL TREES ( � = 5.64 M)�

���	���
� � ��� ����� �  �&����� 
 %� � ��� �
�

� � � �����

 � ����� � � � ���

� � �
� � ����� �  � %� � �;� � �

�
� � � �����

 � ����� � �	 ��� � �  �2� � 
 %� �  �	 �  & � � 
 %� �  � �

� �	 � � �������

 ������� ����� �  �2� � 
 %� � � �  � � ����� ��� � �  & � � 
 %� �

� ����� :



50 EDGE CORRECTION FOR INFLUENCE POTENTIAL

PSfrag replacements

�������

� � �
	��
����������

�

	

Figure 11: Case III: Geometry of the edge correction
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A.2 CASE III FOR QUADRATS 2/3, 5/6, AND 1/4, BIG TREES ( � =
9.77 M); AND QUADRATS 2/3, SMALL TREES ( � = 5.64 M)�
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Figure 12: Case IV: Geometry of the edge correction
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Figure 13: Case V: Geometry of the edge correction

A.3 CASE IV FOR QUADRATS 1/4 AND 5/6; SMALL TREES ( � = 5.64 M)������� �"! # $&%('�)�*,+.-�/ �10&243657 8,9�: ; �����(<=�"! # >?�@$&%A%�'�)B*C+D-�/ �E0&243657 8,9�:; �GF�HI H � >J�K$&%
L M '�)B* + - M
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A.4 CASE V FOR QUADRATS 1/4 AND 5/6, SMALL TREES ( � = 5.64 M):� ����� �"! # $&% '�)�*,+.- / �10&243657 8,9�:X;; �����(<=�"! # >J�K$&%Y%E'�)B* + -�/ �10&243657 8 9�: -- � ���EZ6<=�"! # >J�K$&%Y%A[E<=�"� # \]%
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Figure 14: Case VI: Geometry of the edge correction

A.5 CASE VI FOR QUADRATS 1/4 AND 5/6, SMALL TREES ( � = 5.64 M):
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Figure 15: Case VII: Geometry of the edge correction

A.6 CASE VII FOR QUADRATS 1/4 AND 5/6, SMALL TREES (R =
5.64 M): �
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Part II

Model for the local
presence of an
understory species

1 INTRODUCTION

The influence potential index �&� quantifies the effect of surrounding trees
on a quadrat. In order to model the relationship between ��� and the pres-
ence of an understory species in a quadrat, we must take into consider-
ation that definition of �&� : as ��� is modeled as an exponential decay, it
follows that the effect of the trees works at small ranges. The measure-
ments from the permanent sample plots (PSP) from the National Forest
Inventory, however, implicitly reflect large scale factors such as latitude,
climate, and soil types, which interfere with the local scale signal mea-
sured by �&� .

In order to eliminate the large scale factors in the data, a conditional model
is necessary. This report begins by presenting the basic ideas of logistic
regression, and then follows with the derivation of a conditional logistic
model for this study. The model is then applied to PSP data for Vaccinum
vitis-idaea, and then the results are discussed.
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2 LOGISTIC REGRESSION

Binary data are observations of an event � with two possible outcomes,
for example success and failure. The presence and absence of an un-
derstory species is an example of such data, where the presence may
be represented by a 1 and the absence by a 0. A model for this type of
data estimates the probability of the outcomes, i.e. � ��� � � *,
 ��� � and� ��� �>� ��
 � *  �� � , using information from independent variables or
covariates � , where � represents the design matrix (see e.g. McCullagh
and Nelder 1989; Hosmer and Lemeshow 1989; and Collett 1991). In this
particular problem, we are interested in using ��� from each of the tree
species as covariates for modeling the probability of the presence of an
understory species.

Normal linear models such as

� �4���	� ��
 � � (1)

with � as coefficients and 
 as the normal random error with mean zero
and constant variance, put no restriction on the possible values that the
response variable � � may take. For binary data the probability of success
� � must be limited to the interval � � � * � . The solution is to transform the
probabilities to a new variable � � that is allowed to vary continuously in
the interval �� �
 � ��
 
 ; an inverse transformation of � � should give the
fitted probabilities between � and * .
One such transformation is the logistic transformation

� �4� ��� � � � �
*� �� � � (

In the theory of generalized linear models, the transformation is known
as the link function. Other links for binary data are the probit and comple-
mentary log-log transformations (McCullagh and Nelder, 1989). A linear
model similar to Eq. 1 may be applied using � � as
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� � � ��� � � � �
*: �� � �

� � 2��
2�� 2

�

� � � � �

where � � is the k-th row vector of the design matrix.

The inverse transformation results in

� �7� ��� � �
� � �"

* � ����� �
� � �:
 (

The assumption behind the logistic model is that the conditional distribu-
tion of � � �

� � is Binomial with expected value � � .

The fitting of such models may be carried out using the maximum likeli-
hood method. The likelihood function for � binary observations is given
by

� � �=
 �
�
;
� � � ���
	� ��*= �� � 
 � 
 � 	 (

3 LOGISTIC REGRESSION MODEL FOR PSP DATA

We wish to find a model that can explain the probability of presence of
an understory species in a specific quadrat by using ��� from pine, spruce,
and birch. A logistic model for it could be set up as

� ��� ��
��9*,
 � ����� � � � � � �!����������� � ��
 � � % �&������������� � ��
 � � � �&����������� � ��
�

* � ��� � � � � � � �!����������� � ��
 � � % �&������������� � ��
 � � � ������������� � ��
 
 �

(2)
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where � ��
 represents the presence or absence of a species in quadrat � of
plot � .

The ideas behind the ecological field theory indicate that the trees exert
their greatest influence at short ranges. Therefore we wish to model the
relationship between understory and trees at the local scale, i.e. within
short domains. The data from the PSP, however, consists of measure-
ments carried out throughout a very large study area. It is then expected
that the observations on the presence and absence of understory reflect
some large-scale factors such as latitude and climate: e.g. certain species
prefer warmer conditions and are present more often in plots situated in
the southern part of Finland (see e.g. Reinikainen et al. (2000)). In simi-
lar way, ��� measurements also include implicitly large-scale factors that
affect the presence and size of the trees; Scots pines, for example, are less
frequent and smaller towards the North (Anon., 2000). Therefore infor-
mation from both large- and local-scales are contained in the data, and
since our purpose is to concentrate on the local scale, the model in Eq. 2 is
not appropriate.

4 CONDITIONAL LOGISTIC MODEL FOR PSP DATA

One way of avoiding the large-scale factors is to condition the probability
by another event that also includes those same factors. By conditioning
it is possible to cancel the large-scale factors and to leave the local-scale
characteristics for further modeling. To find this other large-scale event,
we take into account that all quadrats in the same plot are affected by
identical large-scale factors, but not by the same local-scale ones: �&� is
different for each quadrat because the distance from a tree to a quadrat
is different in each case, but variables such as latitude are the same for
all quadrats. We therefore require an event that is also related to the set
of all quadrats in a plot and which is affected by large-scale factors. One
such event is the number of quadrats in the plot where the species was
found. Conditioning on this event means that we shift the focus from
the presence in a quadrat to the pattern of presence of the species in all
quadrats of the plot.

In order to emphasize the local scale effects of ��� on the presence of an
understory species, we require a new model. The model at quadrat level
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that includes both large- and local-scale factors in Eq. 2 can be written as

� ��� ��
�� *,
 � ��� � � � � � ��
 �:

* � ����� � � � � ��
 �"
 (

Here � ��
 represents the presence or absence of the understory species
in quadrat � of plot � ; � collects the large scale information for the en-
tire study area; and � ��
 is the row vector of �&� covariates for the specific
quadrat.

In similar way, the probability of absence in quadrat � can be modeled
from

� ��� ��
�� ��
 � *
* � ��� ��� � � � ��
 �:
 �

and in general

� ��� ��
����7
 � ����� � � � � � � ��
 �:
��
* � ����� � � � � ��
 �=
 � (3)

where � �
4 � � * 6 .

The set of quadrats in a plot, however, is the new basis for calculating
probabilities. We denote such a set of quadrats in a plot � by the vector

� � ��� � � ( ( ( � � 0 	 

� �

each element � 
 represents one of the � � quadrats in the plot and may
take the value of * or � depending on whether the species was found in
that quadrat or not. Furthermore the conditioning event, i.e. the number
of quadrats in the plot occupied by the species, is denoted by � � .
Given the number � � of quadrats in the plot and the total number � � of
quadrats where the species was present, different patterns of 0’s and 1’s
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may arise in a plot. For example, if three quadrats were measured in a
plot, and the understory species was seen in two of them, then any of the
following patterns could have been observed: ��* � * � ��
 , ��* � � � *,
 , or �	� � * � *,
 .
In other words, the species might have been found in quadrats 1 and 2, 1
and 3, or 2 and 3. The number of patterns that are possible in a plot is

� � � *"� � � �� � � �
i.e. all possible combinations of � � occurrences in � � quadrats. The pattern
that was actually observed in the field is denoted by � � � �� , and all other
possible, unobserved patterns by � � 9 �

� , where � �9* � ( ( ( � � � .

The conditional probability of the observed pattern � � � �� given the � � oc-
currences of the species in the plot is expressed as

��� � � � �� � � ��
 � ��� � � � �� � � �1

� �	� ��


� ��� � � � �� 

� �	� ��
 (

If we consider that the quadrats are sufficiently separated in terms of
local-scale effects, then independence among the quadrats may be as-
sumed. It follows that the probability of any pattern will depend on the
probabilities of presence in each of the quadrats as in Eq. 3; thus

� � � � 9 �
� 
 �

0 	;

 � � � ���

� 9 �
��
 


�
0 	;

 � �

����� �
�
� 9 �
��
 � � � � ��
 �=
��

* � ��� � � � � � ��
 �=
 ( (4)

Furthermore the probability of � � occurrences is the sum of the probabil-
ities of those patterns with � � 1’s in the � � quadrats. The set of such pat-
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terns is denoted by � � 	 ��� � � / 0 	
 � � � � 9 �
��
 � � � � � � � � ( ( ( � � ��� , and their

probabilities can be obtained from Eq. 4. Therefore,

� ��� �A� � �1
 � �9 �	��� 	 �
�
� � 9 �
�
�

� �9 �	� � 	
0 	;

 � � � ���

� 9 �
��
 


� �9 �	� � 	
0 	;

 � �

����� � � � 9 �
��
 � � � � ��
 �=
��

* � ��� ��� � � � ��
 �:
 ( (5)

Combining the equations for the probability of the observed pattern (Eq. 4)
and of the number of quadrats where the species was found (Eq. 5), the
conditional probability is

��� � � � �� � � ��
 � �
0 	
 � � �

� ���
	�� ��
	�� � � � �
	�� � 
��� � � � � � � � �
	�� � 
/ 9 �	� � 	 �

0 	
 � � �
� � � 	�� � 
	�� � � � �

	�� � 
 �� � � � � � � � �
	�� � 


(

This represents the probability of the observed pattern in relation to the
probability of all possible patterns with the same number of quadrats and
occurrences of the understory species. If the species is present in all or
absent in all the quadrats of a plot, then only one pattern is possible, i.e.
the observed one, and in that case no valuable information is obtained
from that plot.

With further simplifications the conditional probability may be expressed
as
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The advantage of this approach is that the large-scale factor � is canceled
out. This is possible because all patterns in a plot, both observed and un-
observed, are subject to the same large-scale effects, and because they all
have the same number of 0’s and 1’s, i.e.

/ � � 9 �
� � � � . The resulting model

in Eq. 7 is a conditional logistic model, also known in medical applications
as a matched case-control model (Collett 1991; Woodward 1999). The set
of patterns from a specific plot, or the corresponding cases and controls,
are sometimes called a "matched set".

This model can be written more simply in matrix notation:
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It is important to notice that the design matrix � � � �
� � � � � ( ( ( � � � � 0 	 


�
for

the plot � is the same for the observed and the unobserved patterns. The
actual covariate matrix is in fact � � 9 �

� � � , which is in terms of the patterns;
in other words the model compares patterns instead of quadrats. These
pattern covariates we call the influence potential on a pattern or �&� � :

����� � 9
�
� � � � 9 �

� � �

�
0 	�

 � � �

� 9 �
��
 � ��� ��
�(

As an example, we can take a plot where quadrats 1, 2, 3, and 4 were
measured; quadrats 1 and 3 were occupied by a species; and the following
values of ��� for pine and spruce were obtained:
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Quadrat Presence ��� ������� ��� �����������
1 1 2 0
2 0 5 0
3 1 1 0
4 0 8 0

�&� for spruce is zero in this example because no trees of that species were
found in the plot. Six patterns are possible with this number of quadrats
and occurrences. The matrix of original �&� measurements is the same for
all patterns, but after it is multiplied by the patterns � � 9 �

� , a different �����
is obtained for each pattern:

�&� � ������� � ����� ����������� �
� � ��� ������� �&� ����������� � ��� ������� � ��� ����������� �

0 (1, 0, 1, 0) 3 0 1
1 (1, 1, 0, 0) 2 0 7 0 0
2 (1, 0, 0, 1) 5 0 10 0 0
3 (0, 1, 1, 0) 1 0 6 0 0
4 (0, 1, 0, 1) 8 0 13 0 0
5 (0, 0, 1, 1) 9 0 0

The matrix with ����� ������� and ����� ��������� � as columns is the new design matrix
for the conditional logistic model. The response variable is no longer the
presence or absence in a quadrat, but whether the pattern is the observed
( � � * ) or an unobserved ( � � � ) one, as in the last column before. For
this same reason, the number the number of rows of the design matrix of
�&� � is now the total number � of possible patterns in all plots, i.e.

� � �
�
� � �� � �

� �
�
� � � � *,
#(

In logistic regression, an important measure is the odds �0+���*" �0
 , i.e. the
relation between the probability of success and the probability of failure.
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The odds ratio � � � � � +���*7 � � 
�� +�� � % +���*7 � % 
�� compares the odds of one
event to that of another (Woodward, 1999). In this study � represents
the relative probability of observing pattern � with respect to pattern & ,
given that both patterns are possible in the same plot. If the respective
conditional probabilities (e.g. as in Eq. 8) of finding patterns � and & in the
forest are denoted by � � and �

�
, and � � �

�
� � � are the covariates measured

for pattern � , and � �
� �
� � � those for pattern & , then the � in a conditional

logistic model is

� � � � +���*= �� � 

�
� +���*= �� � 
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�
�  � �
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�
�
� � (

From this follows that ��� ��� � 2 
 can be interpreted as the odds ratio when
covariate � increases by a unit and all other covariates are kept constant.
In other words, it indicates how much more likely is pattern � relative to
pattern & when there is a unit increase in covariate � . This is often more
interesting and useful than estimating the actual probability � � � � � �� � � �1
 ,
because it gives information on the effect of the covariate on the odds of
the studied event.

5 FITTING OF A CONDITIONAL LOGISTIC MODEL

As with logistic regression, the parameters � in a conditional logistic model
can be estimated using the maximum likelihood method. For complete-
ness, in the appendix we include the likelihood, the log-likelihood, and
the first and second derivatives of the log-likelihood for the conditional
logistic model for the data from the PSP.

Since no analytical solutions exist, we implemented the Newton-Raphson
algorithm to find the estimates and asymptotic variances of the parame-
ters of the model, using the first and second derivatives of the log likeli-



72 MODEL FOR THE LOCAL PRESENCE OF AN UNDERSTORY SPECIES

hood. An alternative method for estimation is the Cox proportional haz-
ard model when all possible patterns are considered as the risk set, and
the observed pattern as the failure; this is the method employed by the
package survival of the statistical software R.

The goodness of fit of a model is tested by comparing the log likelihood
of two nested models, as in � �  �	 ����� � � �  ��� � � % 
 , where the deviance
� has asymptotically a � % distribution with as many degrees of freedom
as the difference in the number of parameters between the two models.
In conditional logistic regression the log likelihood of the null model, i.e.
when � ��� , simplifies to a constant equal to

/
� ��� � � � � � *,
 .

While an apparent consensus exists in normal linear models as to what
tools should be used when checking the model, a large number of differ-
ent methods have been suggested in the literature for conditional logistic
regression; cf. Pregibon (1984), Hosmer and Lemeshow (1989), Breslow
and Day (1980), and Collett (1991). A useful tool for this type of model is
the graph of � and � � �

2
, known as delta-beta (Pregibon, 1984). Delta-beta

measures how the estimate of the parameter � changes if the matched set �
is ignored, and is usually standardized to standard error units. Also use-
ful for model checking are Pearson residuals and the general delta-beta
for individual observations (Hosmer and Lemeshow 1989; Collett 1991).

6 APPLICATION

For the purpose of illustrating the application of the conditional logistic
model to data from the PSP, we chose to fit the model to the presence
of the dwarf shrub Vaccinum vitis-idaea, commonly known as cowberry
in English ("lingon" in Swedish, "Preiselbeere" in German, "puolukka" in
Finnish, and "arándano rojo" in Spanish). The analyzes were carried out
in the statistical software R, version 1.2.1, where the package "survival"
version 2.8-2 provided the functions for fitting the conditional logistic re-
gression.

Although 3009 permanent sample plots were originally measured, a more
homogeneous subset was analyzed that consisted of those plots with only
one stand and with all quadrats situated on mineral soils. Additionally,
the restrain that � ���� � � and � ���� � , i.e. that the occurrences should not be
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Table II.1: Vaccinum vitis-idaea: Mean (st.dev.) of �&� � for pine, spruce, and
birch at � �9* according to pattern.

�&� �
Pattern Pine Spruce Birch
Observed 1.48 (3.80) 0.72 (2.19) 0.88 (3.19)
Unobserved 2.87 (5.95) 1.51 (3.79) 0.90 (3.09)

equal to the number of quadrats or to zero, reduced further the available
number of plots. For cowberry 342 plots matched the necessary criteria for
this study, and additional 1400 other patterns were possible to construct,
resulting in a design matrix with 1742 rows.

Before starting the analysis, the � parameter in the ��� equation needed
to be fixed. This parameter determines the range of influence of the tree
species. For this study, two levels of � were chosen arbitrarily and applied
to all tree species, namely � � * and � � * � . The range for the former is
approximately 2 m, and for the latter it is less than 7 m. Additionally, as
noted before, the actual covariates are � � 9 �

� � �4� �&� � , where the pattern is
multiplied by the measured values of ��� .

6.1 VACCINUM VITIS-IDAEA WITH � �9*

For cowberry, the model was first fitted with � � * . Table II.1 compares
the mean and standard deviations of ����� in the observed and unobserved
patterns; the respective histograms are shown in Fig. 1. Although the
standard deviations were relatively large compared to the means, there
seemed to be differences among the values of �&� � for spruce and pine
among the groups, with higher ����� among the unobserved patterns than
the observed. The distributions of ����� in both groups were highly skewed
due to the large proportion of values equal to zero that result from the ab-
sence of the tree species in the plot. Furthermore, large differences were
found between the maximum value of �&� � of spruce in the observed pat-
terns, 15.0, and the unobserved patterns, 29.70; such differences were not
so obvious among pine and birch. Correlations among the tree species
were very low; the largest was -0.09 between spruce and pine.
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Figure 1: Vaccinum vitis-idaea: Histograms of ����� of pine, spruce, and birch at� �9* for observed (left column) and unobserved (right column) patterns.

Table II.2 shows the results of the three models fitted during the analysis.
A model with only main effects was first attempted (model 1), which was
significant when compared to the null model (model 0). The influence
from birch, however, was not significant according to the Wald’s test. A
new model with only pine and spruce was then considered (model 2). The
difference in the log likelihoods with and without the influence of birch
(  �- ��
 (
� � and  �- ��
 (
	�6 ) was not significant, meaning that incorporating
birch did not provide any additional valuable information to the model.

The log likelihood of model 2 with two covariates was also significant
compared with the null model. The interaction between pine and spruce
was included (model 3), but it did not improve the explanatory power.
The results suggest that all three models are basically equivalent in terms
of the information contained in them; therefore, based on parsimony, the
model with pine and spruce was deemed as the most appropriate one.

In the delta-beta graphs (Fig. 2) several highly influential matched sets
were identified. The effect of these sets was large enough that deleting
them resulted in a significant improvement in the fit, which might imply
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Table II.2: Vaccinum vitis-idaea: Conditional logistic models that were fitted with� �9* .
Model No. Log lik Odds ratio

coef. Pine Spruce Birch Pine*Spruce
0 0 -528.20
1 3 -498.25 0.91 0.84 1.03
2 2 -498.97 0.91 0.84
3 3 -498.90 0.91 0.84 1.00

Table II.3: Vaccinum vitis-idaea: Estimates of model 2 for pine and spruce at� �9* .
Coef. s.e.(coef) Odds ratio 95% CI Odds ratio

Pine -0.0964 0.0221 0.908 (0.870; 0.948)
Spruce -0.1763 0.0352 0.838 (0.782; 0.898)

overdispersion (Collett, 1991). The reason for their large effect was the
higher influence of pine and spruce in the observed patterns than in the
unobserved, contrary to what the model dictates; in other words, these
plots did not fit well with the model. These outlying plots, however, did
not show any special characteristics that justified deleting them, and the
results of model 2 with the 342 original plots were retained.

Detailed results of model 2 with all the plots are provided in Table II.3.
As described earlier, the odds ratio is a more useful measure in these type
of problems than � � � � � �� � � ��
 . The estimated odds ratio according to this
model is

.
� � ����� �  :��( � � � - �

� � 9 � � �������  � � � � � �������
�  

 ��( * � � 5 �
� � 9 � � �����������  � � � � � �����������

� �
� ����� �  :��( � � � - � ����� � 9

�
�������  ����� � � �������� �  <��( * � � 5 � ����� � 9

�
�����������  �&� � � � ������������ � � (

This model gives information on how �&� � from pine and spruce affect the
odds of an observed pattern. It suggests that, when �&� � from pine in-
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Figure 2: Vaccinum vitis-idaea: Standardized � �
2

against plot number from
model with main effects of pine and spruce at � �9* .

creases in one unit, the odds of finding the observed pattern decreases by
a factor of ����� �� :��( � � � - 
$� ��(
��* compared with that of an unobserved pat-
tern, given that the patterns belong to the same plot and ����� for spruce
is kept constant. In similar way, the odds of the observed pattern are
��� ���� :��( * � � 5�
 � ��(

 - times that of an unobserved one when ����� from
spruce increases by one. A graph with the estimated odds ratio as a func-
tion of the change in �&� � for pine and spruce can be seen in Fig. 3.

6.2 VACCINUM VITIS-IDAEA WITH � �9* �

The second example fitted the model with � � * � . The results did not
differ greatly from the first example. The influence from birch was not
significant here either: the log likelihood of the model with the three
main effects was  :- � � ( * � , and with only pine and spruce  :- � � ( � * ; the
latter was highly significant compared to the null model. Likewise, the
interaction between pine and spruce did not provide further information
( ��� � � �  �- � � ( � � ). The estimates of the coefficients of the final model,
which included only the main effects from pine and spruce, are shown in
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Figure 3: Vaccinum vitis-idaea: Estimated odds ratio of model 2 according to the
change in ����� at � � * , given that the other covariates are constant: pine (long
dash) and spruce (short dash).

Table II.4: Vaccinum vitis-idaea: Estimates for the conditional logistic regression
with main effects of pine and spruce at � �9* � .

Coef. s.e.(coef) Odds ratio 95% CI Odds ratio
Pine -0.0319 0.00676 0.969 (0.956; 0.982)
Spruce -0.0717 0.00866 0.950 (0.934; 0.966)

Table II.4. The odds ratio for pine was higher than the one from spruce,
but both were below 1, indicating that the odds of an observed pattern
decreases with larger ����� . The respective 95% confidence intervals were
rather narrow: from 0.96 to 0.98 for pine, and from 0.93 to 0.97 for spruce.
The delta-beta graphs were less compact, but no obvious outlying plots
appeared (Fig 4).

7 CONCLUSIONS

Logistic regression is an appropriate method for modeling binary data
such as the presence of an understory species. In this study we wished
to model the presence as a function of the influence potential ��� of tree
species, which quantifies short range effects. Since the PSP data was col-
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Figure 4: Vaccinum vitis-idaea: Standardized � �
2

against plot number from
model with main effects of pine and spruce at � �9* � .

lected in a very large study area, the measurements on presence and �&�
implicitly reflect large-scale factors as well as the local-scale effects. To
be able to isolate the local-scale effects, we derived a conditional logistic
model.

The basis for this model is the pattern of presence and absence in the set of
quadrats in the plot. In other words the event of interest is the pattern that
has been observed in the field. This is compared to all other patterns that
are possible given the number of quadrats in the plot and the number
of quadrats occupied by the understory species. With this setting it is
not possible to answer directly the initial question as to whether ��� can
explain the occurrence of a species in a quadrat. Nonetheless, this model
gives an idea of how the influence potential of a tree species can modify
the relative odds of the presence of an understory species. In more general
terms, this model provides some light on the conditions in the plot, while
using detailed measurements from the quadrats.

The application of the conditional logistic model to Vaccinum vitis-idaea
was carried out with the � parameter of the ��� function set at 1 and 10.
The model that contained the main effects of pine and spruce was the
most parsimonious one for both values of � ; the influence from birch as
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well as the interaction of pine and spruce were not important. The results
indicated that higher values of ����� from pine and from spruce decreased
the odds of finding the observed pattern in the forest, but the estimates of
the odds ratio for pine and spruce were different for each .̧

A considerable amount of variability, however, could not be explained
with either � value. Several causes could be pointed out in this regard.
Some variation is expected due to measurement error: the data was col-
lected over the summer periods of two years, and during that time a
species could have appeared and disappeared in a given quadrat. Other-
wise, the more pertinent reason for the high unexplained variation could
be the need for further covariates, which is a reasonable argument consid-
ering the complexity of the system: dynamics in a forest are due to many
other local-scale factors beside the surrounding trees, such as fertility lev-
els (see e.g. Tonteri et al. 1990).

The fit also depended to a certain degree on the parameter � . Although
the same covariates were deemed significant when � was 1 and 10, for
the latter the fit was better (smaller log likelihood). Additionally there
were no obvious outliers in the delta-beta graphs for � � * � , implying
that � can reduce overdispersion. Moreover, ��� of birch was close to being
significant when � � * � (p-value of 0.08), which suggests that it could
perhaps be included in the model with an even larger parameter. On the
other hand, the odds ratio for the smaller � were more interesting, since
odds ratios close to 1 indicate that �&� does not play a major role in the
occurrence of the understory species.

Three main aspects have been identified for future research:

1. The way the goodness of fit and the odds ratio changed according
to � point towards the importance of finding its "correct" value, and
maybe even a different one for each tree species. Only two values
were explored during this study, and further analyzes are required
to determine the behavior of the fit as a function of � . To find optimal� ’s statistical criteria can be used, but the "correct" values should also
have ecological relevance and interpretation.

2. The conditional logistic model proposed for the PSP data depends
on the assumption of independence between the quadrats of the
same plot. A more general alternative is to include random effects
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as a component for the correlation among the quadrats; this could
also solve overdispersion problems (Collett, 1991). A recent paper
by Chowdhury and McGilchrist (2001) explores such a possibility in
this type of models using a generalized linear mixed model (GLMM)
approach.

3. Further improvements could be possible by reconsidering the use
of the covariate �����9� � ��� to represent the influence potential on
the pattern. The current method agrees with the definition of ���
used in this study, in the sense that it describes the influence as a
sum of the effects; ����� corresponds then to the sum of the �&� values
of those quadrats where the understory species was observed. It
could be argued that this strategy does not represent the ecological
dynamics correctly, and a multiplicative model for ��� and for the
patterns could be more appropriate.

NOTATION

Symbol Definition
� : vector of coefficients
��� : influence potential
����� : influence potential on a pattern
� : index for pattern, � � � � ( ( ( � � �
� : index for plot� � � * : number of possible patterns� : total number of patterns in all plots
� � : number of quadrats in plot �
� : odds ratio
� : index for quadrat, � �9* � ( ( ( � � �
� ��
 : presence/absence in quadrat �
� � � �� : observed pattern of presence/absence
� � 9 �
� : pattern of presence/absence

� ��
 : row vector of covariates for quadrat �
� �
2

: column vector of covariate �
� � : matrix of covariates
� � : number of presence observed in the plot �
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A APPENDIX: LIKELIHOOD OF CONDITIONAL LOGISTIC MODEL

A.1 LIKELIHOOD

� � ;
�
� � � � � � � �1


� ;
�

���� * � � 	�9 � � ����� � �
� � 9 �
� � �" � � � �� � � � � �

���� 
 �
� � ��� � �

�  �� � �
�

�)� �� � * � � 9 ����� � �
� � 9 �
� � �8 � � � �� � � � � �

���� ����
A.2 FIRST DERIVATIVE

( � � represents the matrix of covariates and patterns; � �
2

the column vec-
tor of covariate � ).

� �

� � 2 �9 �
�

/ � 	9 � � ����� � �
� � 9 �
� � �" � � � �� � � � � �8� � � � 9 �

� � �
2  � � � �� � � 2 �

* � / � 	9 � � ����� � �
� � 9 �
� � �8 � � � �� � � � � �
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A.3 SECOND DERIVATIVE

� % �

� �
2
� 8 �

� �
�

���
�

� *
� * � / � 	9 � � ��� � � �

� � 9 �
� � �8 � � � �� � � � � � � %

�
�� � 	�9 � � ����� � �

� � 9 �
� � �8 � � � �� � � � � � �

� � 9 �
� � �

2  � � � �� � � 2 � �
�

� 	�9 � � ����� � �
� � 9 �
� � �8 � � � �� � � � � � �

� � 9 �
� � � 8  � � � �� � � 8 � ��  

 
� 	�9 � � �����

� �
� � 9 �
� � �8 � � � �� � � � � � �

� � 9 �
� � �

2  � � � �� � � 2 � �
� � 9 �
� � � 8  � � � �� � � 8 �

* � ����� � �
� � 9 �
� � �8 � � � �� � � � � �

� ��
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