BRANCHING PROCESSES WITH DETERIORATING RANDOM
ENVIRONMENTS

PETER JAGERS AND LU ZHUNWEI

ABSTRACT. In this paper, a BPRE (branching process in random environ-
ments) is presented, in which a population development in deteriorating envi-
ronments is described. Some primary results on process growth and extinction
probability are shown. At last, two simple numerical examples that attempt to
simulate the probability model are given to help understand its mathematical
framework.

1. INTRODUCTION

Consider a Galton-Watson branching process {Z,} in random environments

¢ = {¢n}. Here (, is measurable with respect to B, D o(Zy,...,Z,) for every
n = 0,1,2,... and is called the environment of nth generation or season. Let
¢¢.(s), s € [0,1] be the pgf (probability generating function) according to which
every individual of the nth generation reproduces independently given B,,. Clearly,
¢¢, is also determined by B, and therefore dependent on Zy,...,Z,. The de-
pendence is assumed to be measurable. We denote by pu¢; = ¢’<j(1) the average
number of the offspring per individual in the jth generation. Again, p¢; is random
and measurable with respect to B;. Noting that B, C B,41, we can see that in
general the random environment {(,} is no longer iid (independent and identically
distributed) and not even stationary. Now, we suppose Zg = zo > 1 and assume
pe; 4 pa.s. (j — oo), where p is a positive random variable or, in particular cases,
a positive constant. What can we say about {Z,}?
In a simplified manner the above mathematical framework describes population
development in deteriorating environments. The environment of a season is in-
fluenced by earlier population history but may also have independent exogenous
components. But due to depletion of resourses or increasing pollution mean repro-
duction decreases.

2. FURTHER DESCRIPTION OF {Z,}

Now let us put the assumption p¢; | p a.s.(j — 0o) aside for the moment. Then
in our mathematical model here, {Z,} is a branching process with a {B,} adapted
random environment { = {¢,}. By the {Z,} we can understand the following
evolving population of particles.

Assume that we start with Zy particles and denote the population size at time n

by Z,. The transition from Z,, to Z,, 1 takes place as below. All the Z,, members
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of the nth generation live for a unit of time, after which each of them splits into
a random number of (n + 1)th generation particles independently according to the
same offspring distribution with pgf ¢¢, (s), where ¢, (s) is chosen at random from
a collection ® of pgf’s according to the information from B,,, which is affected
by the size of Zy,...,Z, and maybe other factors due to the hypothesis B, D
O'(Z(),.. . aZn)

Let {X J(-C")}, j =1,2,... be an iid random variables sequence with the same pgf
¢¢.(s). Then {Z,} can be expressed by the recursion formula as

n

Zo=20, Znj1=3 X&), (n>0).

=1

We can deduce the transition probabilities given B,, as

P{Zn+1 = JlZﬂ = l,Bn} = { (%lnl+---+"i=]' Hk:l Tbk!¢cn (0) z E é’:; E 8’
J — YU Y

which is an i-fold convolution of the distribution law {pr(Cx) = 16 (0)}, k =
0,1,... corresponding to the pgf ¢, (s). By taking expectation, we get the transi-
tion probabilities of {Z,,} as

P{Zn1 =j|Zp, =i} = ?nﬁerni:j Bl made,” (O ’ = 1’J. 20,
0j 1=0,7>0.

Furthermore, noting that B,, gives us Z,, and the environment (,, we obtain that
Efs”+'] = BE[s”"* |B,]] = E[E[s":" "+ +¥5" B[] = Blgc, ()%, (n20)

where we use the same sign E all different of expectations according to context.
Since the environment ¢, of the nth generation includes the information about
Zyy--- 2y and (o, ... ,(p—1, it may well happen that

E[s7"+1|Bp] = [dc, ()] # [d¢o (¢, (- - (¢, (5)) .. D], (n>1)

i.e. the pgf of Z,, can no longer in general be expressed by some expectation for an
iteration of random pgf’s. Clearly, in our model, the {Z,} is different from that of
the either Smith-Wilkinson BPRE model or the Athreya-Karlin BPRE model, in
which the random environment  is an iid random variables sequence or a stationary
ergodic process (see [1],[2],[3]). It is more complicated here. In particular cases, if
{Z,} is a Markov chain, then it degenerates to population-size-dependent branching
process or population-size-dependent branching proces with random environments

(see [4],[5])-

3. PROCESS GROWTH
Write W,, = f—z, Wr=—Zo—— and Y, = 2 [}y %, in which the products
¢

i=0
20 [1;=¢ H¢; ®

H?;(,l p¢; in W and 1‘[7;01 “TC in Y;, are defined by 1 as n = 0. Then we have

Theorem 1. {W} is a non-negative martingale with respect to {B,}, and 0 <
limy, 00 W)y = W* < 400 a.s. exists.
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Proof. W} > 0 for all n > 0 is obvious by its definition. That {W} is a martingale
with respect to {B,} follows by

Zn 3 (Cn)
Zn+1 E X
B = E—=" B, By
E{Wo111Bs] [oni:0u<i| ] = onzouc,| ]
Zn Zn
= o =W (n>0).

20 H?:o H¢; 20 H?:_OI e
Noting that E[W;] = 1 for all n > 0, by the martingale convergence theorem, it
must yield that 0 < lim,—oo Wy = W* < 400 a.s. exists. [l

Theorem 2. {W,,} is a non-negative submartingale with respect to {B,}, and 0 <
lim,, 0o Wy, = W < +00 is well defined on the set {W* # 0} U{Y # +o0}.

Proof. Since W,, = 5—: > 0 and % > 1 a.s. (j > 0) by the assumption of
H¢; 4 pa.s., and noting that
Z, Z Z
E[Wyp1 |Ba] = B[22 1B, = 22K 5> 20—y as. (n>0),

n+1 urop "
we see that {W,} is a non-negative submartingale with respect to {B,}. From the
assumption 29 > 1 and ;’ >1la.s. (j>0), we know that Y,,11 > Y, > 2 a.s.
for all n > 0. Then 2y < lim, s Yn = Y < 400 must exist. Therefore, since
Wp =W;:Y,, 0 <lim, oo W, =W = W*Y < 400 is well defined unless W* =0
and Y = 400 as required. O

Remark. 1. However, even on the set {IW* = 0}N{Y = +o0},i.e. whenlim,_,., W, =
0 and lim,,_, Y, = 400, obviously, sometimes 0 < lim,,_,,o W, = W < 400 still
is well defined. And then if W = O(Y,!) a.s., we still have

0< lim Wy, = lim WY, =W < 400 a.s.

n—o0 n—oo
otherwise W = 400 a.s..
2. Since {W,} is a non-negative submartingale with respect to {B,}, if

sup E[W, ] = lim E[W,] < +oo,
n21 n—oo

then by the submartingale convergence theorem, 0 < limy, oo W,, = W < +00 a.s.
exists. Therefore, we know that 0 < W < 400 a.s., if (i) lim,— 0 E[W,] < 400,
or (ii) ¥ < 400, or (iii) limp 00 ¥ = 400, but the limit lim,_,. W), exists and
W} = O(Y,7!) a.s.. Otherwise, either W = 400 a.s. or the limit lim,_,o, W,, does
no exist.

Furthermore, we have

Theorem 3. On the set {E;’io (ng; — p) < +o0}U{Zn = 0}, 0 < limgyyoo Wy, =
W < +o0 a.s. exists.

oo My

Proof. First, we know that Z;‘;O (e; —p) < 400 a.s. is equivalent to ]

Jj=0 u
< 400 a.s.or'Y = 2 H] —0 M;’ < +o¢ a.s.. Recalling Theorem 2, on the set

{32520 (ke; — 1) < +o0}, then we have
0< lim W, =W =W"Y < 400 a.s. exists.

n— oo
Secondly, if Z,, — 0, then there must a.s. exist some positive integer-valued random

variable IV, such that Z,,,y = 0 for all n > 0. On the other hand, we know that
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u™ > 0for all n > 0 since p > 0. Therefore, W,y = iﬁiﬁ = 0 for all n > 0, which
implies that, on the set {Z,, — 0}, lim,,_, W,, = 0 and the proof is complete. O

Corollary 1. If there exist a constant € > 0 and a non-negative random variable
X, such that (p¢; — p) < ]1% a.s. for all sufficiently large j, then lim, . W, =
W < 400 a.s..

+o0 a.s. and the assertion follows Theorem 3. O

Proof. Since (p¢;—p) < JliJr a.s. for all sufficiently large j, we have 3 2 (u¢; —p) <

4. ABOUT THE EXTINCTION PROBABILITY

Let ¢ = P{Z, — 0} be the extinction probability of {Z,}. We know that

q = P{Z,=0, for some n} = P{UX ,{Z, = 0}}
= lim P{Z,=0}= lim E[SZ"]SZ().
n—0o0 n—0o0

First, let us look at the case of y < 1 a.s.. Clearly, if lim, oo W,, = W < 400 is
well defined, then

lim Z, = lim p" lim W, =0-W =0a.s.,
n—oo

n—oo n—oo
ie. ¢ = P{Z, — 0} = 1. The following theorem does not use information about
{Wn}.
Theorem 4. If 4 < 1a.s., then ¢ = 1.
Proof. Since p¢; | p <1 a.s., we can define a stopping time by

no = min{j : p¢; < 1}.
Then

Bingin < 1forallm > 0.

Conditionally upon Byy, E[Zn,|Bny| = Zn, and E[Zyg11|Bn,] = Zngpc,,- If
E[Zng4n|Bny] < Zno g, > then

]E[Zno +n+1|Bn0] = ]E[E[Zno+n+1|3no+n]|3n0]
= E[Zy, +nNCn0+n|Bn0] < NC,.OE[Zn0+n|Bn0] < Zno/"?::'

By induction over n, thus B[ Zp, 4-n|Bn,] < Zn,ug, foralln > 0. Letting n — oo, we
get E[Z,,; +n|Bn,] — 0, which together with Fatou’s lemma implies Z,,, 1, = 0 a.s..
Clearly Z,, — 0 if and only if Z,,4, — 0. Therefore, we obtain Z,, — 0 a.s., i.e.
g = P{Z,, — 0} = 1. The proof is complete. O

Secondly, let us look at the case of yu > 1 a.s.. Clearly, if 0 < lim, oo Wy, =W <
+o0 is well defined, noting that W,, = f—; and g > 1 a.s., then we have

lim Z, = lim " lim W, = 400 a.s..
n— o0 n— o0 n—oo

Thus ¢ = 0 < 1 holds. However, if we strengthen the condition u¢, > u for Vj > 0
to

> pe(G) > ) pr(&) for Vi, j >0, (+)

k>i k>i
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where {p(£)} is a random probability distribution law dependent on some random

environment § with expectation g 2 p and assume that E[—log(1—pg(€))] < +o0,
then as Theorem 4, the following theorem also does not use information about W,.

Theorem 5. Under the assumption above, if p > 1 a.s. and P{u > 1} > 0, then
qg<l1.

Proof. From the assumption together with the result of [1], we know that there is
an iid random environment & = {&,}, such that &, L & for Vn > 0 and thus

Z kpr(&n) = e, 2 4, for ¥n > 0;
k=1

and

ZPk(CJ‘) g Zpk('fj); for Vi, j > 0.

k>i k>i
Further choose 6 > 1 so that P{y > 6} > 0. Then

(i) Ellog pe;] = Ellog pe] > Eflog (A 6)] > 6P{p > 6} > 0 for Vj > 0;
and
(ii) E[-log(1 = po(§;))] < +oo, for Vj >0,

so that the supercriticality holds. In other words, the reproduction in the environ-
ment §; is dominated by that in environment (; stochastically for any j > 0 so that
it {Z*} is a BPRE with initial population size Z} = 29 = Z, living in the random
environment & = {¢,}, then it must be supercritical, and

D
Zn > Z, for ¥n > 0.

Hence
g = P{Z,—0}= lim P{Z,=0}= lim P{Z, <0}
n—oo n—oo
< lim P{Z; <0} = lim P{Z} =0} =¢" <1,
n—oo n—oo
as required. O

At the last, let us look at the case of p = 1 a.s.. In order to avoid trivialities and
additional absorbing states, we shall assume that 0 < po(¢,) + p1(¢n) < 1 for all
n > 0. Then we have

Theorem 6. If u=1a.s., Z;io(l‘g —1) < 400 a.s. and there is a constant ¢ > 0
such that po(C) > ¢ for all k from some kg > 0 onwards, then ¢ =1.

Proof. First, noting that 0 < ¢ < po(¢x) < 1, then for any constant z > 0, we
always can take 6 = ¢* > 0 such that

P{Zn = 0|Bx} > (po(G))? > ¢ =4, on {Zy <z}
Therefore, by Theorem 2 in [6], we have
P{Z,—0 or Z, —» +oo} =1. (%%)

Moreover, since yu = 1 a.s. = Wy = Z, a.5., noting that 372 (u¢; —1) < +00 a.s.,
by Theorem 3, we know that 0 < lim,,_,, Z, = Z < 400 a.s. exists, which together
with (xx) tells us ¢ = P{Z,, — 0} =1 as required. O
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It is easily to obtain that

Corollary 2. If y =1 a.s. and there exist a non-negative random variable X and
constants €,c > 0, such that p¢, —1 < J% for all sufficiently large j and po(¢r) > ¢
for all k from some kg > 0 onwards respectively, then ¢ = 1.

Corollary 3. If there exists some J > 0 such that u¢, = 1 a.s. for all j > J, then
qg=1.

We conjecture that if g > 1 a.s. with P{y > 1} > 0, then ¢ < 1 is probably
always true.

5. TWO NUMERICAL EXAMPLES

In order to explain our probability model and help to understand its mathemat-
ical framework we provide two simple numerical examples here.

Example 1. In this example, we consider a population development in some
environment, where the total amount of resource consumption will determine the
reproduction. We can persume that the total amount of resource consumption is
proportional to the accumulated number of the individuals who lived before or at
time n and with the decrease of the amount of available resource the reproducing
size will be reduced.

In our BPRE mathematical model we can suppose that the random reproducing
pgf in nth generation has the form ¢¢, (s) = ¢zy4.-42,(8), 1.e. (o =Zo+ -+ Zy,
and @, the collection of pgf’s is ® = {¢d(s), m =0,1,2,...}. Clearly, {¢,} here
is non-decreasing, since Z, is non-negative. By the definition of deteriorating en-
vironment, we should assume that p,, | as m — oo.

One can easily define ¢,,(s) in various forms for meeting different cases discussed
above in Sections 3 and 4 of the paper and construct simple counterexamples
to illustrate that the pgf of Z, can not be expressed by iteration of pgf’s of

¢C0a¢(1)"' a¢Cn—1‘

Example 2. In this example, we intend to try to establish another BPRE model,
where the environment deteriorates more slowly. Here we suppose that the resource
can be expanded within certain limits in the initial period but can not resuscitate,
which can describe that a group of individuals emigrate a closed place such as an
isolated island. We hope that in our model if the population size keeps in some
range then its corresponding reprodution shall be unchanged. Therefore, we can
use the the number of population increases minus the number of decreases to set
up a threshold restraining the development of the population. A concrete way of
doing this as below:

Let K€ Zy,ce Ry, ® ={¢r(s)}, k=1,2,..., where ¢(s) is the pgf of Poisson
distribution with parameter ¢ + #, i.e. ¢(s) = e~(c+)1=9) Given Zy = 2z > 1,
take ¢¢, = ¢1. Further, if ¢¢, = ¢;, then if

|{1::Zi—Zi_1 >0,0=1,2,... ,n}|—|{i:Z,~—Z,~,1 <0,i=1,2,... ,TL}l > K,

where |{-}| means the number of elements in the corresponding set {-}, then we
take ¢¢,,., = Pjy1, otherwise ¢¢, ., = ¢;.
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Here B, = 0(Zo,...,Zys), ( = {¢,} is adapted to {B,}, and is not iid and not
stationary. Let u = ¢. Then we can see that
1
Jim pej = Jlim $(1) = lim (c+ ) =c=p,
and p¢; is monotonically decreasing to p as we required.
Moreover, we can establish a more complicated model, in which (, not only depends
upon Zy, Z1,. .. ,Zy, but also upon a given random variable &,,. To the end, on the
base of above example, we add a pgf set ®* = {¢;(s)}, k =1,2,..., in which ¢}(s)
is the pgf of Poisson distribution with parameter ¢* + %, and an iid random variable
sequence {&,} with the distribution law as P{{, = ¢} = p, P{{, =c¢*} =1—p
(0<p<1)forn=0,1,2,.... Westart according to value of & to choose ¢¢, = ¢1
or ¢7. In case ¢¢, = ¢; or ¢}, if
|{Z 1 Z;—Zi1>0,i=1,2,... ,n}| - |{Z 12— Z;i 1 <0,i=1,2,... ,TL}l > K,

we choose ¢¢,,, = ¢j4+1 or ¢7,; at random according to the value of &, 41, other-
wise we let ¢¢, ., = @; or ¢] as the same as ¢, .

Here B, = d(Zo,... ,Zun;&0) D 0(Zo,---,2Zy,) and the pgf collection is ® U ®*.
We still have p¢, | p a.s. (j = o0), and where p is a random variable with the
distribution law as P{u =c} =p, P{p=c*} =1—-p.

Clearly, we can use the results in Sections 3 and 4 to deal with these mathematical
models.
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