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Abstract

The even-dimensional Dirac and Schrodinger operators with a con-
stant magnetic field have purely essential spectrum consisting of iso-
lated eigenvalues, so-called Landau levels. For a sign-definite electric
potential V' which tends to zero at infinity, not too fast, it is known
for the Schrédinger operator that the number of eigenvalues near each
Landau level is infinite and their leading (quasi-classical) asymptotics
depends on the rate of decay for V. We show, both for Schrédinger
and Dirac operators, that, for any sign-definite, bounded V which
tends to zero at infinity, there still are an infinite number of eigenval-
ues near each Landau level. For compactly supported V' we establish
the non-classical formula, not depending on V, describing how the
eigenvalues converge to the Landau levels asymptotically.

*The first author is a Marie Curie Post-Doc Fellow, supported by the European Union
under grant no. HPMF-CT-2000-00973.



1 INTRODUCTION

In nonrelativistic quantum mechanics a spinless particle confined to the zy-
plane, and subject to a constant magnetic field B = (0, 0, b) aligned along the
z-axis as well as a real-valued electrostatic potential £V (z,y), is described
by the Schrodinger operator

Hy+tV = (P-A?*+V
8 b\’ 0 b\’

acting in the Hilbert space L?(R?). Here P = —iV is the momentum operator
and A = 1/2(B A7), r = (z,y), is the (magnetic) vector potential. For
simplicity we have not included any physical parameters (i.e., the particle
mass, the particle charge, the speed of light, or Planck’s constant) in (1.1).
Such “simple” systems has in recent years attracted renewed attention in
connection with nanotechnology (quantum dots, boxes etc).

The unperturbed operator Hy has rather peculiar spectral properties: Its
spectrum consists of eigenvalues of infinite multiplicity, the so-called Landau
levels A, = b(2¢ — 1), ¢ € N; (we shall use the abbreviation LL for Landau
level). When the operator is perturbed by a potential V' which tends to
zero at infinity, new eigenvalues may appear, with only possible limit points
at LLs, which follows from Weyl’s essential spectrum theorem. Therefore
the natural question arises, whether there are a finite or infinite number of
eigenvalues, and in the latter case, to find their asymptotical distribution.

We may formulate the same problem if, instead of two, the underlying
Euclidean space has an even dimension 2d. Again, the unperturbed ope-
rator Hy has purely essential spectrum consisting of LLs {A,}, ¢ € N,
which can be expressed as Ay = ijl b;j(2g; — 1), for fixed numbers b; > 0,
j=1,2,...,d, determining the magnetic field. The number 3¢ of different
sets ¢ = {q1,...,qq} which determine one and the same level is called the
multiplicity of A,.

The analogous problem in three dimensions, where the spectrum of H,
fills a semi-axis, has been studied intensively. Avron et al [1], Solnyshkin [12]
and Sobolev [11] has shown that even for a compactly supported V' > 0,
there are infinitely many eigenvalues below the lowest point of the essential
spectrum of Hy — V. For fast, but not too fast decaying V', Sobolev obtained
the leading asymptotics of power-like type.

Extending the work by Avron et al, Solnyshkin, Sobolev, and also Tamura
[13], Raikov [7] obtained the most detailed results on the leading eigenvalue
asymptotics near the boundary points of the essential spectrum in dimen-
sions > 2; e.g. in even dimensions, if V' decays at infinity not too fast, the



eigenvalues of Hy = V near each LL have power-like asymptotics. How-
ever, neither Raikov’s work nor later work by Boyarchenko-Levendorski [3],
Hempel-Levendorski [5] and Ivrii [6] cover very fast decaying or even com-
pactly supported V.

The complication arising when considering very fast decaying or com-
pactly supported potentials is related to the following circumstance. During
the last two decades, the progress in studying spectral asymptotics problems
was achieved by refining microlocal analysis methods, using pseudodifferen-
tial and Fourier integral operators (see, e.g. [6, 10]). Such methods were used
in the papers cited above, as well. However, for very fast decaying poten-
tials the pseudodifferential methods do not work. The reason for this can
be explained by noting which properties of symbol classes are critical for the
pseudodifferential analysis. In fact, usually all classes of symbols arising in
various problems have the common feature: They improve their decay un-
der differentiation (with respect to some, or all, variables). This property is
observed, say, by symbols with a power-like behaviour. However, if the sym-
bol decays rapidly, say, as exp(—|£|?), differentiation worsens the behaviour
of the symbol, instead of improving it. It is exactly this sort of behaviour
of the symbol that one encounters when reducing the spectral problem for
the magnetic Schrodinger operator with fast decaying potentials to ones for
pseudodifferential operators as it was done in [11, 13, 7, 3, 6]. This is the
reason why the methods of the latter works do not apply to such potentials;
even the question of finiteness of the number of eigenvalues was not resolved.
It is this kind of potentials we are going to consider in the present paper.

Specifically, we consider potentials satisfying the following assumption.

Assumption 1.1. Let V' be a nonnegative, bounded, measurable function
on R?? having compact support. In addition, assume that V' > 0 holds on a
nonempty, open set.

Fix the LL A = A,, ¢ € N* and let A* denote the nearest LL lying to
the left or right of A, respectively. Choose any u € (A~,A) (respectively,
€ (A,A")) and let Ny (A) = N(u1, A— A| Ho — V) (respectively, Ny (\) =
N(A+ X, uz | Hy+V)), for A > 0 small enough, denote the number (counting
multiplicity) of eigenvalues of Hy + V' in the gap (u1, A — \) (respectively,

(A + A, ).
Under Assumption 1.1 we establish the following theorem.

Theorem 1.2. Let V satisfy Assumption 1.1 on R*, d € N. Then the
number of eigenvalues for Hy =V near any LL A is infinite. Moreover, if
p1 € (A7, A) and pg € (A, AT) then

N(lu’laA_)‘|H0_V)NN(A+)‘aN2|H0+V)N%Ed()‘) G,S)\\LO,

3



where 3 denotes the multiplicity of the LL A and
1/ |InA \*
Za(A) = = .

X =5 (ln | ln/\\>

Hence, under Assumption 1.1 there still are an infinite number of eigen-
values in each gap, they converge to the LLs very fast and their leading
asymptotics do not depend on V. The asymptotics is not described by the
quasi-classical formulas known for the case where V admits power-like de-
cay. In this sense it is non-classical. Such behaviour is rather exceptional for
differential operators in mathematical physics.

As a spin-off we manage to strengthen the first statement in Theorem 1.2
to any nonnegative bounded V' which tends to zero at infinity (see Proposi-
tion 9.1).

Another operator of mathematical physics with spectral structure similar
to the one for the magnetic Schrodinger operator is the Dirac operator with
a constant magnetic field in even dimension 2d.

The spectrum of the unperturbed Dirac operator Dy is purely essential
and it consists of infinitely many isolated eigenvalues, called LLs, u;t, q € N
Here p, = —p, except for the “lowest” eigenvalue po, which is either —1
or 1. In order to study the discrete spectrum of the operator D, perturbed
by an electric potential VI, where I is the 2¢ x 2¢ identity matrix and the
potential V is a real-valued function on R?? satisfying Assumption 1.1, we
need a detailed description of the eigenspaces corresponding to the LLs of
D,. We were unable to find this description in the general situation in the
literature. Even the analysis in [14] performed for d = 1 is not sufficient
for our purposes since the eigenspaces are described rather implicitly there.
Therefore we devote Section 4 to the spectral analysis of D;. Having this
description at our disposal, we establish the following result.

Theorem 1.3. Let V satisfy Assumption 1.1 on R*¢. Then the number of
eigenvalues for the perturbed Dirac operator Dy +V near any LL p = ,ujlt 18
infinite. Moreover, if u= and put denote the neighboring LLs lying below and
above p, respectively, and if s1 € (u—, p) and sy € (u, u*) then

N(Slalu_)\|pd_v) NN(N+)\582|Dd+V) ngd()\) GS)\\LO,
where w = w () is a certain integer (given explicitly in (4.17)).

Thus, just as for the Schrodinger operator, there are an infinite number of
eigenvalues in each gap and the asymptotic behaviour of the eigenvalues near
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the LLs is expressed by the same formula (up to a multiplicative constant)
as in Theorem 1.2.

Both for the Schrodinger and Dirac operators, the proofs of asymptotical
eigenvalue formulas are based on the analysis of Toeplitz-like operators hav-
ing the form T' = PV P, where P is the projection onto the Landau eigenspace
of the corresponding operator. The operator 7" was in the center of study
in most of the preceding papers devoted to the subject. It is here the afore-
mentioned microlocal methods fail for our case. To handle the problem, we
apply the old-fashioned but still powerful variational method. Nevertheless,
the treatment of Toeplitz operators is fairly technical, and our presentation
is divided into three sections, Sections 6-7 dealing with the Schrodinger case
and Section 8 with the Dirac case. The variational approach is also used
in Section 9, where the perturbational reasoning carries over the results for
Toeplitz operators to the perturbed Schrodinger and Dirac operators. In Ap-
pendix we establish a number theoretical result (Lemma 6.3) which is crucial
in dimensions > 2.

When this paper was near its completion, Prof. G. Raikov informed
the authors about the manuscript [8], where the eigenvalue asymptotics for
the Schrodinger operator with compactly supported or very fast decaying
potentials is considered in two and three dimensions. The results in two
dimensions cover the ones herein. Higher dimensions, however, create con-
siderable additional problems which are resolved in the present paper and,
even for two dimensions, our reasoning is, probably, more transparent. More-
over, the analogous problem for the Dirac operator is not considered in [8]
(or elsewhere).

Acknowledgement. We are grateful to Dr. G.R.H. Greaves for providing us
with Lemma 9.3, which enable us to give a more streamlined proof of Lemma 6.3
compared to an initial, more ad hoc proof. Moreover, the authors thank Prof. G.
Raikov for useful discussions and for sending them the manuscript [8].

2 VARIATIONAL METHOD

Let H be a separable Hilbert space with its norm and scalar product denoted
by || - || and (-, -), respectively. For a self-adjoint operator T the distribution
function N(I,r|T) counts the total number of points of the spectrum o(7T)
of T (taking into account their multiplicity) in the interval (I,r). If a point
of the essential spectrum belongs to (I,7) then N(I,7|T) = co. We define
N_(s5,T) = N(—o0,s|T) and Ny (s,T) = N(s,o00|T). If T is compact, we
set ny(s,T) = Ni(s,T).



We shall use the min-max description of eigenvalues (following directly
from the Spectral Theorem).

Lemma 2.1. Let T be a self-adjoint operator. Then, forl <r,
N(l,7|T)=max dim {E CD(T) : |(T — s)ul]* < 2||u||®,u € E\{O}} (2.1)
=mincodim{LCD(T) : [(T—s)ul|*>¢*||ul|*,ueL}, (2.2)
where s = (I+7)/2 and t = (r —1)/2.

For a nonnegative, compact operator 71" it is convenient to use another
form of (2.1)-(2.2):

ny(s,T) =maxdim {L£ C H : (Tu,u) > s|jul’, u € L\{0}} (2.3)
=mincodim {£ C H : (Tu,u) < slull>,uec L}, s>0. (2.4)

We shall also use the following perturbational result found in, e.g., [2].

Lemma 2.2. Let T be self-adjoint and let S be bounded on H such that
o(S) C [s1, $2]. Then for any finite interval (I,7) one has that

N+ s1,r+s2|T+S)>N(,r|T).

In addition to the standard order symbols we use, for two real-valued
functions f(A) and g(}), the notation f(A) < g(A) which means that f(\) <
g(A)(1+o0o(1)) as A — 0.

3 THE UNPERTURBED SCHRODINGER
OPERATOR

We summarize some well-known facts about the unperturbed Schrodinger
operator with a constant magnetic field (see, e.g., [4]).

3.1 Two-dimensional Case

In R? we consider a charged, spinless particle in a homogeneous magnetic
field. We assume that the magnetic field B has constant strength 6 > 0
and is aligned in the z direction, viz. B = (0,0,b). In appropiate units
the Hamiltonian of the particle is Hy = (P + A)?, where P = —iV is the
momentum operator and A is some vector potential associated with the field,
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viz. B =V X A, and defined up to a gauge transformation. We choose the
gauge in which A = %(B Ar), r = (z,y). The resulting Hamiltonian

o b\ o b\’
Hy=(—i——- —i— 4 = 3.1
o= (g w) + gy + ) o
is essentially self-adjoint on C§°(R?) [9]. It is well-known that Hy has a purely
essential spectrum consisting of isolated eigenvalues, viz.
o(Hy) ={A;,=b(2¢—1)|¢=1,2,3,...}. (3.2)

In literature on physics the eigenvalues A, are referred to as LLs. For a
fixed LL A; = b(2¢ — 1) one can choose an orthonormal basis in the Landau
eigenspace consisting of functions

1/2
_ ~ q!
Fn(020) = o, 0:5) = (2)~1/2p0+1m)/20 m|/2< )
(5.0) = Fmalp 050) = (2m) e
- b
Xe—zmap\m\e—§p2Ll(l\m\) <§p2) , m=—q+1,—q+2,..., (3_3)

in polar coordinates (p, ). Here Lé""”(g) are the generalized Laguerre poly-

nomials

Lirl¢) = Zdz,|m|(—f)l 5 dijm| = ( g+ m| > ll—, (3.4)

3.2 Even-dimensional Case

Introduce the vector potential @ = (a1, as, ... ,azg) € C(R??;R?*®) and the
1-form A = Z?il a;dz;. Define the magnetic field 2-form
24 2d 1
B = dA = ZZ()Z] del N d.%j, bij = 5(6”(1]- — 8%.0,1‘).
i=1 j=1

We assume that B # 0. Moreover, we suppose that all the entries of the
antisymmetric matrix B = {b;; f‘]i are constant. The unperturbed Hamilto-
nian Hy = Z?il(—iawj —a;)? defined on C§°(R??) is essentially self-adjoint in
L?(R*). Its unique self-adjoint extension is also denoted by Hy. The eigen-
values of B form a subset of the imaginary axis, symmetric with respect
to the origin. Let b; € R, 7 = 1,2,... ,d be such numbers that the nonzero
eigenvalues of B coincide (counting multiplicity) with the imaginary numbers

—ib; and 4b;, 7 = 1,... ,n. Thus we have 2n = rank B, 0 < 2n < 2d.
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We limit ourselves to the non-degenerate case n = d. In proper coor-
dinates (z,y) € R*, z,y € R? the 2-form B block-diagonalizes: B =
2?21 bjdy; A dz;. By changing variables z; +— —z; one may reduce the
problem to the case when all b; are positive. In these coordinates Hj is
unitary equivalent to (again we use the notation Hj) the operator

d d
HO:ZEIO’]:Z(I@)@HO’]@I) (35)
7j=1 7=1
in L2(R*) = ®¢_, L*(R?), where
o b \° o b \?
He. = [ —j—— — 2y 4 Ty 3.6
" < Kz 2%) i < "9y, i 296]) (36)
and
0(Ho,j) = 0ess(Hoj) = {bj(2¢; — 1) [¢; = 1,2,3,...} (3.7)

with a basis of eigenfunctions of the form (3.3), with (p, #) replaced by the po-
lar coordinates (pj, 6;), for the corresponding eigenfunctions fr(,fg,qj (pj,0;) =
fmja‘]j (pj’ 07'; bj)'

This gives us that the operator Hy is essentially self-adjoint on D(Hp) =
Q71 D(Hy;) = QF_, CC(R?) = C°(R*) and, in view of (3.5) and (3.7),
its spectrum equals

O'(Ho) :Uess(HO) = {Aq|q: (ql,... ,Qd) € Nd}, (38)
where the isolated eigenvalues {A,}, ¢ € N?, have the form

d
A=Ag=) bi(2g;-1), ;€N (3.9)
j=1

As above, the numbers A, are called LLs. The number s of different sets
g ={q1,¢,...,q4} which determine one and the same level A according to
(3.9) is called the multiplicity of A.

We discuss multiple LLs in more details. Let, e.g. d = 2, and let the
matrix B have eigenvalues by, by, —bi, —bs, b; > 0. Then the Schrodinger
operator has the form

H0:H1®1+1®H2:ﬁ1+ﬁ2a



where H; is given in (3.6). The LLs of H, are sums of LLs for H; and Ho,
i.e. for a fixed level A we may write

It may turn out that a given A can be represented in the form (3.10) in
several different ways, for example

A=0bi(2q, — 1) +by(2g, — 1) = b1 (2, — 1) +b2(2, — 1), (3.11)

The number of such representations is the multiplicity s¢ of the LL A. Ac-
cording to (3.11), the Landau eigenspace of Hy for A is a direct sum of
eigenspaces corresponding to different representations. For example, in the
case (3.11),

HA == %IA @ H;; == (%1/ ® H%) @ (Hlu ® H%/) (312)
where, e.g. H#’ iz Jj = 1,2, is the Landau eigenspace of H; corresponding to

the LL b, (2q] 1). Generally, for the multiplicity s in dimension 2d, we have

A:ZAP ij 2¢\V 1), a=1,...,, (3.13)

with corresponding eigenspace and projection given by

Ha = @@wm P,

a=1 j=1

P = ) P® with P® =i P o (3.14)

where P e is the spectral projection onto H’ oot For all LLs to have mul-

tiplicity 1 it is sufficient that bq,... ,b; are 11near1y 1ndependent over odd
integers. Thus, in the general situatlon, in particular for by = --- = by, one
must expect that multiple LLs arise.

4 UNPERTURBED DIRAC OPERATOR

In this section we study the even-dimensional (unperturbed) Dirac operator
D, with a constant magnetic field. In analogy with the Schrédinger operator
Hy (see (3.5)) the spectrum of Dy turns out to be purely essential and it con-
sists of infinitely many isolated eigenvalues i, ¢ € N, called Landau levels
(LL). Here yy = —p, except for the “lowest” eigenvalue g, which is either
—1 or 1. We find, moreover, an explicit representation of the corresponding
Landau eigenspaces.



4.1 Dirac Matrices and Operators
In dimension 2d, d € N, there are 2d + 1 Dirac matrices, denoted 0@, aéd),

cee ag? and a(gd), each of size 2¢, and they satisfy the relations

(@) =0l?, 600\ + 005D =261, j=0,1,2,...,2d. (4.1)

The matrices may be defined inductively: For d = 1 they are given by

01 0 1 1 0
01=<1 0>’J2Z<—i O)anda():(O _1>.

If o@, aéd), e ,ag;) and a(()d) are given for d, the matrices for d + 1 are
gatn — (0 01" gath [ O O3
1 a%d) 0 vttt Y2d-2 05‘,?_2 0 )

oldt) 0 o(gd) ol _ 0
2d-1 = 0((;1) 0 v Oag I 0

0_((]d+1) — ( é _OI ) ; I = IQd—l.

Vector components corresponding to upper blocks in these block-matrices
will be referred to as the upper half, the rest as the lower half.
Forb; € R, j=1,2,...,d, set §; = |b;|. Define
0 b; .0 b;

Py = —im + Ay,
2j—1 Zaxj+2y]’

and

sz = —Za—yj — ELE‘]‘.
Note that, since we handle first order operators now, we cannot use trans-
formations x; — —x; to make all b; positive. Thus, here we have to consider
b; with arbitrary signs.

The 2d-dimensional unperturbed Dirac operator with a constant magnetic
field, acting in L?(R?)¢, is defined by

2d
Dy=A;+ 0(()‘1), where A, = Z o](-d) P;.

7j=1
For j=1,...,d put

b; o b
Ly + — — i, (4.2)

. .0
Hj = ng,1 +ZP2]' = ——+ ayj 9

axj 5
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and

I; o j
7; = < OJ —Hj > = ng -+ O'(()])PQj_l. (43)

It is convenient to describe D, inductively as follows. For d = 1 we write

D=A + 0(()1), where A; = 0 Th (4.4)
II;, 0

and, generally for an arbitrary d,

_ (9 _ 0 Aar + T4
Dy= A4+ 0y, where Ay = < A+ T 0 . (4.5)
The afore-defined operators satisfy the following relations:
I = TG +2b; = Hoj + b5, j=1,2,...,d, (4.7)
[A;,II;] = 0, j=1,2,...,d, (4.8)
Aj717; +7;*Ajfl = Oa J = 1a25"' ,da (49)

with Hy ; being the two-dimensional Schrédinger operator (3.6) associated
with b;. Moreover,

T;T; = T;T; — 20,08 = Hyjli — bjo) (4.10)

J

and

ey o _ J {Bj2¢;|q; € N} if b; > 0,
oiT5) = {qu+b]‘qJ€N}_{ {8i(2¢; —2)|¢; e N} if b; <0,

4.2 The Operator A2
From the relations (4.6)-(4.10) we deduce that

d
A2 = (ZHO,,-)g®---®g—b1g®---®g®oo
J=1 #

id #=d1
+0hl® - RIRNRoyg+b3 IR - RIRoy R IR gy
N’ N e’
#=d—-2 #=d-3
+ -4 1 I®Rog®I® - QI®)+bijog IR -+ QI R0oy. (4.11)
#=d—3 #=d—2
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Thus one may represent Ai as
A2 = Hylu — Ay(b). (4.12)

Here Hy = Z?Zl H, ; is the 2d-dimensional Schrédinger operator (3.5), b =
(b, ... ,bs) and Ay(b) is the diagonal 2¢ x 2¢ matrix having on the diagonal
the sums b, = Zj:1 g;b;, where € belongs to the set

E*={(e1,...,e4)| all possible combinations of £; = &1 }.

The way in which b, enter on the diagonal of A4(b) determines an order for
elements € € E%. We denote by E{ and E¢ the sets of those & € E for which
be enters in the upper half or lower half of A4(b), respectively. The particular
order in which b, enter on the diagonal is of no importance, however, one
property of b., which follows easily inductively from the inductive definition of
Dirac matrices and (4.11) is the following. Fix some subset J C {1,2,...,d}
with v elements, 1 < v < d. Then of 27 combinations of € with ¢; fixed for
j € J, exactly one half, i.e. 247", belong to E¢, and 2%~ belong to E¢.

Since A2 is a direct sum of operators of the form Hy — b, the spectrum
of A2 is determined by the spectrum of Hy. To define the eigenspaces of A2,
we introduce the following notation. Let H. C L?(R*)., e € E?, be closed
subspaces. Let ¢ be the natural embedding of L?(R?¢), into L2(R2¢, C2*) (to
an element 1 in L2(R2%), we assign the 29-dimensional vector in L2(R2?, C2')
for which all entries are zero expect the “eth”, which equals 1)). Then we
set H.He = PeteHe. This will be called the exterior direct sum. The same
notation will be used for elements in ..

Proposition 4.1. Let A := Ay = 2?21 B;(2¢; — 1) be a LL, with multiplic-
ity one, of the 2d-dimensional Schrodinger operator Hy and let Ha be the
corresponding eigenspace. For any e € E? define

=3Bl -2- (1<)

Then the largest of these Iz, | = 2 Z?Zl Bi(g; — 1) is an eigenvalue of A3. To
each I one associates a subspace Hy, in L?(R??), as follows: Define

E(gq) ={e€ E'2¢j—1—(1-¢;) >0, Ve; }.
If e € £(q) then one puts Ha. equal to the eigenspace associated with the

LL A, = Z?Zl Bil2¢; — 1 — (1 —¢,)] of Hy. Otherwise, if € ¢ £(q) then A,
is not a LL for Hy and one puts Ha, = {0}. Then Yy = Becg(q)Ha. is the

12



eigenspace associated with the eigenvalue | of A%. Moreover, if v(q) is the
number of those g; which are larger than one, then Card£(q) = Y9 gnd,
if v(q) > 0, exactly half of the elements in £(q), i.e. 2VD~L, belongs to E4,
and the other half belongs to E?.

Proof. Assume that [ is an eigenvalue of A2, i.e.
A2 = [0 (4.13)

is solved for ¥ = (). € ), where the latter is some eigenspace to be
determined. Now, (4.13) can be written as the system

Hol/fs = ([ + bs)%, (414)

where b, = ijl g;b;. Thus, at least one of these [+ b, must be a LL, which
implies that the largest of these [+ b, namely A = [+ ) §; is a LL of H,,
ie. A =) B;i(2¢; — 1) for some ¢g; € N. Indeed, if the largest one is not
a LL of Hy then the smaller ones are not LLs of H, either. Consequently,
[=2)0(g; —1). To find the associated eigenspace, we consider all other
possible LLs for Hy, corresponding to this [, for all e. According to (4.14)
they may be represented as

Ae=A— (Z Bi — ZQ%) =Zﬂj[2qj —1-(1—¢)] (4.15)

It is clear that these smaller A need not all be LLs of Hy. Indeed, if a certain
¢; equals 1 (i.e. attains its smallest possible value) and the corresponding ¢;
equals —1 then the corresponding ; is not present in the expression for A,
viz. A. is not a LL of Hy. As a consequence, we define [ = > 3;[2¢; —2—(1—
£;)] (of which the largest is the eigenvalue [ of A2). Then we assign a subspace
Ha, to each of these [ as described in the statement of the Proposition, and
it follows immediately that J; = Hccg(q)Hae is the eigenspace associated with
the eigenvalue [ of A2. This family of A, will be referred to as the “ladder”
corresponding to the eigenvalue I.

On the other hand, any LL of H, can act as the largest one for some
eigenvalue of A7 In particular, if we have A = >, B; (the lowest LL of
H,) and, consequently, [ = 0, then A is the only LL of Hj included in the
above-mentioned ladder.

Define v(q) as in the Proposition, i.e. there are d — v(q) elements in g
for which ¢; = 1. Let J denote the set of indices for the latter ¢;’s. To
ensure that Ha, # {0} for a particular e, each of the elements ¢;, j € J,
has to be chosen as +1. For the remaining v(q) entries in each £, we may
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choose £; = +1. Hence, there are 2V(@ different € for which H,, # {0}, i.e.
Card £(q) = 2"(9). Provided v(q) > 0, the property mentioned just above
the Proposition, asserts that exactly half of the 2“(@ elements in £(q), i.e.
2Y@=1 belongs to E%. The other half belongs to E?. O

Define y[(i) = Hece(g)nme Hae- According to Proposition 4.1, the number
of summands in y§i> equals 2"(9~1 provided v(q) > 0.

For multiple LLs of Hy we have to perform the above “ladder” construction
for each representation of the LL A.

Proposition 4.2. Let A = A @) = Zj.:l ﬂj(Qq](-a) —1),a=1,2,...,3, be a
LL, with multiplicity >, of the 2d-dimensional Schridinger operator Hy. Let
Ha be the corresponding eigenspace. For any € € E? define

d
=) Bil2g” —2— (1-¢))].
j=1

Then the largest of these I, [ = 22?:1 ﬂj(q](-a) — 1) is an eigenvalue of A3

To each I we associate a subspace ’H‘AO;’ in L?(R?®) as follows: Define
£(@V)={eecE2¢” —1—(1—¢;) >0, Ve, }. (4.16)

If e € £(¢'Y) then one puts Hl(i_) equal to the eigenspace associated with the
LL A, = Z?Zl ﬁj[QqJ(-a) —1—(1—¢)] of Hy. Otherwise, if € ¢ £(q'™) then
A¢ is not a LL for Hy and one puts ’HE\O;) = {0}. If v(q'¥) is the number of
those q; which are larger than one, then Card £ (@) = 2" and, provided
v(q@®) > 0, ezactly half of the elements in E(q®), i.e. 22@“)=1 belongs to
Ei, and the other half belongs to E¢.

Define y[‘"‘) = Eseg(q(a))HE\O;). Then Y = eaay[(“) is the eigenspace asso-
ciated with the eigenvalue [ of AZ.

In Proposition 4.2 the eigenvalue [ of A2 can be represented in s different
ways, so we say that it has multiplicity .

It follows from Proposition 4.2 that the number of summands in yf“)
equals Card£(g®@) = 2" and there are > 2/(“) summands in Y.
Let Y5 = B gqennm My and define Y& = @7, Y. Clearly the
number of summands in yfi) equals

”

w = Z ov(@®)-1 (4.17)

a=1
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4.3 The Operator Dy

Since Dy = A4+ 0g, we have ’Dﬁ = §+ 1. According to Proposition 4.2 the
eigenvalues of A2 equal [, = 2 Z?Zl ﬂj(qj(-a) —1). Thus, the eigenvalues of D2
equal [; + 1 and the associated eigenspaces are the spaces )i, also given in
the proposition.

Since D5 = AZ + 1, the eigenvalues of Dy are p; = £./l;+1. The
eigenvalues ,ujlt are called LLs in analogy with the eigenvalues of Hy,. We are
going now to give an explicit description of the eigenspaces of Dy (which are
some subspaces of ), ).

The equation Dy® =y ®, where ® has the form

(+)
wo-(£9)

can be written as
]_ .Adfl + 771* @H—) _ + @H—)
Aci+Ta -1 o) ) T Ha\ o) )
Here &) belong to some subspaces y[(j). The latter equation can be rewrit-

ten as

(1= )™ = —(Agr + )2, (4.19)
1+ pH)e) = (Agy + Tg)o. (4.20)

Suppose first that ,uilt # +1. In other words we do not consider the
“lowest” LLs of D,. In this case (4.19) and (4.20) are clearly equivalent: If,
say, (4.20) holds then (4.19) follows from (4.13).

Of the spaces y§j) at least one is non-empty (and then automatically the

second is). Choose () € y[(;) arbitrarily and set

O = (14 pg) (Ag_1 + Ta)dH. (4.21)

Then the subspace Wug C Wy, given by

) _ _
Wy = {( ) > KilSel= yf;),<1>( V= (14 pd) H(Agor + Ta) @ }

is the eigenspace corresponding to the eigenvalue u;t of Dg. Thus, in Y,
we find two eigenspaces corresponding to the eigenvalues ,uj; = +/lg +1,
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respectively. It is easy to see that )y, = Wu;ll- @ Wua' Furthermore, for
/,Lq # 41 and any ®™) ¢ yﬁ),

CIJMat (p,6) = < 2“3: ) < (1+ ,uqi)_l[(Ad—l + Td)(I)(H](pa 0) )

is a normalized eigenvector associated to the eigenvalue ,u;t of Dy. Moreover,
the space yH = y[(:) splits into a direct sum of s subspaces Y+ cor-
responding to different representations in (3.9). In view of Proposition 4.1,
in its turn, each Y(*) is the (exterior) direct sum of the subspaces H‘A‘?
in L?(R??), which are nondegenerate Landau eigenspaces of the Schrédinger
operator Hy, corresponding to the particular ¢/® and e. Of these subspaces
exactly 21(a@“) -1 gre nonempty. According to this description, the functions
in Y*) have the form

r

2 (p,0) = 38 (p.0), B € Y, (422)
a=1
with
¢(+’a)(p, 6) = EseEi(I)£+’a)(p’ 0), q)g—,a) c HEXO;)’ (4.23)
where
d
<I>£ Z CmstT(n (a) Pav ), (4.24)
=1

mEN()

Nz(a) is defined in (6.17) and FY o= fmj 4@ (pj,0j;b;) are given in (3.3).
TTLj, ' R

4.4 The “Lowest” LL of Dy

The symmetry of ,uqi breaks down for the lowest LL ug = £/ +1 = +1
corresponding to ¢ = (1,1,...,1). Here only one of the numbers [ is an
eigenvalue of A% according to Proposition 4.1, actually, the one correspond-
ing to € = g9 = (¢;) = (signb;), so there is only one nonzero term in the
direct sum Yy = BeHa, =: Ha, B (EEIE#OO). This term may enter in Wuar
or W“E’ depending on the particular combination of the signs of b;. Suppose

that the former case takes place Then in (4. 19) ®() equals zero and there-
fore (1 —p)®™) = (Ag+T3)®) = 0. Since &) £ 0, this means that p = 1;
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therefore the whole ) is the eigenspace of D, corresponding to the eigenvalue
1, and —1 is not an eigenvalue of Dy. In the opposite case if g lies in the
lower half, ®+) = 0 and therefore (1+ )@ = (Ay+ T3)®) = 0 according
to (4.20). Thus, p = —1 is an eigenvalue, ;4 = 1 is not an eigenvalue, and )
is the eigenspace of D, corresponding to p = —1.

5 INTEGRALS CONTAINING LAGUERRE
POLYNOMIALS

For further reference we establish (asymptotic) estimates for certain integrals
containing Laguerre polynomials L™ (see (3.4)).

Lemma 5.1. Assume V(p) = ax{p<a}(p) for some a, A > 0. Let

) b
Gm(p) = pme 17" L™ (51)2) , meN,

and let X,, be the first order differential operator

Set
R = / V() gn()? pdp, S = / TV ) (Ximg) (0) 2 p .

Then, for some c > 0,

|IInR,| <cm, InS, <cm. (5.1)

Proof. The statement for R, involves estimates from above and from below,
the one for S, only from above. The Laguerre polynomial L((Im) (&) satisfies

Z dl,m(_g)l
1=0

A 2 1 b2 b 2 2
o of ()
0

2¢ ,bA Am )
< a(m+ q)%e /(m+q)2(m7+1)’

LI ()] =

g !
€ ¢/(m+q)
glz_;(m+q)q l!g(m+q)qe 9. (5.2)

Consequently,
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which, after taking the logarithm on both sides, gives the required estimate
from above for In R,,. The estimate for S,, goes in the same way, since
the differential operator X,, produces only extra factors of order m in the
coefficients of the polynomial, so they become negligible after taking the
logarithm.

To get the estimate for R,, from below, note, that for |{| < A, ¢ fixed,
the Laguerre polynomial obeys

L) > doym/2 (5.3)

provided m is large enough. Indeed, choose m large enough to ensure that
i/ dis1m = (Mm+14+1)(1+1)/(¢—1) > 4A. Then the latter clearly implies
that

L d, do
m 2r 2r+1 51T ,m

From (5.3) it follows that for some € > 0, and for m large enough,

dom\> [
Rm2“< 02m) / P le5 " dp,

which, after taking the logarithm, gives the estimate from below. O

Remark 5.2. 1t follows from Lemma 5.1 that

) n
lim sup

<1. (5.4)

This estimate plays a key role when we establish the upper estimate in the
proof of Proposition 8.1.

We introduce the short-hand notation
d
pdp = (H pjdpj) :
j=1
The following technical lemma plays a crucial role in Section 7.
Lemma 5.3. Denote by f7"(p) the polynomial
f'(p) = p™ LM (%), (5.5)

where L((Im) are the generalized Laguerre polynomials in (3.4). Let qj(.a), o=

1,...,3¢, 5=1,...,d be a collection of positive integers such that all vectors
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q\“ = (q§a), e ,q((ia)) are different, and let M be one more positive integer.

Then there ezists a function y(m), m = (mq,... ,my), of polynomial growth
such that, for any set of coefficients ¢®, a =1,... s,

/ (Q)Hf (@ (pj)
[0,M—1
2

/0 . ZWP (Hf@ pj) pdp. (5.6)

pdp

Remark 5.4. Estimate (5.6) measures how far are the functions

d
FOpu, o) =TS on)s a =1, (57)
J

7j=1
from being linearly dependent.

Proof. We reduce the inequality in (5.6) to an estimate for the eigenvalues

of some matrix. For fixed «, 3, q](-a), q](-ﬂ ) we study the dependence of integrals

on m. For this, consider the expression
Gm)d = [ FO()F(p) pdp, 6.9
[0,M~1]

where F(®) are defined in (5.7).

From (3.4) and (5.5) it can be observed that for m; > 0, f;"(p) is p™
times a polynomial in p variable, of degree 2q. The coeflicients of this poly-
nomial are integer, moreover they are polynomials in m; of degree no higher
than ¢, again with integer coefficients:

Multiplication of several functions f'(’, preserves this structure. Thus, F @ (p)
9

F®)(p), as a function of p;, equals p?mj times a polynomial of degree 2(q](~a) +
q;-ﬂ )) with integer coefficients, being polynomials of degree not higher than
(q](-a) —i—q](-ﬁ)) in m;. When we integrate F(® (p)F¥)(p) H?Zl p; over [0, M~1]4,

then for each j we get an expression of the form

(@) 1 ,(8)
A 1) M 2my—2-1

M1
do: = —Z(aﬁ) )
/0 f (a)f (,a) ,0] Pj Z “om; —2—1"7 (m;),

=0
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where ZJ(-O"B) is a polynomial of degree not higher than q( @) —i—qj(-ﬂ)

coefficients. Therefore

d p(apB)
P (m;)
() p(m) J J
/[0’ _1]dF (l |pj dpj> M | | ) ,

j=1 Qj (m])

where p(m) = —2 ijl m;—2 Z?Zl(q]a) —|—q N _a4, P oF) (m;) is a polyno-

mial in m;, with integer coefficients, having degree at most 3(qj(- @) +q](6 )) 1,

(@), ()
and Q B (m j) = lz(q i )( 2m; — 2 — 1), whence an’ﬂ) (m;) has no pos-
itive integer zeros. It is convenient to define P(*#)(m) = H? ) Pj(a’ﬂ ) (m;)
and Q%) (m) = H] IQ(aﬁ (m]) such that P®#) (m)/Q?) (m) is a ratio-

nal function. Note also that G(®® (m) is always positive.
Now introduce the quantities

with integer

7@ = (G (m))1/2,

M, 5 = G (m) (G (m)GPP) (m)) /2.

(Note that factors, exponential in m, cancel in M, g). Then the expression
on the left-hand side of (5.8) can be written as (M, ), where 7 is the vector
composed of 7(® and M is the matrix composed of M a,3- The integral on
the right-hand side of (5.6) then becomes (7,7). Therefore, to establish
(5.6), it is sufficient to estimate the lowest eigenvalue of the matrix M.

First of all, note that due to the Schwarz inequality applied to G(*#),
all elements of the matrix M are not greater than 1 by absolute value.
Therefore, all eigenvalues A, (M) are not greater than se.

Let us evaluate the determinant of the matrix M. Although the entries
in M contain square roots of rational functions, in the process of calculation
we have to consider products of elements taken one in each row and column.
Thus, each (G(®(m))~'/2 enters exactly twice in every product. Therefore
det M is a rational function of m, viz. det M = P(m)/Q(m), where, again
P and @ are polynomials in m, with degree depending only on q](-a), and
with integer coefficients. The matrix M is nondegenerate; otherwise, we
would have (M7, 7) = 0 for some 7, so this would mean that the functions
F(@) are linearly dependent which they are not. But since P is a polynomial
with integer coefficients, the smallest positive value for |P| is 1. Therefore,
det M > 1/Q(m). Finally, since det M = [[A,(M), and all \,(M) are
not greater than sz, we get the estimate from below:

Amin (M) > det M e 7D > 5D Q(m) L.
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Since @(m) is a polynomial, this gives us the required estimate (5.6) with
v(m) = 3 1Q(m). O

6 TOEPLITZ OPERATORS RELATED TO

THE SCHRODINGER OPERATOR, I
The study of eigenvalues of the Schrédinger and Dirac operators, Hy+V and
Dy =V, V >0, near a fixed LL will be based on results on the eigenvalue
asymptotics of the Toeplitz operator of the form 7" = PV P, where P = P, is
the projection onto the eigenspace of the unperturbed operator corresponding
to the chosen LL. In Section 8 the results for the Dirac operator will be
deduced from the ones for the Schrodinger operator.

According to (2.3)-(2.4), the distribution function ny (A, 7)), A > 0, asso-
ciated with T satisfies the relations:

ny(A\,T) = maxdim {£ C Hy : (Vu,u) > Al|ul]?, ue £L\{0} } (6.1)
= mincodim {M C Hy : (Vu,u) < AMul|>, ueM}. (6.2)

The formulas (6.1)-(6.2) will be systematically used in both directions.

6.1 Two-dimensional Case

In polar coordinates (p, f) we set first

V(p) = ax(p<m(p) (6.3)

for some a, M > 0, and consider the Toeplitz-type operator 7, = P,V F,
in the Hilbert space H, = Ran P, where P, is the projection onto the
eigenspace associated with the gth LL A, of Hy. Henceforth we suppress the
index ¢ in T, P, H, etc. Clearly, T is a nonnegative, compact operator on
‘H. The following holds for its distribution function n, (A, 7), A > 0.

Lemma 6.1. Let V satisfy (6.3). Then ny(\,T) ~ Z1(\) as A ] 0.

Proof. We establish a lower and an upper estimate, separately.
Lower estimate. In view of (6.1) it suffices to find a subspace £(A) of proper
dimension for which

(Vu,u) > Mlull?, Yu € L(V)\{0}. (6.4)
We take as our candidate for £()),
L(A) = span{fum(p,0) |m=—q+1,—q+2,... ,N} (6.5)
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where f,,, denote the eigenfunctions in (3.3) and N will be chosen later de-
pending on A\. Any u € L(A), ||u|| = 1, can be written as u = ZT]X:_{HI Cm fm
with Y~ |¢,|? = 1. Thus, (6.4) takes the form

o N
2x [730 lenPlinlp 0PV pdp > A (6.6)

m=—q+1

since V' is radial and the functions f,, are orthogonal on circles p = ¢. The
left-hand side of (6.9) is larger than

or  min / 0,01V () pdp. (6.7)

me{—q+1,—q+2,...,N}

Thus, for A small, we have to quarantee that

—tu ([T U0 0PV () ) < 10
0
or, using the notation in Lemma 5.1,
—1In (cRu[(m+¢)!]7") < [InAl. (6.8)

From Lemma 5.1 and Stirling’s formula we see that the left-hand side of (6.8)
can be estimated from above by

—mlnm—Cim+Cslnm (6.9)

for positive constants C; and Cy. Therefore, for A small, since the second
and third terms in (6.9) are negligible compared to the leading one, (6.8)
holds as soon as

(1+€)mlnm < [In )|

Thus, for an arbitrary € > 0, we can take N = (1 — ¢)[InA[/(In|InA|) =
(1 —€)=1(A) in (6.5) and, consequently, as A | 0,

ny(AT) > dim £,(A) ~ Z1(A)(1 + o(1)).

Upper estimate. Here we use (6.2). As our candidate for the subspace M()),
we take

M) =span{f.(p,0) |m=Ny+1,Ng+2,...}. (6.10)
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where, as usual, f,, denote the eigenfunctions (3.3) and Ny = Ny(\) will be
chosen below. For u € M(X), |lull =1, u = >_7"_\ | cmfm, the inequality
(6.4) reduces to

27 [ 30 el im0V () pip < 0 (6.11)
0 m=nNy+1
Using Lemma 5.1, the left-hand side of (6.11) is majorized by
27 max/ | fm (0, 0)|?V (p) pdp = max (cRy[(m + ¢)!] ") (6.12)
m>Ng 0 m> Ny

Thus, to quarantee (6.11), it is sufficient to have
In(m+¢)!—InR, —C > [In )| (6.13)

Due to Lemma 5.1, again, like in the estimate from below, the second and
third terms in (6.13) are negligible compared with the leading one. After
applying Stirling’s formula, we come to

mlnm — Cym — Cylnm > |In )|,

which can be obtained by taking Ny = (1 + ¢ )|In)|/(In|In \|) in (6.10).
Consequently, as A | 0, we obtain the upper estimate

ny(A,T) < codim M,(A) ~ Z1(A) (1 +0(1)), ALO. (6.14)
O
Lemma 6.1 enables us to establish the following proposition.

Proposition 6.2. Let V satisfy Assumption 1.1. Then
ny(AT) ~ EZ1(A) as A 0. (6.15)

Proof. From Lemma 6.1 we know that the statement holds for the particular
V in (6.3). To verify the general statement, we first make the usual shift of
variables so that V' becomes positive in a neighborhood of origin. Next, we
can clearly find two functions V.. > 0 having the form in (6.3), with compact
support, such that V. < V < V,. Then the variational principle implies
that ny (A, T(V2)) < ny(A,T(V)) < ny(A,T(V4)) and since ny (A, T(Vy))
obeys the asymptotics (6.15) in view of Lemma 6.1, the same is true for
ny(A,T(V)). O
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6.2 Even-dimensional Case for a Simple LL

A point in R*, d € N, is represented by (p,0) = (p1,...,pa, 01, .. ,04).
Initially we choose the potential

V(p.0) =V(p) =a]]Viles) = a] [ xips<r(03) (6.16)

for some a, M > 0, and consider the Toeplitz-type operator T, = P;V P,
in the Hilbert space Hs, = Ran P,, where P, is the projection onto the
eigenspace associated with the LL A4 of H,.
Throughout this section we assume that the multiplicity of A4 is one.
In the sequel we suppress the index q in Ty, Py, Ha, etc., and consider
the distribution function n, (A, 7T), A > 0. For this purpose we introduce the
set

N = {(ma,... ,mq)|m; >—q; +1}. (6.17)

When V is chosen as in (6.16) and P; denotes the operator in L?(R*®), which
acts as P in the variables (p;,0;), then it is clear that the eigenvalues of

T are products of the eigenvalues VY(,JLJ) = Up, (1)) of Tj = P;V;P;, and the
eigenfunctions of 7" are (tensor) products of the eigenfunctions of 7;. Hence,

d
n+(A,T)=#{meNg|Hy§gg >)\}. (6.18)
j=1

We are going to estimate (6.18) from below and above, respectively. A key
ingredient is the following number theoretical result.

Lemma 6.3. Let m € N¢ and A\ > 0. Then

d
#{mENd|Hmjmj>)\}~Ed()\) as A1 0.

=1

The proof of Lemma 6.3 is given in the Appendix. Having the latter
lemma at our disposal we are ready to establish the following result.

Proposition 6.4. Let V be chosen as in (6.16). Then

ny(A,T) ~ Zq(X) as A 0. (6.19)
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Proof. Lemma 6.1 gives us the result for d = 1. We will use induction in d.
Thus, we assume that the statement holds for all d' < d and verify it for d.
From the induction hypothesis follows that one may painlessly replace Nz by
N? in (6.18) with change of order only O(Z; 1()\)). For d = 1 Lemma 6.1
implies that, given € > 0, there exists Ny = Ny(e) such that

‘|lnym(T(1))| —mInm| < emlnm, Ym > Nj. (6.20)
where v,,,(T(")) are eigenvalues of the operator T = T(! in this lemma. In the

sequel subsets of I = {1,2,... ,d} are denoted by J.
Lower estimate. Using (6.20) we have for the right-hand side of (6.18):

d d
. . In A
#{mENd| ||1/£,’LJ),>)\}2#{mENd|mj>No,jEJ,E mjlnmj>—1_€}

j=1 j=1

d
In A
2#{mENd|ijlnmj> 1n_ }

€
=1

d
In A
d
—Z#{me N*[my < No,ijlnmj > T }
i’ =1
= Fi(A) =) _F;(\).
j,

Consider F, (\) for, say, 5 = 1. We have, due to m;Inm; < Nyln Ny and
the induction hypothesis that, as A | 0,

d
_ In A
F2,1()\)§N0# {m € Nd ! ‘ E m; lnmj > 1

=2

—NolnN()}

— €

d
In A - =
SNo#{m eNTY m Inm;>-— } S NoZa-1(A) = 0(Za(N)) -

=2

The asymptotics for F; () is described by Lemma 6.3, viz. F1()\) ~ Z4()) as
A 1 0, and this shows the lower estimate.
Upper estimate. We have

d
ny(AT) :#{meNd\ 11> A} => (),
Jj=1 JcI
where

d
FJ()\):# {mENd|Hl/1(rZJ),>)\,ijNO forjEJ,mj>N0 fOI‘j ¢.,]I } .

i=1
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For every J # 0 (i.e. 1 < |J| = d < d) we estimate Fj()\) from above:

d
Fy(\)=# {meNd 1> v >1In A, m; <No,j € J,m;>No,j €3 }

7j=1
<N& {m e N | > ) >In) } :
J¢d

For the last quantity the d —d dimensional version of our induction hypoth-
esis applies:

# {m e N9 | > ) >n), } ~Z, +(N) =0(Z4N) as A 0.

ié¢d

Finally, we consider J = (). Due to (6.20) we have that

d
FJ(A):#{mENd|mj >N0,HV,,(TJL.]), >)\}

=1

d
:#{mENd|mj > No, > Inv) >1n)\}

i=1

d
In A
< {mENd|ijlnmj > 1n—ﬂ}~5d(,\), asA10, (6.21)

j=1
where the latter asymptotics follows from Lemma 6.3. O

Proposition 6.5. Let V' satisfy Assumption 1.1. Let T = P,V P, be the
Toeplitz operator associated with the LL Aq with multiplicity one. Then

ny(AT) ~ Zg(X) as AL O. (6.22)

Proof. The proof is similar to the proof of Proposition 6.2. O

To treat the Dirac operator in Section 8 we will need a slightly stronger
version of the upper estimate in Proposition 6.4.
Fix some index j, say j = i. Suppose that 7, is a sequence such that

—In7, 2 —Inv® as m — oo. (6.23)
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Proposition 6.6. Under the assumptions of Proposition 6.4,

d
# {m €N |7, [ 2 > A } < Z4(N). (6.24)
i#i

Proof. The proof follows the lines of the reasoning leading to the upper esti-

mate in the proof of Proposition 6.4, since the only thing we needed there for

1/7(,3]) was the estimate —In 1/7(,3]) > (14 €)m;lnm,;, but from (6.23), the same

holds for 7. O

7 TOEPLITZ OPERATORS RELATED TO
THE SCHRODINGER OPERATOR, II

In the case of dimension 2d, d > 1, multiple LLs can arise for the Schrodinger
operator Hy. We use notations introduced in Section 3.2.

7.1 Even-dimensional Case for Multiple LLs

Let V satisfy Assumption 1.1 and let A be a LL of Hy with multiplicity sc.
The main result of this section is the following Proposition.

Proposition 7.1. Let V satisfy Assumption 1.1. Let A be a LL of Hy with
multiplicity s and let P = Py be the projection onto the eigenspace associated
with A. Then the eigenvalues of the Toeplitz operator T = PV P obey the
asymptotics

ny(AT) ~ 354(A) as A 0.

Proof. For the representation (3.14), we set T = P(T P where P is
a projection onto HS\Q).

Estimate from above. For given A\ > 0, Proposition 6.5 asserts that we can
find subspaces £(®) C ’HS\Q), as in (3.14), such that

/ V\u\Qda:l---da;dE/ V0u|? de §)\/ \u|? dz
R2d R2d R2d
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on E(a) and Codimﬁ(a) = ’]’L+(A,T(a)) ~ 51()\), )\ \l, O Then, on E =
@r_, L@ one has

/ V|u|2dw:/ 1%
R2d R2d

< v @2 dz = 3¢ \||ul|*. 7.1
<o [ VI W da = el (1)

de, v e @

The inequality (7.1) shows that we have found the subspace £ in H, of
codimension Y 7_ ni (X, T@), so that (Tyu, u) < seA||lul|? on L. Therefore,
ny(3eA,T) < 3, (A, T@) and the estimate from above follows from the
asymptotics for n (), T(®)) established in Proposition 6.5.

Estimate from below. The proof is based on Lemma 5.3. Equipped with this
lemma we establish the lower estimate first for V' having a special form and
then, using monotonicity as in Section 6.1, we pass to a general V. Fix an
integer M and set

d

Vip) =a][Viles), (7.2)

J=1

where V; is the characteristic function of an interval [0, 1/2/b; M ']. Accord-
ing to Proposition 6.4, for such V we can find subspaces £* C H(® such
that

/ Viul|* dz > /\/ w>de, ue L@, (7.3)
R2d R2d

and dim £ = n (A, T®) ~ Z4()) as A | 0. Moreover £® consists of
functlons Wthh are linear combinations of eigenfunctions in H(®, u(® =
Y Do) where m = (my, ..., my), and

Hh (s, 07),

where hﬁ,‘f} (p;, 0;) are the eigenfunctions from (3.3), the constant factors in-

corporated into the afore-mentioned constants cﬁ%), Viz.

o —mn; m b M4 b
W) = monl) (2) e (<242).
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We take a linear combination u = Y u(® of the functions u(®) and estimate
fRM V|ul?dx from below. There are quite a lot of terms in this product,
having the form

V@ y®) de = <a>)/v—". 7.5
/RM u T Zc - G 6,1 A (7.5)

However, most of these terms vanish. In fact, if the integer multi-indices m
and m’ differ just at some position j, the integral (7.5) equals zero because,
in polar coordinates, the integral in the ; variable vanishes. Hence, only such
terms in (7.5) survive for which m = m’. Now, after integration in @ variables
(and incorporating the resulting 27 into constants c%)) and the change of
variables p; — p;4/b;j/2 (again incorporating the resulting constants into

cgﬁ)) we obtain that

Vi§u?>de = / Vv
/R2d | ‘ ; [O,Mfl]d

and, after replacing V' by the function W = ¢; H;l:l exp(%p?)x{pj<M_1}(pj),
with constant ¢; chosen in such a way that ¢; exp(3 M?) = a, the latter yields

d 2

ZC( HL]«:) )p;”

a=1 7j=1

e_%z”?p dp.

2

d
- Wlul? de = Z/[OM HL « (h5)p;7| pdp (7.6)
and therefore
2 Wu|? dz B
ffvw € [exp(~(1/2)M), exp((1/2)M7D)]  (1.7)
RQd

for any u. Using (7.6), Lemma 5.3, and (7.7), in this order, we find that

/W\u|2 de > c e —a M’ 227

a=1 m
2

d
[V TILG @ee ) pap (7.8)
j=1
In (7.8) m runs over the set of multi-indices m = (my, ..., my) such that the

corresponding functions QS%) belong to our spaces £®. From the estimate
from above in the case of a simple LL, it follows that

o [In Al a1
mj_o((ln\ln)\\ ’
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and therefore y(m) = O(|In A\|®) for some s > 0. The latter, in conjunction
with (7.8) and

v

2
dz = /VZ|c$ﬁ>|2|¢££:>|2dw,

3 ol

yields that
/W|u|2dm > cl—le—éM2|1nA|—sZ/V|u<a>|2dw,
a=1

or, using (again) (7.7) and afterwards (7.3), we have on £ = ®L£® that, for
some ¢ > 0,

/V|u|2dm > c|ln)\|_SZ/V|u(a)|2dw
a=1

> c)\\ln)\|_52/\u(a)|2d:c = cA|In |78 ||ul|?. (7.9)
a=1

This means that we have found a subspace of dimension > | n, (A, T¥),
where (Tu,u) > c\|In\|7%||ul|?, which implies that n,(cA|In\|~%,T) >
>¥  ni(A,T@®). Finally, let 4 = cA|InA\|~* such that A ~ ¢ u|Inp/*, and
apply the asymptotics for n, (), T(®)) given in Proposition 6.4. This yields
the lower estimate for the V in (7.2). Passage to a general V' uses mono-
tonicity. O

8 TOEPLITZ OPERATORS RELATED TO
THE DIRAC OPERATOR

For the fixed LL ,uf = +./lq + 1 of the Dirac operator D, and the potential
V = V I,a we associate the Toeplitz-type operator T' = TqjE = PV P, where
P = PqjE is the spectral projection onto the corresponding eigenspace of
Dy. The spectral asymptotics of T' determines the asymptotic behaviour
of eigenvalues of Dy + V. Due to Proposition 4.2, there is a one-to-one
correspondence between | and a LL A of the 2d-dimensional Schrodinger
operator Hy with multiplicity s, so that A = Ay, a =1,... 3. Keeping
in mind this correspondence, we say that ,uflt has multiplicity s.

In the sequel we adopt the latter terminology and, moreover, we often
suppress the indices in TqjE etc.
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Proposition 8.1. Let V satisfy Assumption 1.1 and let p # £1 be a LL
of Dy with multiplicity s¢. Then the eigenvalues of the Toeplitz operator
T = PV P obey the asymptotics

ny(\T) ~wZ4(N) as A} 0, (8.1)

where w = w(p) is given in (4.17). The same formula with w = w(£1) =1
holds for u =1 or p = —1, depending on which of them is the eigenvalue of
Dy.

Proof. We consider y # +1 first. Recall the description of the eigenspaces of
Dy given in Section 4.3, in particular (4.18)-(4.24). Due to (4.18), we have
for ® € W,

(Vd,®) = (VO o)) (Vo) o)), (8.2)

We establish a lower and an upper estimate, separately. Again, as before, we
first suppose that V' has the form (6.16).

Lower estimate. In view of (6.1) we are going to find a subspace £ = L(\) C
W such that

(VO,®) > \||®|?>, Ve L(N)\{0} (8.3)

and
dim L(A) 2 @ Z4(N). (8.4)
We start by finding a subspace £(+) (\) in Y of proper dimension, satisfying
(Vo) My > A|e))2,  vo) e £ (A)\{o}. (8.5)

The existence of the latter follows from our considerations for the Schrodinger
operator. For each € € U”_,£(q¥), where £(q'®) is defined in (4.16),
Proposition 7.1 quarantees that we can find a subspace Eg)(/\) such that

Ve, a") > A|el|?, vl e £ (M)\{0} (8.6)
and
dim £ (N) > 3. Z4()0), (8.7)

where 3¢, is the multiplicity of the LL A, defined in (4.15), for the Schrédinger
operator Hy (in particular, 3¢ = 0 if A, is not a LL for Hy). Taking the ex-

terior direct sum of these L5 () over € € (U7, E(g)) N E4, we get the
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required subspace £F)()\), with dimension > >°_ s Z4(A). It remains to
notice that ) _s. =), (@)1 =: o,
Having £7)()) at our disposal, we set

LO)={ (@D, (1 + p) H(Ag1 + T)@) |8 € LN Few,

The dimension of £()\), obviously, equals the dimension of £+)()\). At the
same time, on L£(\),

(V®,®) > (Volh o), (8.8)

On the other hand, (4.9)-(4.10) and (4.21) imply that

12> = W+ [|(Ag-1 + T) |2
[ + (@), (Aams + Ta)* (Aa—r + Ta) @)

< e + A2 < |t (8.9)

Therefore, (8.8)-(8.9) yield that
(V®,0) > CA[B]?, Vo € LO)\{0},

which gives the required lower estimate for the asymptotical eigenvalue dis-
tribution of T'.

Upper estimate. We begin by constructing some special subspaces in the
Schrodinger Landau eigenspaces. Recall the structure of the operator A, 1+
74, discussed in Section 4.1. It is a 297! x 297! operator-valued matrix, each
entry X, , € € F%, € € E%, being either a first order differential operator
in one pair of variables (p;, ;) or the zero operator.

We fix some €, €, as well as some «, and consider the subspace H(Aa[___) C
L?(R%@). If this subspace is nonempty, i.e. € € £(g®), the eigenfunctions
L) (p, @) have the form (4.24). We use the short-hand notation X = X/,
and consider the expression

/V|<I>§+’”‘)|2da:+/V|X<I>§+’°‘)|2da:. (8.10)
We write out the the second term:

Jvixeterde = [ V]S Xenfnl de

(we suppress all nonessential sub- and superscripts). Now it follows from
(4.2)-(4.5) that the differential operator X acting in variables (pj,,j,) on the
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function f,, = Hj L fm'J (pj, 0;5) = T1, exp(im;b;) F9 ™ (,0]) replaces all circular
factors exp(im;,0;,) by exp(i (m]0 + 1)030) or all of them by exp(i(m;j, —1)0;,).
Each pair of functions fy,, f,,/, m # m’, are orthogonal with respect to -
integration. The above property of X then implies that X f,, and X f,  are
0-orthogonal as well. This enables us to transform the integrals in (8.10) (for
V on the form (6.16)),

/ Vet 2 da + / VIX0(H) |2 dg
:Z\cm|2/V\fm|2dw+Z\cm|2/V\Xfm|2da:
_Z |C'm|2/ pJo (|f7(nj;)0)(pjoa9j0)|2+|Xfr(nj;2(pjo’ 9j0)|2> Pijo dpjodejo

< T [ Vi £2003:69)7 b, oyt (8.11)

J#jo

We denote the first integral on the right-hand side of (8.11) by 7y, , and

(J)

the terms in the product by vm;. From Lemma 5.1 (see also Remark 5.2),

—In7,,, 2 —In 1/(90) Now, from Proposition 6.6, it follows that one can find
such subset M(\) of integer vectors m € N& so that

Tmgy | [ V) <A m & M()) (8.12)
J#jo
and CardM()\) < Z4(A). We consider the subspace M£+’a)(A) in HS\O;)

spanned by f,,, m & M()). This subspace has codimension not larger than
Z4(A)(1 + 0(1)), and, in view of (8.12), for any alHY ¢ MG () ),

/V|<I>f€+’a)\2da:+/V|X<I>g+’a)|2dm < M|@LHe)|2, (8.13)

Next, still for €', e fixed, consider all o involved in the representation
of the LL A, and construct, according to the above reasoning, a subspace
MEP(N). Then MV () = @7, MEP™()) is a subspace in Y&, having
there codimension not larger than the sum of codimensions of summands
in Y e, 3. Z4(A)(1 + o(1)). For any element ¢ = 3% &{"* on

a=1
MED(N), we have that

/V|<1>g+>|2dm+/V|Xcr>g+>|2dm
:/V\Z(I)Ej“a)\?dw+/V|ZX<I>£+’°‘)|2d:c. (8.14)
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From the latter equality, in combination with the simple inequality | Y _, a(®|?

< 23 |al®|? and (8.13), we get that
/V|q>g+>\2dm+/V|Xq>g+>|2dw < s M|OH]12, (8.15)

Now construct the subspace M (A) for each € € (U7_,E(g'W))NE? and set
MEH)(N) = Eﬂse(ugzlg(q(a)))nEng+)()\) with codimension in Y+ = @y

not larger than the sum of codimensions of M£+)()\) in Y&

codim M) () Zcodlm MEI(N)
Sy 5d(>\)(1 +0(1)) = @ Z4(A)(1 + o(1)).

At the same time, due to (8.15) and the estimate
D Xe 2P <2 X, 0P

any &) = Beeux_ g(q(a)))nEdCIJ € MI)()) satisfies
<Vq)(+), q>(+)> + (V(A(H + 7;)(1)(+), (A(H + 7;)@(+)>

oy (Z%A||<I>é+)||2> S e
4 € e

< 299245 )\||8D]|2 = CN|| @12 (8.16)
Finally, set
= {o™® T Ag1 + T)H |20 € MO (V)]

Due to (4.18), (4.21), the codimension of M(*)()) in Y*) equals the codi-
mension of M(A) in W. On M()), moreover, it follows from (8.16) that

(Vo,0) = (VO o) + (14 1) 2V (Auor + Ta) O, (Agor + Ta) )
< O[> < Cxllo|*.

This means that we have constructed the subspace required in (6.2).
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For the LL 4y = 1 or p = —1, a much more simple reasoning goes through.
Let, say 4 = —1 be the eigenvalue of D,;. Then, according to Section 4.4,
Ai 1+ T3 =0o0n yé“ and the eigenspace of D, coincides with the one for
the Schrodinger operator. Consequently, the Toeplitz operators coincide as
well, and therefore the results of Section 6.2 apply (since the lowest LL is,
obviously, simple). d

9 THE PERTURBED OPERATORS

The proof of asymptotical formulas for eigenvalues goes in the same way
for Schrodinger and Dirac operators. Therefore, we let Ty stand for the
unperturbed Schrodinger operator Hy or the unperturbed Dirac operator
Dy, and we let [ be a LL of T i.e. [ represents either A, or ,ujlt.

We will prove the asymptotics for Ty — V', V' > 0; the proof for Ty + V is
exactly the same, up to a few changes of signs.

In Propositions 9.1 and 9.2 we give a lower and an upper estimate, respec-
tively, of the asymptotic behaviour of the eigenvalues of Ty —V accumulating
near each LL [ of the operator Ty. Together the propositions establish the
main result for the perturbed operators, namely Theorems 1.2-1.3.

Proposition 9.1. Let V' satisfy Assumption 1.1 and let [ be a LL of Ty with
multiplicity »c. Let I* be the neighboring LLs of Ty lying below and above I,
respectively (or any number smaller than | if the latter is the lowest LL of
Hy). Then, for A >0, 51 € (I",[) and so € (I,1T), the number of eigenvalues
for To £V in (51,0 — X) or ([ + A, s9), respectively, satisfies the following
inequality as A | 0:

N(s;,[=A|To = V)~ N[+ X5 | To+ V) 2 0Z4(N), (9.1)

where the constant o either equals the multiplicity 3¢ of U if Ty stands for Hy,
or the constant w in (4.17) if Ty stands for Dy. Moreover, (9.1) holds for
any nonnegative, bounded V on R*¢ which tends to zero at infinity.

Proof. We use a simple perturbation argument based on Lemma 2.2. In [8]
an alternative approach is used, based on Weyl inequalities and an analysis
of the Birman-Schwinger operator.

Let s = s; and let g = [ — s be the length of the interval (s, [ — \).
Step 1: SmallV'. In this step we show the assertion for a function V' satisfying
0 <V < a for some a > 0, small enough to ensure that (1/2) — (a/g) > 0.
Introduce the parameters

p=(—A+8)/2, 7=(—X\—5)/2.
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In view of Lemma 2.1 it suffices to find some subspace £ = L, for which the
condition on the right-hand side of (2.1) is fulfilled for all elements in £. As
the candidate for the subspace £ we take the span of some finite set of the
Landau eigenfunctions of Ty corresponding to the LL [,

L =span {®,(p,0)|n=1,2,... ,N},

where N = N(X) will be chosen later. Any u € £, ||u|]| = 1, can be written
as u = ZN ¢ ®,. Since each ®,, satisfies Ty ®,, = [D,,,

I(To =V = wull* = {(To =V = pu, (To =V = p)u)
= (L= p)’llull® + IVul® = 2(t = ) (u, V).

Since [ —pu = 7+ X and ([ — u)?2 — 72 = g), the inequality (2.1) becomes
(2/9)(T7 + X\)(u, Vu) — (1/9)||[Vu||* > A. The latter is fulfilled if

Vv d
/ (5 - ?> Jul? (H pj dﬂjdgj) > A ull =1, (9.2)

i=1

is satisfied. Due to (1/2) — (a/g) > 0, we have (V/2) — (V?/g) > 0 and we
arrive at the problem of finding a subspace of u = 25:1 ¢, ®,, such that

w 3 0] - ® A W—V V2>
ch n | ch n > ) _i_F_O’
n=1 n=1

holds for all N > Ny = Ny(A). This problem is already solved in Section 6-7
or Section 8, respectively, depending on whether Ty plays the role of Hy or
Dy, with the required estimate for the number of elements in £. In this way
we obtain the estimate (9.1) for small V.

Step 2: General V. We assume that V' is a nonnegative, bounded function
on R??, which tends to zero at infinity. In particular, V is Typ-compact and,
therefore, oess(To — V) = 0ess(To)-

Choose 0 < V < g/2 having compact support such that V — V4 > 0.
The assumptions on V' allow us to choose J large enough to ensure that
V; = (V =Vo)/J satisfy ||[V;]| < g/2,5=1,...,J. In addition, V = Y7 |V}
and V; > 0. We apply Lemma 2.2 as follows. Put

J J
Ti=To-Vo—Y V;, Si=Vo+) Vi-V=-W

7j=2 7j=2
such that S; < 0 and v, := ||S1]| < g/2. Moreover, let

s1=-—m, S2=0, L=s4+m, m=[-A
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Then Lemma 2.2 yields that

J
N(ﬁa[—/\lTo—V)ZN(h,[—AITo—VO—ZV;)

=2

Since

7 J
N(l, 0= ATy = Vo — D Vi) = N(s, 1= A| Ty = Vo — > Vj)

J=2 Jj=2

J
—N(s,l | Ty = Vo= Y Vj)

=2

where the last term on the right-hand side is finite (from above the only
possible limits points of the eigenvalues for Ty — V' are the LLs, and here the
interval (s, ;) is away from the latter), it follows that

J
N(s, [=A|To—V) > N(s, 1= AMTo— Vo= > V) =

=2

for some constant C; > 0. Then we repeat this argument J — 1 times
(introducing positive constants Cy,Cs, ... ,C;_1), using Lemma 2.2 on each
step in a way similar to the above, and obtain that

J—1
N(s,[=X|To—=V) > N(s,[=A[To—Vo—Vs) = ) _C;

i=1

for some constants C;. Taking the next step in this procedure (applying
Lemma 2.2 with T; = Ty — V; and S; = —V/;) we obtain that

J
N(s,1=A|Ty = V) > N(s,[= X[ To = Vo) = }_C; (9:3)

=1

for some constant C; > 0. For the operator Ty — 1} the required estimate
from below is obtained in Step 1, which proves the proposition. O

Next we establish the upper estimate.

Proposition 9.2. Let V satisfy Assumption 1.1 and let [, [* be the same as
in Proposition 9.1. Then, for A > 0, s; € (I",1) and s, € (I, 1), the number
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of eigenvalues for To £V in (s1,1— ) or (I+ )\, s9), respectively, satisfies the
following inequality as A | 0:

N(ﬁl,[—)\|To—V)NN([+)\,52|T0+V)§QE,1()\), (94)

where the constant o either equals the multiplicity 3¢ of U if Ty stands for Hy,
or the constant w in (4.17) if Ty stands for Dy.

Proof. Let s = s, and set
p=(s+1-X)/2, T=(I-X—19)/2.
We are going to construct such a subspace M; that
(To =V — wull* = 7*||ull” (9.5)
holds for every u € M. According to Lemma 2.1, this would mean
N(s, 1= X|Ty — V) < codim M,.

Let H; be the eigenspace associated with the eigenvalue [ of Ty. Introduce
its complement H, = D(Ty) © H;. Any u € D(Ty) has the form u = u; + uy,
uy € Hy, ug € ’H; Then (9.5) gives

I(To =V = w)(ur +u) I = =7*[lua||* = 7*||uz]|* > 0. (9.6)

Since (Ty — p)us = (I — p)uy and (uq,us) = 0, the left-hand side of (9.6) can
be written as follows:

[((=)* = PJllual P+ I (To — p)ual|* —7*[luzl* — 2Re (1 — p)us, V (us + uz))
—2Re ((To — p)ug, Vug) — 2Re (T — p)ug, Vur) + ||V (ug + up)||>. (9.7)

Take some ¢ > 0 (to be chosen later). From Section 6 or Section 8,
depending on whether T, stands for Hy or D,;, we know that there exists a
subspace M C H, such that

[(ug, Vur)| < Xefluq)? (9.8)
holds for every u; € M, and, moreover,
codim M ~ pZ4(\) as A | 0. (9.9)

From hereon we suppose that u; € M; ;. Next we estimate each of the
terms on the right-hand side of (9.7) separately.
Term 1. Clearly,

(0= p)* = 7]l [|* = [0 = s|A[Ju]I*. (9.10)
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Term 2. Since uy € D(Ty) © H we have that
1(To — p)uall® > [dist (1, s(To) \{IH)*[luall” > [(s — 17)* + 7°][|ual|*  (9.11)

and, therefore,

1(To — pusll* — 7*[luzll* > e1l[(To — p)us||® (9.12)
T 2(s — 1)

Term 3. For any u; € M, we have that

[2Re (1= p)ur, V)| < 2(0 = p) [{ur, V)| < 2(0= p)Ael|ualf?,  (9.13)

due to the Schwarz inequality and (9.8).
Term 4. For any u; € M;and K > 0 we have, due to (9.8) and (9.11), that

2Re (I = p)ur, Vug)| < 201 — pl[(Vug, ug)| < 20— pl[[Vua]] [lua
N— 1/2
< 2Jt= plelur )72 (s = ) 2| (To — pr)us]?)

[ 2 /2 s 4 1/2
_ (64K'—“'2Ae||u1||2) (—II(TO _ u)uzll2>

(s —17) 16K
|[_N|2 2 1 2
<128K———— —||(Ty —
<128K el + g (T - el
1
= cp(K)Aeluq | + sz [(To = p)usl|®. (9.14)

Term 5. The Schwarz inequality yields

2Re ((To — p)uz, Vug)| < 2[|(To — p)ual| [[Vue|

1
< grll(To = pus|” + 8K || Vue|*.

In the Hilbert space H; with norm |ug|? = ||(To — p)uz||?, we consider the
operator, denoted 7', generated by the quadratic form ||V us||?. This operator
is, obviously, compact:

ny(t,T) = maxdim{L C H; : ||Vug|]® > t|us|*}
< maxdim {M C D(To) : ||[Vul® > t]|(To — p)ull* } < oo,

Taking ¢ = 1/64K? then we may find a subspace Ms; C H; with finite
codimension, say

N := codim My < 00 (9.15)
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such that ||[Vus|?> < gz ||(To — p)us||® for every uy € My
Therefore, on My C H, we have

1
12Re ((To — p)uz, Vug)| < 8—K||(To — puz|]® + 8K||Vus|?
1 , 8K , 1 )
< 8—K||(To — p)ugl|” + 64K2”(TO — pup||” = EH(TO — p)uzl|” (9.16)

for every uy € My and, moreover, codim My = N < oc.
Term 6. For every u; € My and K > 0 we have that

2Re ((To — p)uz, Vur)| < 2[|(To — p)ual| [[Vudl

1 1
< g (Mo = mua P +8K[[Vur | < o= l(To — p)uall* +8K Aeflual®, (9:17)

where, again, we used (9.8).
We substitute the estimates (9.10)-(9.13), (9.16) and (9.17) into (9.7):

I(To =V = ) (ur + w2)|” = *[luall” = 7*[Jua|* > (e = %)H(To = p)ua|”
+A (1= 8) = 2€(l = p) = ca(K)e — 8Ke) [Jus [|*

Take K, ¢; — 1/2K > 0 and, afterwards choose € such that
A((F=s5) —2e(l — p) — co( K)e — 8Ke) > 0.

This gives us (9.6) for u € M; @ M. In conclusion, if we take M| =
My @ My then (9.6) holds for every u € M, and, in view of (9.9) and
(9.15), we clearly have that

codim M| < codim M, | + codim My
~0ZsAN)+N < 0E4(N) as AL 0.

O

APPENDIX: LATTICE POINTS INSIDE A
CLOSED HYPERSURFACE

We establish Lemma 6.3. Thus, we are interested in the number N(u) of
solutions n € N¢ to

d
Zni Inn; < p=In\"" (9.18)

=1
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as 4 — oo (i.e. as A | 0). In other words, we seek the number of lattice
points (with positive integer coordinates) in the region I' between the z;-

axes, ¢ = 1,...,d — 1 and the hypersurface
d
C: inlnxiz,u, z; >1forl <i<d. (9.19)
i=1

The hypersurface C' is “flat” in the following sense.

Lemma 9.3. There ezist positive numbers b(u) and B(u)such that

d
b(p) < le < B(u)  for all points x € C, (9.20)
i=1
where
7 7
~ By ~ - ; 21
b(p) I (k) g ®HT (9.21)

Proof. Without loss of generality suppose x1 > zo > -+ > z4.

Note that on C' we have y > z1, so that Inx; < Inz; < Inyu. Then we
observe that p = Z?Zl z;Inz; < Z?Zl x; In . This proves the first inequality
in the lemma, with b(u) = u/In .

To establish the second inequality in the lemma, consider the case d = 2
first. We will show that on C, which is now a curve given by (9.19), the
maximum value of £+, is attained at the point where x; = 5. This follows
by implicit differentiation of (9.19), giving (1+Inz;)dz, + (1 +1Inzy)dzy = 0,
so that dzxe/dzy = —(1+1nzy)/(1+1nxs). As we move away from the point
on C' with z; = x5 into the region x; > x5, the value of |dxs/dx;| increases.
Hence z; + 29 attains its maximum when 2y = x5. The dual version of this
fact is that if 1 +x9 = B is specified then z; In 1 + x5 In 25 is minimized by
taking z, = x,.

To see that an analogous result holds in the d-dimensional case, consider
the dual problem of minimizing y = Z?Zl z;Inz; subject to the constraint
Zlexi = B. If any two of the numbers z; are unequal, x; > x5, say,
then we can increase zo and decrease x; by the same amount ¢, leaving the
constraint fulfilled but reducing x; Inz; + x5 Inzy, and therefore reducing
Zle z; In ;. Thus the minimum of this sum occurs when all the numbers z;
are the same. Dually, the maximum of Zle x; subject to Zle rilnx, = p
occurs where z; Inz; = pu/d for each i. Then z; ~ p/dlInp as u — oo, so that
Zle x; ~ p/In p. This completes the proof of the lemma. O
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Equipped with Lemma 9.3 we are able to establish Lemma 6.3.

Proof of Lemma 6.3. First, we use Lemma 9.3 to estimate the hypervolume
V' of the region I'. We find that

b(p)* B(p)* 1
<V< h ~—=1—1 . .22
T V< 0 SO that V 7 \In s (9.22)

Indeed, the second inequality in (9.20), e.g., is an expression for the hyper-
volume of a polyhedron for which all the angles at a vertex O are right angles.
The value of this hypervolume equals %’?d. Likewise, we determine the hy-
pervolume of the polyhedron associated with the first inequality in (9.20).
In this way we obtain (9.22).

To estimate the number N (1) of lattice points satisfying (9.18), we attach

to each positive integer point n satisfying (9.18) the hypercube given by
ni—1<xz;<n; whenl<q<d. (9.23)

Next we observe that these hypercubes all lie in the region I', so that N(u) <
V', which establishes the upper bound.

To obtain a lower bound, we proceed as follows. Lemma 9.3 implies that
the N(u) hypercubes fill the region

in < b(p) —d. (9.24)

Indeed, if a hypercube (9.23) is not counted by N(u) then the point n lies
outside I', so that, in view of Lemma 9.3, Zle n; > b(u). Consequently all
the points & € I not in one of the N (1) hypercubes satisfy 3%, z; > b(u)—d,
so that all & in the hypercubes satisfy (9.24) and z; > 0 when 1 < i < s
The region (9.24) has volume (b(z) — d)?/d! (again we compute the hy-
pervolume of a polyhedron for which all the angles at a vertex O are right
angles), so that N(u) > (b(u) — d)?/d!. Using Lemma 9.3 one more time
completes the verification of the lower bound which, in conjunction with the
upper bound, proves the assertion. O
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