On singular perturbations of order s, s < 2, of the free dynamics:
Existence and completeness of the wave operators

J. Brasche!

Abstract For a large class of operators H a formula for the resolvent will be
derived and sufficient conditions will be given in order that the resolvent dif-
ference (H —z) ' — (Hy—z) ! is compact resp. the wave operators QF (H, Hy)
exist and are complete; here H, denotes the free quantum mechanical Hamil-
tonian.

The mentioned class of operators contains, a.o., the generator of a Brownian
motion with killing, the generator of the superposition of a Brownian motion
and a diffusion process on a submanifold and Hamiltonians describing the
interaction of a quantum mechanical particle with a potential supported by
a set with classical capacity zero.

1 Introduction

In several areas the Laplacian serves as the (infinitesimal) generator of the
free dynamics; e.g., it is both the generator of a Brownian motion in R?
and the free quantum mechanical Hamiltonian. In a wide variety of models
one wants to modify the free dynamics inside a closed subset I'" of R¢ with
Lebesgue measure zero; important examples are, in particular,

a) a Brownian particle which can be killed inside T,

b) the superposition of a Brownian motion in R? and a diffusion
process inside I,

c) the interaction of a “quantum mechanical particle” with a
potential supported by I'.

There has been published an enormous number of papers discussing the cases
a) and c¢) and it is impossible to give a survey on the existing literature; [2],
(3], [4], [6] and [10] discuss some aspects in great detail and give quite large
lists of references on the topic.
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It is especially challenging to study c) if the set I' is not only small in the
sense that its Lebesgue measure equals zero but even in the stronger sense
that its ¢; — capacity equals zero; cf. the next section for the notations. In
this case the expectation value of the energy of the system in the state f
equals the expectation value of the kinetic energy if the latter expectation
value is finite and there exist states with infinite expectation value for the
kinetic energy but finite expectation value for the total energy. This quite
unusual fact implies that the Hamiltonian H of the system cannot be con-
structed via a form perturbation of the free Hamiltonian and it was necessary
to develop new methods in order to construct and investigate such Hamil-
tonians. Various methods of contruction have already been found and for
point interactions, i.e. discrete exceptional sets I', a rich theory, described
in detail in the monograph [3], has been created. However, in the general
case only little is known about the spectral properties of such Hamiltonians
or the unitary groups generated by them. The present note is one of the first
steps in order to fill this gap.

Let us briefly describe the organisation of this contribution. In the next sec-
tion we shall explain the notation and recall a few well known facts about the
general framework. In section 3, we shall describe certain classes of operators
H, including the generators of the stochastic processes mentioned at a) and
b), and give an explicit expression for the resolvents of these operators.

The operators treated in section 3 are obtained via a form perturbation of the
Laplacian. In section 4 we shall present a method to construct Hamiltonians
describing an interaction which takes places on a set with ¢; — capacity zero.
As mentioned such operators cannot be obtained via a form perturbation of
the Laplacian.

In section 5 we shall discuss both the operators H treated in section 3 and
the ones from section 4. We shall give a condition which is sufficient in order
that the wave operators QF(H, Hy) exist and are complete and consequently
H’s absolutely continuous part is unitarily equivalent to the free quantum
mechanical Hamiltonian Hy. Compactness of the resolvent difference

(H —2)"' = (Hy — z) ! will also be discussed.



2 Notation and general framework
By definition, the free quantum mechanical Hamiltonian is an operator Hy
in the space L?(R¢, dz) (dx being the Lebesgue measure) and

D(Hy) = H*(R?), fe D(Hy),
Hof = —Af, f€ D(H).

Here we use the standard notation
H®) = {fe P®,d): [0+ o) o),
£l = ([ Q48 1P )

for s > 0; f denotes the Fourier transform of f.

For compact subsets K of R the ¢, — capacity of K is defined by
cs(K) :=1inf{|| f ||%:: f € CP(RY), Vz € K : f(z) > 1},
and for arbitrary Borel sets B by
¢s(B) = sup ¢s(K)

where the supremum is taken over all compact subsets K of B. As a special
case of a general result by Maz’ja and Havin [12] the following implications
hold for closed subsets I' of R?:

dim(T) > d — 2s = ¢,(T") > 0 = dim(") > d — 2s.
Moreover for C'—submanifolds of R¢
cs(T') > d — 2s <= dim(T") > d — 2s.

A function f : R — C is called quasi — continuous w.r.t. the ¢, — capacity
if and only if for every € > 0 there exists an open set D, such that the
restriction figa\p, of f to the complement of D, is continuous and the c,
— capacity of D, is less than e. It is known that every f € H*(R?) has a
representative which is quasi — continuous w.r.t. the ¢, — capacity and that
f = f° ¢, — q.e. for any two quasi — continuous representatives f and f° of
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f e H5(RY), ie. f and f° differ only on a set with ¢, — capacity zero. In
what follows f will denote a representative of f € H®(R?) which is quasi —
continuous w.r.t. the ¢, —capacity; we do not refer to s since it will be clear
from the context which ¢, — capacity is meant.

If a “quantum mechanical particle” only interacts with a potential which
vanishes outside a given closed subset I' of R? with Lebesgue measure zero,
then the Hamiltonian H of the system has to satisfy the following require-
ments:

(i) H is a self — adjoint operator in L?(R¢, dz),

(ii) C°(R* \ T) € D(H),

(iii) Hf = Hof = —Af for all f € CP(RY\T) ,

(iv) H # H,.

We denote by Ar the set of all operators H satisfying these four conditions.

Obviously Ar is not — empty if and only if the space C$°(R? \ ') of smooth
functions with compact support in the complement of I' is dense in the
Sobolev space H?(R4). Hedberg has given a characterization of the closures
of C§°(R? \ T') in the Sobolev spaces W™P(R?) [9]. As a trivial consequence
of his celebrated Theorem on the Spectral Synthesis in Sobolev Spaces we
get that the space C°(R?\ T') is dense in H™(R), m = 1,2,..., if and only
if the ¢, — capacity of I is strictly positive.

Let p be a positive Radon measure on R? such that p(B) = 0 for every set
with zero ¢, — capacity and

[ < oe, 1 e ).
We define the mapping J, : H*(R?) — L?(R%, 1) by

Lf:=f, feHRY.

Assume now that p(B) = 0 even for every Borel set B with ¢; —capacity zero.
For every o > 0 we denote by J,, o the operator from H'(R?), equipped with
the norm ([ (p® + @) | f(p)[?dp)'/?, to L?(R?, ) which is defined as follows:

Dua) = {7 € H'®): [ |fldu < oo}
J,u,af = f: f € D(Ju,a)'
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While the operators J,, o equal each other their adjoints Jj, , may be different
due to the different interpretation of the operators.

3 Form perturbations

Througout this section i denotes a positive Radon measure on R? such that
wu(B) = 0 for every Borel set B with ¢; — capacity zero and

/\f|2du < oo, feH*RY.

At various places additional requirements will be made.

There exists a unique self — adjoint operator H in L2(R?, dx) such that
DH) © {feH'(®): [ |fPdn <o),
(rH) = [195Pdz [\fPdn, 1 e D)

This operator will be denoted by —A + u and plays a great role both in
stochastics and quantum mechanics: It is the generator of a Brownian motion
with killing ([8], §4.5) and a Schrédinger operator with potential p.

The resolvent of the operator —A + p can be described with the aid of the

operators J, , and J,, defined in the previous section:

Lemma 1 (c¢f. [6], Lemma 8) For every a > 0 the resolvent of the operator
—A+ u at —« is given by

(A +p+0a) ' =G — (JuGa)* 1 + Jpads o] JuGa.
Under the additional requirement that there exists an a > 0 such that the
operator norm || J,, || of the operator J,, is strictly less than one the

operator —A — i can be defined in the analogous way and for @ > 0 satisfying
| Jua |I< 1 the resolvent is given by

(A —p+a)™ =G+ (J,Go)'[1 - Ju,aJ;,a]‘lJuGa,
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of. 6] (27).

Let p: R¢! —s R be a bounded strictly positive continuous function. The
quadratic form &, on L*(R?"!, pd€), defined by

D(&0) = Ci*(RY),

Epolu,u) = / Vu(€) Pp(e)de,

is closable and the self — adjoint operator L, associated with its closure &,
generates a diffusion process on R¢1 ([8], §4.5).

We can identify R®! with the hyperplane {0} x R¢~! and L?(R¢!, pd¢)
with L2(R¢, i), where p := § ® pdé. Define the operator J? from H'(R?)
to L*(R?, p1) by
D(J?) = {fe€eH'®R): J,of € D)},
Jof = VI duaf, f€D(P).

By using the fact, that for every f € H'(R?) the mappings n — f(1,€)
belong to H(R) for d¢ — a.e. £ € R4™!) we can show that the operator J?
from H'(R?) to L*(R¢, i) is closed and D(J?) D H?(R?). This implies that
there exists a unique self — adjoint operator H” in L*(R%, dz) such that

D(H?) < D(J"),
(f,Hf) = / IV fPda + / JPfPdu, | € D(H?).

By applying [6], Lemma 3, we get the following

Lemma 2 For every a > 0 the resolvent of the operator H? is given by
(H? + )™ =G - (JuGa)" VLol + v/ LpJyaly LpJu,a)*]_lv LyJuGa.

Remark: (i) Closability of the Markov form &, defined as above, holds
under much weaker conditions, cf. [1], §4, [5], [8], §3.1, [11], §II,2, and it is
an interesting problem how to extend the last lemma.

(ii) The operators H” are generators of the superposition of the Brownian
motion in R and a diffusion process on the hyperplane M = {0} x R¢!
([8], §§3.1,4.5). It is noteworthy that these operators are obtained by a
perturbation of Hy by a second order differential operator on M.
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4 A resolvent formula

Throughout this section I" denotes a closed subset of R? such that ¢y (") > 0.
As mentioned in section 2 the set Ar is not empty under (and only under)
this condition. Obviously the operators —A + u belong to Ar if 4 # 0 and
u(RT\T) = 0. Also the operators H” discussed in the last lemma belong to
A where M = {0} x R,

It is, however, not possible to construct operators in Ar via a form pertur-
bation of H,, as we did it in the last section, if the set I' is so small that
even its ¢; — capacity equals zero ([1]). There has been proposed many other
methods of construction in this case. Here we will give a method which has
the advantage that one gets from the very beginning important additional
information about the operator.

Lemma 3 Let u be a positive Radon measure on R? such that u(B) = 0 for
every Borel set B with co — capacity zero and

/|f\2du < oo, feH*RY).

Let A be a non — negative self — adjoint operator in L*(R?, 1) such that
D(A) D ran(J,) and AJ,#0.

Let o > 0. Then there exists a unique self — adjoint operator H in L*(R¢, dx)
such that —« is in the resolvent set of H and

(H+a)™" = Ga + (J,Ga) AJ,Go.

H is different from Hy and the infimum of the spectrum of H 1is strictly larger
than —ca. If in addition u(R¢\T') = 0 then the operator H belongs to the set
Ar defined in section 2.

Proof: The operator J, is closed since every sequence {f,} converging in
H*(RY) has a subsequence {f,,} such that {f,,} converges c; — q.e. By
the closed graph theorem, this implies that the operator .J,G, is bounded.
Since the operator A is self — adjoint and the domain of AJ,G, equals the
whole space L*(R¢,dx) also the operators AJ,G,, (J,Ga)* and (J,G4)*A
are bounded.



Since

((JuGa)*AJuGafa f) :“ \/ZJ“Gaf ||22 0

for all f € L?(R?¢,dx) the operator (J,G4)*AJ,G, on L?*(R?, dz) is non -
negative, bounded and self — adjoint. Since (f,G,f) > 0 for all f # 0 it
follows that the operator

Ry = Go + (J,Ga)*AJ,Ga

on L*(R%, dz) is non — negative, bounded, self — adjoint and invertible. Thus
the operator H in L*(R%, dz), defined by

H = R;l —q,

is self — adjoint, —a belongs to the resolvent set of H, (H + a)™' = R, and
H + « is non — negative. Since 0 belongs to the resolvent set of H + o and
H + « is non — negative the infimum of the spectrum of H is strictly larger
than —au.

Since AJ, # 0 also \/ZJM # 0. Thus there exist f such that
(JuGa) Ad,Gaf. f) > 0.
Thus H # Hy.
Suppose now in addition that u(R? \ I') = 0 for some closed set I'. Then
J,GalHo+a)f =0
for all f € Cg°(R? \T'). Thus
(H+a) (Hy+a)f = f

for all f € CP(RY\T). Thus C(RY\T) C D(H) and Hf = H,f for all
e CPRIN\T). O

5 The wave operators

The resolvents of the operators H discussed in the previous sections “have
the same structure” and one only needs some additional information about
the measure i appearing in the respective resolvent formulas in order to
prove that the essential spectrum oes5(H) of H equals [0, 00):
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Theorem 4 Let H be a self — adjoint operator in L*(R%, dz). Suppose that
there exist an o > 0, a positive Radon measure i on R? and a self — adjoint
operator A in L?(RY, 1) such that the following holds:

(i) —a belongs to the resolvent set of H.

(ii) There exists an s < 2 such that u(B) = 0 for every Borel set B with c,
— capacity zero and

/ FPdu < oo, | e H®Y.

(iii) A is a self — adjoint operator in L*(R?, ).
(i)
(H +0)™ = Go + (J,Ga) AL, G

(v)

p{fyeR: |z —y| <1}) — 0, as |z|] — oo.
Then for every z which belongs both to the resolvent set of H and Hy the
operator (H — z)~! — (Hy — 2)™! is compact and, in particular,
Oess(H) = [0, 00).

Proof: In the proof of Lemma 3, we have shown that the operator (J,G,)*A
is bounded. Thus we have only to show that the operator J,G, is compact.
By [6], Lemma 1, this holds true provided the operator JHGZ/ ? is bounded
and J,G', is compact for some [ € N.

Since every convergent sequence in H?®(R?) has a subsequence converging c, —
g.e., the hypothesis about the measure p implies that J, is a densely defined
closable operator from H*(R?) to L?(R%, ). Since G:/? is a bounded linear

bijection from L2(R%, dz) to H*(R%) it follows that the operator J,G%/* from
L*(R?, dz) to L?(R?, 1) is bounded.

We choose any | > d/2. It is well known that G!, is an integral operator
on L?(R¢ dz) with a kernel gg)(a: — y) where the function g&l) decreases
exponentially at infinity and, due to the choice | > d/2, is continuous. It
follows that J,G', is an integral operator from L?(R¢,dz) to L?(R%, 1) with
the same kernel. Now some standard argument yields compactness of the
operator J,G',. O

Under stronger conditions about the self — adjoint operator A and the be-
haviour of the measure p at infinity we can even prove existence and com-
pleteness of the wave operators:



Theorem 5 Let H be an operator satisfying the hypothesis of the previous
theorem. Suppose in addition that the infimum of the spectrum of the operator
H s strictly larger than —a, the operator A is bounded and the measure p is
finite (here we use the notation from the previous theorem). Then the wave
operators Q*(H, Hy) exist and are complete and, in particular the absolutely
continuous part of H is unitarily equivalent to Hy.

Proof: By [7], condition 2.6, we have only to prove that there exists an
N € N such that the operator

Dy:=H+a)"N —(Hy+a)™.

is compact and
(H+a) YDy(Hy+ )™V

belongs to the trace class. By the previous theorem, the operator Dy is
compact for every N € N.

We fix an integer | > max (d/2,2). By the proof of Lemma 3, the operators
AJ,G, and (J,G4)*A are bounded. This implies that for arbitrary positive
integer m and every N > I(m + 1) the operator Dy can be written as the
sum of 2% — 1 operators T; where for every j
(i) T; = R;J,G.S; and R; and S; are bounded or
(ii) T; = R;(J,G%)*S; and R; and S; are bounded or
(i)

T;=RiRy...Ry
for some k£ > m and some bounded operators Ry, Ro, ..., Ry where at least
m of the operators Ry, Ry, ... , Ry equal J,G, or (J,Go)*

As shown in the proof of the previous theorem, J,G', is an integral operator
from L2(R?, dz) to L2(RY, u) with a kernel ¢ (z —y) where the function g%
decreases exponentially at infinity and is continuous. Since the measure p
is finite and the function g&l) square integrable w.r.t. the Lebesgue measure
this implies that the operator Jqul belongs to the Hilbert — Schmidt class.
Thus the operators T} satisfying (i) or (ii) belong to the Hilbert — Schmidt
class, too.

We have shown in the proof of the previous theorem that the operator JNGZ/ 2

from L?(R¢,dz) to L?(R¢, 1) is bounded. This together with the fact that
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Jqul is a Hilbert — Schmidt operator implies that the operator J,G, belongs
to a Schatten class of finite order p (actually we can chose

-1

=242~
P=2r T

cf. [6], Lemma 2, where even an upper bound for the p — th Schatten norm
is given). Thus, by chosing m sufficiently large (m > 2+ 2(1 —1)/(1 — s/2)
is sufficient), we get that also the operators 7 satisfying the condition (iii)
belong to the Hilbert — Schmidt class. Thus for sufficiently large N the
operator Dy belongs to the Hilbert — Schmidt class, too.

We have
(H+a) ™ Dy(Hy+ )™ = (Dy + GY)DyGY.

We chose N such that both Dy and J,GY are Hilbert — Schmidt operators.
Then DNDNGflV belongs to the trace class since Dy is a Hilbert — Schmidt
operator. The operator GY DyGY can be written as the sum of 2V — 1
operators of the form

GN(J,Go)*SJ,G.GY
where the operator S is bounded. Since J,GY belongs to the Hilbert —

Schmidt class each of these 2 — 1 operators belongs to the trace class. Thus
(H + o)™ Dy (Hy + o)™ belongs to the trace class, too. O
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