A note on a paper by R. Heath-Brown: “The
density of rational points on curves and surfaces”

Niklas Broberg

1 Introduction

Let P denote the n—dimensional projective space over an algebraic number
field K. For any quasi-projective variety V' C P™ one can define a counting
function

N(V,B) = #{x € V(K) : H(x)< B},

where H : P*"(K) — Ry denotes the multiplicative height relative to K.
There are several papers written about the asymptotic behaviour of N(V, B)
for various V. One has fairly good knowledge about curves but in higher di-
mensions the geometry becomes more complicated and so do the arithmetic
problems. In [12], Heath-Brown shows, among other things, that

N(V', B) = Q4. (B%2/%7*¢)

for absolutely irreducible surfaces V' C P? of degree d > 3, where V! C V
denotes the complement of the lines on V. The distinguishing feature of
this estimate is that it is uniform in the sense that it only depends on the
degree of the equation defining V. The basic idea of the proof is to cut V'
by planes and then estimate the number of rational points on the sections.
For that one requires uniform bounds on the number of rational points of
bounded height on curves. The aim of this note is to extend the principal
result of [12] which is used to obtain estimates for plane curves. In order to
state our main result we need some notations and definitions.

We will assume throughout the whole paper that the number field K is
fixed with ring of integers R. In particular, any implicitly given constant
may depend on K without we saying so explicitly.

Let ai,...,a, be a collection of ideals of R which represent the different
ideal classes of K. The set

h
pP" = U {xe€ R . (x) = a; }
=1
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modulo units is then a complete set of representatives of P"(K), where (x)
denotes the fractional ideal of K generated by the components of x. The
non-equivalent multiplicative archimedean valuations | | ,...,| |, on K are
supposed to satisfy [, ||, = N(z) for all z € K, where Ra denotes the
ordinary ideal norm of the fractional ideal a of K. Given vectors rg,...,r, €
RS, we define P"(ry,...,ry,) to be the set of all x € P™ for which \a:z|] <15
for0<i<nand1<j<s IfV CP" we write V(ro,...,r,) for the set of
x € P™(ro,...,rp) which represent points of V(K. The letter r is reserved
to denote elements of R%; and we define the size of r to be |r|| = [[}_, ri.
In agreement with this notation we define the size of x € K™t! to be the
product

Il =TT goa. bl

1=

The multiplicative height on P"(K) relative to K, which was mentioned
above, is defined as H(x) = ||x|| /N(x).

The non-negative numbers ag, . . . , a, will be defined in the next section. We
only mention here that ag + -+ - + a, = 1 and that there is one collection of
a; for every graded monomial ordering on K|z, ..., Z,]. The main result of

this note is the following.

Theorem 1. Let V C P™ be an irreducible variety of dimension r and degree
d. Suppose that the ideal I C K[x] of V is generated by forms of degrees at
most §, and let € > 0 be given. Then there exists a form F € K[x]|\ I which
vanishes for all x € V(rg,...,r,) and satisfies

i 4l
deg F e [ ] el et ™=
1=0

Moreover, the irreducible factors of F' have degrees bounded in terms of n,
d, and e.

In case V is a hypersurface we recover theorem 14 of Heath-Brown [12] (cf.
corollary 2 of the next section). A second consequence is that we may find
a form F € K[x]\ I with

pony
deg F <p 50 Bal/" i

which vanishes for all points of V(K) of height at most B. We use here that
each point of P*(K) of height at most B can be represented by an element
of P™(rg,...,r,) where r;; = ¢B'/* for some constant ¢ (see e.g. section
13.4 of [20]). We should also mention that § can be bounded in terms of n



and d in case V' is smooth or of dimension 1 (see theorem 3.11 of [2] or [8]).
If we use this fact and apply Bezout’s theorem

#(XNY) < (deg X)(degY)

for any closed sub-varieties X, Y C P" of finite intersection (see e.g. section
8.4 of [7]), then we get the following corollary of theorem 1.

Corollary 1. Let C C P" be an irreducible curve of degree d. Then

N(Ciro, .. ,Tn) Lage (lro]l® - [|rn[|*)*/4Fe (1)

for every e > 0, where N(C,rg,...,r,) counts the number of points of C(K)
which have a representative in C(ro,...,ry). In particular,

N(C, B) = 0g, (BY4+°). @)

In [12], Heath-Brown derives (2) for curves in P? from the same result on
plane curves by a projection argument. One can prove the estimate for
curves in P" by similar techniques. What is new about corollary 1 is (1).
Some of the results of [12] can be generalised by using this bound. To illus-
trate, we have included the following theorem which is similar to theorems
10 and 11 of [12] on surfaces in P3.

Theorem 2. Let Fy, F5 € Q[zg,...,z4] be forms of degrees di > 2 and
dy > 2, respectively. Assume that F} = Fy = 0 defines a smooth surface
V CP* and let V! C V be the complement of the lines on V. Then

5 15
N(V',B) €44y, BV 5057 (3)
and
' 14+¢ ﬁ*@”
N(V', B) €4y dp,c B+ + BV (4)

for every € > 0.

Estimate (3) is better than (4) only in the cases
(d1,d) € {(2,2),(2,3), (2,4), (3,3)},
and if dy +dy > 9, (d1,d2) # (2,7), then (4) reads
N(V',B) <ay,45,c B

We will also prove the following result.

Theorem 3. Let V C P be an absolutely irreducible non-degenerate sur-
face of degree at least 4 which is defined over Q. Let py be its Hilbert
polynomial. Then

N(V',B) <p, » B" 5 te,

for every € > 0, where V! CV is the complement of the lines on V.



2 Graded monomial orderings

In this section we define the numbers a; which occur in the formulation of
theorem 1.

Let V. C P™ be an irreducible variety of dimension r and degree d, and
assume that its ideal I C K|[x]| can be generated by forms of degrees at
most . Let K|[x], be the K—vector space consisting of the homogeneous
polynomials of total degree u and let I, = I N K[x],. The Hilbert function
¢(u) of I is defined to be the dimension of the quotient space K|[x],/I,.
There is, then, a unique polynomial p(u) = py(u) such that p(u) = ¢(u) if u
is sufficiently large. This polynomial is called the Hilbert polynomial of V.
The dimension r of V' is given by the degree of p(u), and the degree of V is
defined to be 7! times the leading coefficient of p(u). The Hilbert function
can be evaluated with the help of some monomial ideals related to I. In
order to associate such ideals to I we need some definitions. The approach
to Hilbert functions that we use here can be found in [11].

A graded monomial ordering < on K|[x] is a relation on the set of monomials

x® =zy° -+ 23" where a = (ag,...,ap) € Z’;O'l, or equivalently, a relation

n
on Zﬁgl which satisfies:

1. < is a total ordering.
1
2. aZOforallaEZ?O'.
3. If o, 3, 762%’1 and a < (3, then a +v < B+ 7.

4. Ifa, B € Z?&l and a < g, then |a| < |G|, where |[y| =y + -+ Tn

denotes the total degree of v € Z’;O'l.

The standard example is the graded lexicographic ordering: x® < xP if
|a| < |B] or if || = |B| and the left-most non-zero entry of @ — 3 is negative.

Given a graded monomial ordering, we may consider the leading monomial
of a polynomial. More exactly, if

f(X) = Z a’axaa

an’Zl‘(')'l
then the leading monomial f! of f is defined to be x?, where
ﬁ:max{aEZTO'l Qo #O}.

The maximum is of course taken with respect to the chosen ordering. We
can also consider the monomial ideal I' which is generated by the leading



monomials of the elements of I. One can show that ¢(u) = ¢p(u) for all u
(see proposition 9 of [11], chapter 9, §3). Hence, if we decompose K|[x],, as
IL @ J,, then the K-vector space .J, has a basis of rank ¢(u) consisting of
monomials. The sums ) o ; «;, denoted by o;(u), therefore satisfy

oo(u) + -+ + on(u) = ud(u)

for all u. The next lemma states that the functions o;(u) are equal to some
polynomials of degrees at most r + 1 for w sufficiently large. The limits

o oi(u)
= B g)

therefore exist and can be also defined as the quotients of the leading coef-
ficients of the corresponding polynomials of o;(u) and u ¢(u).

Lemma 1. There is a positive integer ug, bounded in terms of n and 6,
such that ¢p(u),00(u),...,on(u) are equal to some polynomials for u > uyg.
Furthermore, the coefficients of these polynomials can be bounded in terms
of n and 0.

In [18], there is a proof of the fact that the maximum degree of the polyno-
mials making up a Grobner base for I can be bounded in terms of n and 4.
By definition the leading monomials of the elements of a Grobner base of I
constitute a base for I'. Suppose that I' is generated by x!,...,x% for
some q; € Z;Hdl. Then the set of exponents of the monomials in I is the
the union |J*; [e;], where

o] ={a+8: Bezif'}.

The intersection of two such sets is a set of the same type, namely [a]|N[5] =
[@f], where

a/B = (max(ao, /30)7 s ,max(an,ﬁn)).

One can check that the number of § € [a] of total degree u > |af is

Hlau) = (u+n—|a|>’

u—|af
and that the sum Zﬂe[a],\m:u B; is given by

u — |af
n+1

oi(a,u) = (ai + ) d(a,u).

In particular this shows that ¢(«,u) and o;(,u) are equal to some polyno-
mials for u > |a|. As ¢(u) = ¢pn(u) we have

dlu) = (“Z”) —#{ﬁeig[ad 1] =u},
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and by the inclusion-exclusion principle

m
#loe Ol =uf =3 5 Comioton oo
1=1 J=161<<15
Similarly we have

U u+n
gi(u):nﬂ( ' ) S Y (1 o -y )

J=1141 < <145

Hence, ¢(u) and o;(u) are equal to some polynomials for u > |ai|+- - - +|am|
whose coefficients can be bounded in terms of |a1],...,|amn]|.

We end this section by recovering theorem 14 of Heath-Brown [12]. This

illustrates the role of monomial orderings. Note also that only the case
K = Q is treated in [12].

Let F' € R[x] be an irreducible form of degree d. Suppose that x* is a mono-
mial which occurs in F' with non-zero coefficient and is maximal among all
such monomials with respect to some graded monomial ordering on K[x].
The corresponding monomial ideal I' is then generated by x® and the for-
mulas above give

— |Ot| n—1 n—2
o) = 2t o),
oifw) = L%y o),
n!
o] —a;  d—
a; = =

nlal  nd
If we use the notation from [12] and define

V = lioll - el

T = ||ro[|*® - - - llrn [ *
then we have the following corollary of theorem 1.

Corollary 2. Let € > 0, rg,...,r, € RY,, and an irreducible form F €
K[x] of degree d be given. Then there exists an integer D depending only on
n, d, and €, and an integer k satisfying

k Knae (VET)E Dy

with the following properties. For each j < k, there is a form F; € K[x]|,
having degree at most D, such that



1. F(x){ Fj(x) for 1 <j <k,

2. For each x € P"(ry,...,ry), with F(x) = 0, there is an integer j < k
such that Fj(x) = 0.

In [12], the number T is defined a bit differently as

T — o, an
ma (|0 -+ ) )

where F(x) = ), aox. It is however always possible to find a graded
monomial ordering such that our T is given by (5). To see this, choose

algebraically independent qq,...,q, € R>1, and define a graded monomial
ordering by letting x* < x? if |a| < || or if |a| = | 3| and q® < q”. Provided
that |||r;|| — gi| are sufficiently small for all i =0,1,...,n, one has

o] ®0 - - - [|rn |2 < |lrol/0 - - - ||r,|/®*  if and only if q* < @,

for all & and 3 such that a,ag # 0.

3 Proof of the main result

In this section we prove theorem 1. The overall structure of the proof is
similar to Heath-Brown’s proof of theorem 14 in [12].

Suppose that V' C P" is an irreducible variety whose ideal I is generated
by some forms Fi,... , F; € R[x]. We shall use the same notation as in the
previous section. Thus, § stands for the maximal degree among the forms
Fi,...,F; and r and d are the dimension and degree of V', respectively. We
first explain what we mean by a point of P"(K) or V(K) modulo a power of
a prime ideal p of R. As the local ring Ry is a unique factorisation domain,
we can represent a point of P"(K) by a primitive vector of R;}H. The
reduction modulo p™ of any such representative gives a point of P"(R/p™)
and it is obvious that this map from P"(K) to P"(R/p™) is well-defined.
Likewise, when we consider rational points of V' modulo p™, we mean the
image of the points in V(R/p™), where this last set is the set of solutions
x € P*(R/p™) of

Fi(x)=---=Fi(x) =0.

Recall that a point x € V(K) is said to be smooth if the Jacobian matrix

dxo Oxn
J(Fl,...,Ft)Z :
dxo Oy,



evaluated at x has rank n — r. The singular locus of V is a proper subset
so we can assume that the sub-determinant

a
g—ﬂ(X) e azf; (x)
D(x) = : :
OF,,— OF,
321 t(x) e ag;:_: (x)

of J(Fi,...,F;) does not belong to I. It is thus sufficient for the proof to
find a form F' € K[x]\ I which vanishes for points of

S(ro,...,rp) ={x € V(rg,...,rp) : D(x)#0}.
Following [12], we let
Sp(ro,---,1n) = {x € V(ro,...,r,) : D(x) € Ry},
for each prime ideal p. Here Ry denotes the group of units of R,.

Lemma 2. Suppose that P > log ||D(x)|| for all x € S(rg,...,ry), and let
k be the smallest integer such that k > log | D(x)|| /log P. Then there exist
prime ideals p1,...,pg such that P < Np; < P and

k
S(rg,...,ry) = U Sp; (o, .- ,Tp).
i=1

To see this, let p1,...,px be the different prime ideals of smallest possible
norm greater than P. If D(x) € p; for all i = 1,2,...,k, then

IDG) > (Rps) -+~ (Rpg) > PF,

which is contradictory provided that D(x) # 0. One can check that Np; <
P by using bounds of Tchebycheff-type for the number of prime ideals of
bounded norm.

The principal ingredient of the proof of theorem 1 is the following lemma
which we prove at the end of this section.

Lemma 3. For any € > 0, there exists a constant ¢, which depends on n,
d, and e, with the following property. If p is a prime ideal of R such that

n o r+1
Rp > e [ fleg] a7+ (6)
1=0

and x1 € Sy(ro,...,ry), then there exists a form F € R[x] \ I such that
F(x) =0 for every x € V(rg,...,r,) which represents the same point as x;
modulo p. Moreover, the degree of F' can be bounded in terms of n, §, and
€.



We also need the following standard fact.

Lemma 4. There are Oy, ;1 5(Rp") points of V(R/p) for which J(Fi,..., F})
has rank n —r.

To prove this, we use Bezout’s theorem,

k t
> degV; < [[deg F; < o,

=1 =1

where V; are the irreducible components of V' (see e.g. example 8.4.6 of [7]).
Hence, k < §' and deg V; < §'. We are only interested in points of V(R/p)
for which J(F1y,..., F}) has rank n — 7, and such points can only belong to
components V; of dimension at most r. Lemma 4 now follows from the fact
that

H#W (R/P) Kn,dimW,degw RpH™W

for any irreducible variety W C Py, (see [17]).

Theorem 1 follows when we combine these lemmas. Let P be the right-hand
side of (6) times the factor

ma log || D(x)]| .
resax g || D(x)]

Multiply together all the forms given by lemma 3 as x; runs over the el-
ements of Sy, (ro,...,r,) modulo p; as p; runs over the primes given by

lemma 2. Let F' be the resulting form. Then F ¢ I, F(x) = 0 for all
x € S(rg,...,ryp), and

" bl i
deg F <o (Hnrin%w ) (o amax toglDGI)

i=0 r07'"7rn)

That is, theorem 1 is proved if we can get rid of the dependence of the choice

of generators of I. The following lemma is an adjustment of theorem 4 of
[12].

Lemma 5. Either there exists a form F € K[x]\I of degree at most § such
that F(x) = 0 for all x € V(rg,...,ry), or I can be generated by Oy 5(1)
forms Fy, ..., F; € R[x] of degrees at most § such that

t

2 (n+d
[T <as (ol -+ [leal)?*C57).
i=1



To prove this, let x1,...,xx be the elements of V(rg,...,r,), and let

x%1 . x%e be an enumeration of the monomials of degree k in n + 1
variables. If we identify the vector space K[x]; with K using the basis
x®1 ... x%ek then, obviously, the subspace I}, C K[x] is contained in the
kernel of the matrix
XFL L xf’“k
Ag=1| :
X2 x‘]’:rkek

There are two cases to consider. If I, & ker Ay, for some 1 < k < 4, then
there exists a form F' € K[x]j, \ I which vanishes for all x;. The alternative
case, I = ker Ay for all kK = 1,2,...,0, requires some more work. First
we form a new matrix Aj out of rows of Ay so that A} has mj = rank Ay
rows. We then define a; to be a vector consisting of all the my, x mg—minors
of Aj. Tt will have ("Zkk) components, each belonging to R. Let [; denote
the dimension of ker A},. Theorem 9 of [3] states that we can find a basis
Yki,---, Yk, € R of ker A} which satisfies

Uk

[[HGw) < cH(AY),
i1

for some constant ¢ which only depends on K, and where

) = s | 11 (Z'“’”"?)w 11 (Zj:'“’”"i)

| |; real ~ Jj | |; complex

It is straightforward to check that
H(Ay) g (Iroll -+ [lrall) .

The basis yk1,-..,¥ki, of ker A} = I} corresponds to some forms of degree
k. Consequently, we have a basis Gy, ..., Gy, of Iy which satisfies

Uk

TT1Gkl <o lroll - leall) ™.

=1

But I,...,Is generate I. Thus we have a set G'11,...,Ggy, of generators of
I which satisfies

2 (n+6
TT1Gisll <as (roll -+ a5,
This completes the proof of lemma 5.

It remains to prove lemma 3. Suppose that xi,...,xy are all the points of
Sp(ro, - ..,ry) which represent the same point as x; modulo the prime ideal
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p. To find a form F' which does not belong to the ideal I we shall consider
elements of J,. Remember that we had K[x], = I, @ J,, where I' was the
ideal generated by the leading monomials of 1. Now, it is a linear problem
to show that there exists a form F' € J, with the required properties. That
is, there exists such an F' exactly when the matrix

thll x?¢(u)
M = .

X3 x?f(")

has rank at most ¢(u) — 1. To simplify the notation we have chosen an
enumeration x*,...,x%® of the monomials of J,. If N < ¢(u) — 1 then
obviously the rank of M is at most ¢(u) — 1. We can thus assume that
N > ¢(u) — 1. In that case M has rank at most ¢(u) — 1 only if all the
d(u) x ¢(u)-sub-determinants of M vanish. Without loss of generality we
may consider the sub-determinant

a1 Qg (u)
Xy X4
A= :
a1 L Qg (u)
X (u) X (u)

By expanding A and remembering the definitions of the functions o;(u) from
the previous section, we see that

A < ((u) ) EQ (o] [ 70 - e, | 7). (7)

The rest of the proof will be concerned with the order of A at p. If A € p™ for
some positive integer m and (Np)™ exceeds the right-hand side of (7), then
A must vanish. It is this comparison that will eventually give us condition

(6).

Before we continue we make a remark. It may seem strange to assume that
N > ¢(u) — 1 without knowing what u is. But u is supposed to be a fixed
constant which is bounded in terms of n, d, and €. At this point we do not
know how to choose it. This will become apparent later.

Now, since we are only interested in the order of A at p, we may change
to affine coordinates. We may also assume that x; does not belong to the
hyperplane zy = 0 modulo p. Then

Vi = Tig (%1, - -+ » Tin)

are elements of Ry for 1 = 1,2,..., N. We introduce affine equations for
V'\ {zo = 0} by putting

fl(y) = Fi(layla"'ayn)

11



for+=1,2,...,t. We know that the matrix

Oy1 OYn—r
: : (8)

Ofn—r .. Ofn—r

ayl ayn—r

is invertible over R, when evaluated at y; by the assumption that x; €
Sp(ro,...,ry). The following version of the implicit function theorem is
well-known (see e.g. corollary 3 of [4], chapter ITI, §4.5).

Lemma 6. Suppose that y1 € Ry is a common zero of fi,..., fn—r, and
that the matriz (8) is invertible over Ry at y1. Then, for each m > 1, there
exists n — 1 polynomials gm;(y) € Ryly] in r variables, such that

Yi = gmi(Yn—r+1,---,yn) (mod p™)
fori=1,2,... ,n—r, whenever fi(y) = -+ = for(y) =0 andy = y1
(mod p).

We can use this lemma to eliminate some variables from our determinant
A. First we note that the order of A at p is the same as the order of

Bou
Yyl

A= : :
B B (u)
Y (u) Y (u)

where 3; € Z%, is the projection of a; € Zggl onto the last n coordinates.
This follows from the assumption that z;y are units of R,. By the lemma
above, we can replace y; by

(gml (Yn—r+15-3YUn)s - » Im(n—r) (Yn—r+1s--sYn)s Yn—r+1;- - - ,yn)

modulo p™. If we let z; be the last 7 coordinates of y1 — y; € p("t1) . we see
that

hi(z1) -+ hgw)(z1)
A=l : (mod p"™),
hi(zgw) - Pow) (Zogw))

for some polynomials h; with coefficients in R,. Note that the polynomials
depend on x; and the integer m which will be specified below. If we denote
the smallest monomial of g by ¢®, with respect to some graded monomial
ordering on k[z], then it is not hard to see that we can find a new base

12



P1;-- -, Pé(u), With the property pf < .-+ < p;(u), for the Ry—submodule of
Ry[z] generated by hi, ..., hy,). Consequently,

pi(z1) - Pg)(z1)
: : =0 (mod p’™),
P1(Zow)  Pou)(Ze(u))
where o(u) = }_|a;| for the smallest elements as, ..., a4 of Z%, with

respect to the graded monomial ordering. Hence, if we choose m = o(u),
we find that the order of A at p is at least o(u). This observation together
with (7), implies that A has to vanish as soon as

(Rp)7 > () (o700 - [y |7) (9)
To get the condition (6) from this inequality we make some remarks.
Let v be the integer defined by
T+wv r+ov+1
< < .
(70°) o< (1)

Then rl¢(u) ~ du” ~ v", where f(u) ~ g(u) means that the quotient
f(u)/g(u) tends to 1 as u — oo. One can check that

o(u) = n 1U</>(u) + O, (v").

r

Hence,

oi(u) oi(u) r+1\ u oi(u) r+1\ a;
o(u) Fgvo(u) T v up(u) T avr’
By lemma 1 we know that oy,...,0, are equal to some polynomials for
u sufficiently large in terms of n and §. Moreover, the coefficients of these

polynomials are bounded in terms of n and §. Hence, we can find u, bounded
in terms of n, d, and ¢, such that

oi(u) r+1\ a;
< .
o(u) = ( v ) ar e
The remaining factor (¢(u)!)F:¥/7®) of (9) can bounded in terms of 7, that
is, in terms of n. This completes the proof of lemma, 3.

4 Rational points on surfaces in P"

The aim of this section is to prove theorem 3. For simplicity, we will assume
that K = Q. But we expect that it is possible to prove the result over

13



any algebraic number field by similar arguments. We will also write P"(B)
instead of P™(By,...,By,) whenever B = By = --- = B,,.

Let V C P™ be an absolutely irreducible non-degenerate surface of degree d.
Given y € P" we define Hy C P" to be the hyperplane

Xy =1xoyo+ "+ Tpyn = 0.

According to a lemma of Siegel (see e.g. lemma 1 of [12]), there is a constant
c1, which depends only on n, such that the points of P"(Q) of height at most
B are contained in

U 5.

yepn(clBl/n)

Hence, if we let Vi (T') be the union of all irreducible components of

U wvnHy)

yeP™(T)
of degree k, we have
degV
N(V',B) < > N(Vi(e1B'*), B). (10)
k=2

We shall estimate the different terms on the right-hand side of (10).

The following estimate will be used in the proof of theorem 2. We do not
really need the full strength of the result for theorem 3.

Lemma 7. If T < B, then
N(Vi(T), B) Kn g BYF+eqnti=2/knte

for every € > 0.

To prove this, we define Cy ; to be the union of the irreducible components
of V. N Hy of degree k. We then have

N(Vi(T),B)< Y N(Cyu,B).
yeP™(T)

For each y € P™(T) we can find a basis x1,...,x, of the lattice x-y =0
such that

11 < [leall -~ %]l <n [yl

14



It will have the property that if
z1X1 + -+ - + zZpX, € P*(B)

then |z;| < coB/ ||xi||, for some constant ¢y which only depends on n (see
e.g. lemma 1 of [12]). Without loss of generality, we may assume that

%1l < - v < flxnl]-
Let Dy C P" ! be the image of Cy i, under the map
Hy — PPl zixi 4 4 2aXy o (21,410, 20)-

We then have that

B B B \/kte
N(Cy,kaB) < N (Dy,ka 2 2 ) <<n,d,5 ( ) 3

o ll” 7 [l [eSY

by corollary 1. Note that we may assume that coB/||x;|| > 1 by choosing
co properly. Suppose that C; < ||x;|| < 2C; for some constants C; < T'. The
vector y belongs to the n—dimensional lattice defined by x;, and provided
that R > ||x1]|, there are O, (R"/||x1||) elements of the lattice of height
at most R (see e.g. lemma 1 of [12]). Hence, there are O,(CT 'Cy---CP)
vectors y for a fixed x;. The number of x; for which Cy < [|x1|| < 2C is
O(C™™™) so there are O,(C"CH ---CP) vectors y such that C; < ||x;| <
2C;. Consequently, the total contribution to our sum from these y is

<<n,d,g BQ/IC+60127L—2/ICC£L . Cz
& BZ/k-i—e(Cl .. Cn)n+1—2/kn
<0 BQ/Ic+6Tn+1—2/lm_

By letting C; run over powers of 2 and sum the resulting bounds we obtain
the promised result.

Lemma 7 is valid for all £ but it is not very useful for small k. We shall
study the cases kK = 2 and &k = 3 more carefully. The following fact was
explained to us by P. Salberger.

Lemma 8. Let V C P" be an absolutely irreducible non-degenerate variety
with Hilbert polynomial py. Let p be a polynomial of degree dimV — 1 such
that its leading coefficient is smaller than dimV times the leading coefficient
of pv. Then there exists a non-trivial form E in n + 1 variables of degree
bounded in terms of n, py, and p, such that E(y) = 0 whenever V N Hy has
a sub-variety with Hilbert polynomial p.
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We only sketch the proof here. Let H; C P™ and #H2 be the Hilbert schemes
which parametrise sub-schemes of P" with Hilbert polynomials py and p,
respectively. Let ) C H;1 x Ha X P™* be the closed sub-scheme consisting of
the triples (Hy, Ho, H3) such that Hy C Hy and Hy C Hs. The projection

H1XH2XPn*—>H1XPn*CPmXPn*

is proper so the image of ) in P™ x P"* is closed, defined by finitely many
bihomogeneous polynomials E;(x,y). Let x € H1(K) C P™(K) be the
rational point representing V' C P" and put E; y(y) = E;(x,y). Then all
E; v cannot vanish identically since V N H is irreducible for some H by
Bertini’s theorem. We can take E to be any of these forms.

Lemma 9. IfdegV >2 and T < B3/(n72); then
N(Vo(T), B) Knpye BT

for every € > 0.

Obviously we may redefine V5(T') by removing those components which do
not contain any rational points. Let C' C V5(T') be an irreducible component
of this new V2(T'). Since every curve of degree 2 which contains a rational
point is plane, we can find y1,...,y,—2 € P" such that

C=Hy, Nn---NHy, ,NQ,

for some quadratic hypersurface ) C P". As in the proof of lemma 7 we can
find a basis x1,x9,x3 € P" of the lattice

X'ylz"':X'yn—2:07
such that |z;| < c3B/ ||x;|| for some constant c3, whenever
z1X1 + z9X9 + z3x3 € P"(B).

By the definition of V2(T') we can assume that y; € P"(T). We may also
assume that

-2
Iy ™™ < 1l 2] lIs]]

(see e.g. chapter T of [21]). Let D C P? be the irreducible quadratic curve
which is the image of C' under the map

2
Hyl Nn---N Hyn_2 — P°, 21X1 + 29X9 + 23X3 — (21,Z2,2’3).
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According to theorem 3 of [12], we have
C3B CgB CgB >

il 2]l s

N(C,B) <N <D

Bl—i—s
<n,
v (Tl Tl s )2
Bl—}—s
Sy [DB

provided that c¢3B/||x;|| > 1 for ¢ = 1,2,3. On the other hand, we have
N(C,B) < 2 otherwise, so the estimate is still valid by the assumption
T < B2 Theorem 1 of [12] states that N(X,R) = O, q(R") for
any hypersurface X C P” of degree d. Hence, if we combine this result with
lemma 8, we see that the number of C' C Vo(T') for which R < ||y1|| < 2R for
some R < T is Oy p, (R"). Note that there can only be O4(1) curves C with
the same y;. Consequently, the components of V5(T) with R < |ly1|| < 2R
contribute with

Lnpy.e Bl+sRnf(n72)/3 < Bl+sT§(n+1)

to N(V5(T),B). By summing over dyadic intervals once again we get the
desired estimate.

Lemma 10. IfdegV > 3, then
N(5(T), B) <py - BT

for every € > 0.

To see this, let C' C V be any absolutely irreducible curve of degree 3. It
is well-known that C is either a plane curve or a twisted cubic curve in P3
(see e.g. exercise 3.4(d), page 315 in [9]). The arithmetic genus of C is thus
either 0 or 1 so there are only two possible Hilbert polynomials of C. If C is
not absolutely irreducible then C' consists of three conjugated lines, or a line
and a conic. There are only a finite number of possible Hilbert polynomials
for such configurations. Hence, lemma 8 states that there exists a non-trivial
form E such that E(y) = 0 when VN Hy, contains a curve of degree 3. There
are Oy, p,, (T™) elements y € P"(T') which satisfies E(y) = 0. According to
corollary 1, N(C, B) = O.(B?/3*¢). Hence,

N(V3(T), B) py e BY*+TT,
which was to be proved.

If we study the different estimates given by these lemmas we see that the
estimate given by lemma 9 will dominate the sum in (10) provided that
degV > 4. Hence,

(n41)
N(V',B) <py.e B+ 50 e,
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which completes the proof of theorem 3.

5 Rational points on smooth surfaces in P*

In this section we shall prove theorem 2. One advantage of restricting to
smooth surfaces is that one has more information about the curves on such
surfaces. The following result was proved by Colliot-Théléne [5] in the case
di =1.

Lemma 11. For every triple (di,ds, k) of positive integers such that dy +
dy >4 and k < dy + dy — 2 there is an integer N(d1,ds, k) such that for any
smooth surface V.C P* defined by Fy = Fy = 0 where deg F; = d;, there are
at most N (dy,ds, k) irreducible curves of degree k lying on V.

We will not prove this in detail. The crucial observation in [5] is that the
Castelnuovo’s bound for the arithmetic genus p,(C) = dim H'(C,O¢) (cf.
[1], p. 116) is not only valid for smooth curves but also for other classes of
curves like curves lying on smooth surfaces. We thus have the following.

Lemma 12. Let V C P* be a smooth surface. If C C V is an absolutely
irreducible curve of degree k, then

%2 - % + 1, if C s plane,
pa(C) < %2 —k+1, if C is degenerate but not plane,

’%ﬁ — % +1, if C is non-degenerate.

Exercise 1.3 on page 366 and 8.4(c) on page 188 of [9] gives
2p,(C)—2=C.(C+ Ky) =C.C+k(d; +dy — 5)

for any absolutely irreducible curve of degree k on a smooth surface V' as in
lemma 11. If we use lemma 12 we see that C.C' < 0 whenever di+dy > 4 and
k < di+dy—2. By lemma 12 we also see that there are only a finite number
of possible Hilbert polynomials for a given irreducible curve of degree k
which lies on V' C P*. Consequently, these curves are parametrised by an
open subset of a Hilbert scheme of finite type. Colliot-Théleéne uses this
fact to show that there can only be a finite number of irreducible curves of
degree k on V if C.C < 0 for every such curve. To find the uniform bound
N(dy,ds, k) of the number of curves one uses parameter spaces. See [5] for
further details.

Lemma 13. Let V C P* be a smooth surface which is defined by Fy = Fy =
0 where deg F; = d; > 2. Then, for every ¢ > 0, there are Odl,dZ,E(TW”E)
points y € PX(T) for which V N Hy is reducible.
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If V N Hy is reducible, then y belongs to the dual V* C P* which is an
irreducible hypersurface of degree bounded in terms of d; and dy (see e.g.
proposition 5.7.2 of [13]). First we show that V* cannot be linear. Assume
on the contrary that it is given by an equation z - y = 0 for some z. Then
z-VFi(x) = z-VFy(x) =0 for all x € V. Thus the forms z - VF; and
z - VF, belong to the ideal generated by F; and F5. We have assumed that
d; > 2, so the only possibility is that z - VF} and z - VF5 vanish identically.
But then

dej(Z) =Z- VF](Z) = 0,

djgfz () = (a%(z - vzg-)) (2) = 0,

for j = 1,2 and 0 < ¢ < 4 s0 z is a singular point of V. The conclusion is
that deg V* > 2. Theorem B in [19] gives

N(V*aT) Ly ,dose T7/2+6’
which is the statement of lemma 13.

We are now in position to prove theorem 2. Assume that V C P? is a
smooth surface defined by F; = F5 = 0 for some forms F; and F, with
d; = deg F; > 2. As in the previous section we define V}(T) to be the union of
the irreducible curves of degree k which are contained in (Jy PA(T) (VNHy).
Corollary 1 and lemma 11 give

N(Vi(B'*), B) <4y 0c BY/*H
for k < dj + d2 — 2, corollary 1 and lemma 13 give
N(Vk(B1/4),B) <<d1,d2,s B7/8+2/k}+8

for di +do — 2 < k < dids, and by lemma 7,
15

5
N(ledz (B1/4)a B) Ldy,doye B4+8d1d? +5.

Taken together,

dids
N(VIaB) < Z N(Vk(B1/4)aB)
k=2

Kirpe BT + B TG | Bitag
It is easy to see that the last term dominates when d; 4+ dy > 8, so it
is straightforward to check that it dominates for all d; > 2, do > 3. The

estimate is valid for dy = do = 2, but then the term in the middle dominates.
However, if we reprove lemma 9 using the bound OE(T7/ 2+£) for the number
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of y € P4(T) for which V N Hy contains a curve of degree 2, we see that
theorem 2 holds for d; = dy = 2 as well.

To prove the second estimate of theorem 2, we shall apply theorem 1 in the
case n = 4. Let H C P* be a hypersurface such that V is not contained in H
but such that the rational points of height at most B on V are contained in
VN H. We define Vj, to be the union of the irreducible components of VN H
of degree k. Theorem 1 says that we may choose H such that Vj, consists
of Odl’dz,E(B?’/‘/m"'g) irreducible curves and that Vi = 0 for k >4, 4, 1.
According to corollary 1,

N(Vi, B) <d; dye B3/\/M+2/k+s’
and if we use lemma 11 we have
N(Vi, B) <4y dy e B2/k+e
for k < di + dy — 2. Hence,
N(V',B) <Y N(Cr,B) <aydpe B + BV R
£>2

and this completes the proof of theorem 2.
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