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Abstract

Multigrid methods are among the most popular methods for solving discretized
partial differential equations (pde-systems). Omne reason for this is the optimal
behaviour of the solution time with respect to the degree of discretization i.e. the
number of arithmetic operations required for the solution is proportional to the
number of unknowns in the system of equations to be solved.

Another well-known class of methods is preconditioned conjugate gradient (pcg)
methods. Since these methods are not optimal, like multigrid methods, they are
regarded as less efficient in general.

For a fair competition, however, one should also consider the constant in the
asymptotic behaviour. Also, the most efficient and robust pcg methods have to be
considered. This author believes that often (unmodified) incomplete factorizations
are used for the preconditioning while modified incomplete factorizations are often
much more efficient. In fact, the modified versions are of higher order than the
unmodified ones, with respect to a definition of order of convergence rate given in
the introduction.

In this paper we make some very preliminar comparisions between a standard
multigrid technique and a modified incomplete conjugate gradient technique for a
couple of quite simple testproblems.

Key Words: multigrid method, preconditioned conjugate gradient method, in-
complete factorization, finite difference method, finite element method.

1 Introduction.

We consider finite difference or finite element approximations of partial differential equa-
tions. The derived so called pde-systems are solved by multigrid methods or precondi-
tioned conjugate gradient methods.



We use an implementation of the standard multigrid method as described in [1]. We
use the V-cycle version, including interpolation-, restriction- and smoothing operations.
The restriction operator is defined in [1] and we usually use linear interpolation. In some
cases, however, we have also tested cubic interpolation. We use weighted Jacobi iterations
with weight w = 2/3 as smoother.

For the preconditioned conjugate gradient method we use modified incomplete (MIC)
factorization for construction of the preconditioning matrix, see [2] and [3]. This method
is a modification of an incomplete factorization (IC) technique first presented in [8]. In
order to become robust, in the sence of applicability to arbitrary symmetric positive
definite pde-systems, the incomplete factorization methods, IC as well as MIC, are based
on modified element matrices as described in [4]. When this modification on element level
is actually performed, the methods are denoted EIC and EMIC, respectively.

Let h be a mesh-size parameter in the finite difference or finite element discretization
of a second order elliptic differential equation. Then it is well known, see eg. [3], that
the number of iterations for the (E)ICCG method is of order O(h™'), h — 0. This
is called first order convergence rate, since it is actually of the same order as for the
unpreconditioned system itself. For the (E)MICCG method, however, the number of
iterations is only of order O(h’l/Q), h — 0, and this is called second order convergence
rate.

In the section to follow, we present comparisions between the multigrid method and the
pcg method for some fairly simple modelproblems. In section 3, we draw some preliminary
conclusions.

2 Comparision between multigrid and pcg techniques.

In this section we study a couple of simple testproblems. We compare multigrid methods
with pcg-methods with respect to the number of floating point operations required for
a small residual. Theoretically, we are interested in the asymptotic behaviour of the
two classes of methods when the mesh size parameter h — 0, i.e. when the pde-system
becomes large. For practical reasons, however, it is more interesting to find out which class
of methods is the better for a given problem of a certain size (a certain mesh parameter
h) and to find breakingpoints between the different methods.

Our testproblems are based on the simple partial differential equation in two space
dimensions and homogeneouos Dirichlet boundary conditions:

—V(a Vu) = f, (z,y) € Q (1)
u(z,y) =0, (z,y) € 090

for different righthand sides f and coefficient a. The domain €2 is taken as a unit square
(of different size).
Discretization of (1) gives a symmetric positive definite system of equations denoted

Az =b. (2)

By our iterative methods we seek an approximate solution of (2) satisfying the breaking-
criterion
|7 2<107° (3)
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h 1/16 1/32 1/64 1/128
IC(0) 19 33 62 120
IC(2) 12 20 36 60

MIC(0) 14 19 27 38
MIC(2) 9 13 18 26
multigrid | 3 3 2 2

Table 1: The number of iterations for multigrid and pcg methods for the Laplace equation
on a unit square with different stepsize h in the five-point difference approximation.

where r = Az — b is the residual and || - ||2 is the usual Euklidean norm of a vector.

2.1 The standard five-point approximation of Laplace equation.

As a first modelproblem we take (1) with constant coefficient ¢ = 1 and constant righthand
side b = 1 on the square S; = {-1 <z <1, —1<y <1}. We use standard five-point
finite difference approximations to get the dicsretized pde-system (2).

This is a perfectly suited problem for multigrid technique, see [1]. At first we perform
one full multigrid (fmg) cycle and if the stopping ctiterion (3) is not fullfilled then, we
perform a number of additional multigrid V (mgv) cycles until (3) is fulfilled. The coarsest
grid is due to h = 1/2 on which the system of equations of size 3 x 3 is solved by a
direct method (Gaussian elimination). As smoother we have used four weighted Jacobi
iterations.

For the pcg-method we use incomplete and modified incomplete factorizations with
different degree of fill-in; (M)IC(0) indicates no fill-in and (M)IC(2) indicates fill-in in two
subdiagonals of the lower factor L in the incomplete Cholesky factorization A ~ LL7,
for details see [2] and [3]. As starting approximation z, in the pcg-method we use the
trivial vector £y = 0 or we use interpolation from a coarser mesh with double mesh size
parameter h. In most cases we have used linear interpolation but later on sometimes
also cubic interpolation will be used. For this test example we have used (3) with lower
accuracy, || r ||2< 107* for the solution on the coarser mesh.

In table 1 we present the number of iterations needed for the methods to reach the
criterion (3) with the trivial starting approximation for the pcg-methods. The number
of iterations in the multigrid method refers to the number of additional mgv-cycles. We
observe a good agreement with the theory; the number of iterations in the multigrid
method is (almost) independent of A, the number of iterations for the modified MIC-CG
methods is of order O(h~/2), h — 0, i.e. second order convergence rate, while the number
of iterations for the (unmodified) IC-CG methods rather behaves like O(h™'), h — 0, i.e.
first order convergence rate.

In figure 1 we present the number of floating point operations per unknown required
for the different methods for various values of problem size n = 2/h — 1, i.e. the system
of equations is of order n? x n?. We see that the breakeven point between the multigrid
method and the best pcg method, i.e. MIC(2) with starting approximation given by the
interpolated solution from a coarser mesh, is n ~ 230, i.e. only for very large problems
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Figure 1: The number of floating point operations per unknown for various methods for
the solution of the discretized Laplace equation on a unit square with various values of
n=2/h-1.

with more than about 50 000 unknowns the multigrid method is faster.

2.2 An anisotropic problem.

As a testproblem, which in not so well suited for multigrid methods, we use the anisotropic
variant of (1) corresponding to different coefficients in different space directions;

{_augz_ :Iy,y:fa (.’E,y)EQ (4)
u(z,y) =0, (z,y) € 9.

With a = 0.1 we need more smoothing iterations in the multigrid method than for the
corresponding isotropic problem with ¢ = 1. If we just use four Jacobi-iterations like
in the last subsection the number of additional mgv-cycles increases. If we increase the
number of smoothing iterations, however, the number of additional mgv-cycles can still
be kept small. To be more concrete, for n = 127 and four Jacobi-iterations the number of
mgv-cycles, needed for (3) to be fullfilled, is seven. With ten Jacobi-iterations as smoother
still only two mgv-cycles are required. Because of the larger number of Jacobi-iterations
the total work for the multigrid method increases compared to the isotropic case. Indeed,
the work required for the multigrid method increases rapidly with decreasing value of a.

In order to explain the behaviour of Jacobi as a smoother we use discrete Fourier
transform, see [5]. After each Jacobi-iteration we compute a two-dimensional discrete
Fourier transform of the approximate solution. Then we compute the power spectrum of
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Figure 2: The smoothing effect of Jacobi-iteration on the isotropic problem.

the discrete Fourier transform. The first quarter of this power spectrum matrix (i.e. up
to the so called Nyquist frequency in both space directions) shows the amout of energy
present at each frequency. In figure 2 we have plotted the first quarter of the power
spectrum matrix after each smoothing iteration with weighted Jacobi for the isotropic
problem a =1 and n = 32. We see that the high frequences are damped out rapidly and
that their corresponding energies are very small already after four iterations.

For the anisotropic problem with @ = 0.1 and n = 32 we present the corresponding
result in figure 3. We see that more smoothing iterations are needed to damp out the
high frequences in both space directions.

For the pcg method with incomplete factorizations, on the other hand, the number
of iterations decreases with decreasing value of a. This is so because the incomplete fac-
torizations tend to become exact when a — 0. In particular, the (M)IC(2) factorizations
give an error matrix R = A — LL” with elements of order O(a?), a — 0 if a standard
rowwise numbering of the meshpoints is used. For the (M)IC(0) factorization the error
elements are of order O(a), a — 0.

In figure 4 we present the number of floating point operations per unknown for the
anisotropic problem (4) with @ = 0.1 and f = (1 —2?)(1 —y?) on S; and various methods
and problem size n. Since the unmodified IC-CG methods are of lower order of convergence
rate than the modified versions we do not consider them any longer. For the MIC(2)-CG
method we use different starting approximations, the trivial one, i.e. o = 0, and linear
interpolation of the solution from a coarser mesh. For this problem it is worth while to
solve the problem on the coarser mesh to full accuracy, that is to use the breaking criterion
(3) with tolerance 107, compared to tolerance 107*.

It can be observed in the figure that the multigrid method is not competative unless



Figure 3: The smoothing effect of Jacobi-iteration on the anisotropic problem with a =
0.1.

the problem is very large. Following the asymptotic behaviour we estimate the breakeven
piont between multigrid and the less efficient MIC method, i.e. MIC(2)-CG with trivial
starting approximation, to be about n ~ 1000, i.e. a problem with about one million
unknowns.

2.3 A discontinuous problem.

In this subsection we consider the testproblem (1) on the unit square Sp = {0 <2z <1, 0 <
y < 1} with righthand side f = 1 and discontinuous coefficient a such that a = d > 1
inside the four subdomains 2; = {0.125 < z < 0.25, 0.125 < y < 0.375}, Qy = {0.125 <
z <025 05 <y <0875}, Q3 = {037 <z < 0.875, 0.125 < y < 0.375} and
Q, ={0.375 < <0.875, 0.5 <y <0.875} and a = 1 outside these subdomains.

This problem is used in [6] as a testproblem for a recent incomplete factorization
method of drop tolerance type. In [7] this newer incomplete factorization technique is
compared with the former (M)IC factorization methods based on fill-in in positions, using
this testproblem among others. Although this testproblem for large degree of discontinu-
ity, i.e. d >> 1, is not well suited for incomplete factorization based on certain diagonal
positions like our (M)IC-methods, the comparision in [7] is in favour of these methods.

As we will see, however, for this problem the multigrid method is preferable compare
to MIC-CG already for moderate zise of the problem. Here we just perform four weighted
Jacobi-iterations in the smoothing operation of the multigrid method. In figure 5 and
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Figure 4: The number of floating point operations per unknown for various methods for
the solution af the anisotropic problem (4) with @ = 0.1 and f = (1 — 2?)(1 — %?) and
various problem size n = 2/h — 1.

figure 6 we present the number of floating point operations for d = 10 and d = 1000,
respectively. It is observed that the breakeven point between multigrid and MIC-CG
uccurs for smaller value of n when the value of d is increased. We also see that it does
not pay off much to use a better starting approximation derived by interpolation from a
coarser mesh. This is so because we have to interpolate across the discontinuity lines.

2.4 Discretization by quadratic finite elements.

We solve the modelproblem (1) with constant coefficient « = 1 and righthand side f =1
on So = {0 <z <1, 0 <y <1} by quadratic finite elements based on a uniform
rightangled triangulation. Since the derived finite element matrix in the pde-system (2)
is not an M-matrix in this case, we use modification on element level as decribed in [4] in
order to ensure stability and fast convergence in the MIC-CG methods, i.e. we use EMIC
factorizations.

In the multigrid method as well as when interpolating from a coarser mesh to get a
good starting approximation for the EMIC-CG method, it is worth while to use higher
order interpolation for this higher order finite element approximation. In the tests we
have compared linear and cubic interpolation at this point. As smoother in the multigrid
method we have used four weighted Jacobi iterations.

In figure 7 we present the number of floating point oprations for the compared methods
and various size of the problem n = 2/h —1. We see that the EMIC(2)-CG method, with
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Figure 5: The number of floating point operations per unknown for various methods for
the solution of the discontinuous modelproblem with d = 10 and with various values of
n=1/h—1.

starting approximation based on cubic interpolation from a coarser mesh, is the most
effecient method among the compared ones. Here we use full accuracy when solving the
problem on the coarser mesh, i.e. we use (3) with tolerance 107°.

The observed decrease in the number of floating points operations for the multigrid
method with cubic interpolation is due to the fact that fewer additional mgv-cycles are
needed, when n is increased, in this case.

3 Conclusions.

We have compared multigrid methods with preconditioned conjugate gradient methods
for the solution of a couple of partial differential equation modelproblems discretized
by finite difference or finite element techniques. In order to obtain a stable and fast
preconditioning we have considered modified incomplete factorization, possibly applied
to a matrix arising from modification of the element matrices, i.e. we have used the
EMIC factorisations decribed in [4], In the multigrid method we have simply used the
weighted Jacobi method as smoother.

From these preliminary comparisons one may conclude that the pcg methods are
preferable for problems with anisotropic material coefficients if the problem is not very
large. For problems with discontinuous material coefficients, on the other hand, the
multigrid method turned out to be the most efficient. For a finite element discretization
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Figure 6: The number of floating point operations per unknown for various methods for
the solution of the discontinuous modelproblem with d = 1000 and with various values of
n=1/h—1.

with quadratic elements, the EMIC-CG method was faster than the used multigrid method
for problems of reasonable size.

We have also demonstrated the positive effect of using a good starting approximation
for the pcg method. This starting approximation has been chosen as the interpolant of
the solution on a coarser mesh. Hence, by just using two levels of mesh, we have in many
cases obtained a faster method than the standard multigrid method, for not unnecessarily
large problems.
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