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Abstract A linear code, when used for error detection on a symmetric
channel, is said to be proper if the corresponding undetected
error probability increases monotonously in ¢, the symbol
error probability of the channel. Such codes are generally
considered to perform well in error detection. A number of
well-known classes of linear codes are proper, e.g., the per-
fect codes, the MDS codes, MacDonald’s codes, the MMD
codes, and some Near-MDS codes. The aim of this work is
to show that also the duals of the MMD codes are proper.
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1 Introduction

An [n, k,d], code with symbols from a finite field GF(q) of ¢ elements is a k-
dimensional subspace of the n-dimensional vector space over GF'(¢), with mini-
mum Hamming distance d. When looking for a linear code for error detection on
a symmetric channel for information transmission, the choice of a proper code is
considered to be sufficiently good. Many well-known classes of codes, such as the
perfect codes, the MDS codes, MacDonald’s codes, the MMD codes and some
Near-MDS codes are proper (see, e.g., [14], [12], [6], [9], [5], [7]). The aim of this
work is to show that the duals of the MMD codes are proper as well. For notions
and results from Coding Theory used below we refer to [16].

The probability of undetected error P,.(C,¢) of an [n, k, d], code C used for error
detection on a g-nary symmetric channel depends on the symbol error probability
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¢ of the channel and involves the weight distribution { Ay, A1, ... , A, } of C, where
A; is the number of codewords of weight 7 in C, i.e.,

When ¢ is known, the best choice of an error detecting code in the class of all
[n, k], codes would be a code for which the undetected error probability (1) is as
small as possible within the class. Unfortunately, there exists no general method
for finding such a code, except exhaustive search [14]. Besides, the exact value
of ¢ is often unknown and the best choice might depend on €. This calls for a
criterion by which we can judge the usefulness of a given code for error detection.
The concept of a proper code provides such a criterion.

A linear code C is said to be proper for error detection if P,.(C,¢) as defined in
(1) increases monotonously in & € [0, %] (see [15], [12], and [14]). Such codes
possess some regularity in the sense that the smaller the symbol error probability
of the channel, the better they perform in error detection. In particular, they are
good in the sense of [14], i.e., they perform worst for the worst case symbol error
probability & = q;ql

Again, there is no general efficient method for determining whether or not a given
code with known weight distribution is proper. The work [6] provides a number
of sufficient conditions in terms of the weight distribution for a linear code to be
proper or good. In [1]-[5], [7], [9], and [13] these conditions were efficiently used
for study of the error detecting capability of some classes of well known linear
codes. In particular, the analysis in [13] showed that some standardized CRC
codes are not even good, while some non-standardized CRC codes turn out to be
proper.

In [8], sufficient conditions for a linear code C to be proper, derived in [6], were
stated in terms of the weight distribution of the dual code C*. The reason for
doing this was that in some situations the “dual” sufficient conditions turned out
to be technically more effective. In particular, this is the case when C* has a
small dimension or a small number of non-zero weights.

In this paper we prove that the duals of the MMD codes are proper by making
use of the dual sufficient conditions in [8]. For completeness, we present these
conditions and describe briefly the MMD codes in Section 2 below. The main
result and its proof are given in Section 3.



2 Preliminaries

Let C be an [n, k,d], code and let {By, ..., B,} be the weight distribution of the
dual code C* of minimum distance d*. We introduce the coefficients

¢
B; =0, BE:Z%BZ-, 0=1,...,n, (2)
i=1 \*
where j(;) denotes the i factorial moment j(j —1)...(j — i+ 1).
It was shown in [8] that if the inequalities
B ,>Bi . —¢""g-1), £=d+1,...,n (3)

hold, then C' is proper for error detection.

Remark. It should be noted that the above sufficient conditions immediately
imply that the well known mazimum distance separable (MDS) codes are proper,
a result obtained earlier in [12]. For if C' is an MDS code then d* =n —d+ 2 >
n—d—1, and (2) gives B:_, =0 for { =d+1,...,n, ie., the inequalities (3)
hold true.

Following [17] we now give a short presentation of the MMD codes and their
classification up to formal equivalence. Recall that two codes are said to be
formally equivalent if they have the same weight distribution.

An [n, k,d], code C satisfies the Singleton bound
d<n—-k+1.

The defect s(C) of C is defined as the difference between the Singleton bound
and the minimum distance of C| i.e.,

s(C)=n—-k+1-d.

If s(C) =0, C isan MDS code. For all other codes the defect is positive. If s
is the defect of C' and k£ > m + 1 for some integer m > 1, then

q"(¢g—1)
When
_q"(g—-1)
d e (s +m), (4)



C is called a mazimum minimum distance (MMD) code. In this case, if s > 1
then m = s(C+) =: s*.

The MMD codes have been classified in [17] (see also [11]) up to formal equiva-
lence as follows.

A. Let C be an [n, k,d], code with £ > 3 and s > 1. Then C is an MMD code if
and only if C is formally equivalent to one of the following codes:

Al. The [t [ T— _1 ,k,tg""']  t-times repeated Simplex code with t =1,2,... .

A2. The [qk_l, k, (q — 1)¢*?] generalized Reed-Muller code of first order. Here,
if g =2 then k£ > 4.

A3. The [¢*> + 1,4, ¢* — q], projective elliptic quadratic code with g # 2.

A4. The [(2 —1)g+2%,3,(2" — 1)q], Denniston code with 1 # 2*|q.

A5. The [12,6,6]3 extended Golay code.

A6. The dual [11, 5, 6]3 Golay code.

B. Let C' be a g-nary MMD code of dimension £ = 2 and defect s. Then C' is

equivalent to the [(s +1)(¢+1),2,(s+ 1)g|, (s + 1)-times repeated Simplex
code.

C. Let C be a g-nary MMD code of dimension k£ and defect s = 0. Then C is
equivalent to the [k + 1, k, 2], MDS code.

The weight distribution of an [n, k, d]; MMD code with s +m > % was deter-
mined in [17] as follows:

Ad — (k*m) (qm _ 1)’ Ad-l—l = Ad—|—2 = ...= An—k+m+1 = 07

()
(n —k+ v) @ - 1) .

An—lc—l—v = (k ’U)

(=1)*=™(s +m —1)(¢™ — 1) (k n ) (n —k+ v)7

v+s—1 —v vV—m

*MS

v=m+2,...,k.



3 The main result and its proof

The following is the principal result of this work.

Theorem The duals of the MMD codes are proper for error detection

Proof. Let Cy be the dual of some MMD code Cy. Then Cj is formally equivalent
to some code in A1-A6, B or C. When this code is from Al with t = 1, A5,
A6, B with s = 0 or C, the statement that Cj is proper is easily proved, so we
start by considering these cases.

Assume first that Cy is equivalent to the [qqk_—_ll, k,q*~1] Simplex code in A1 or to
the [¢ + 1,2, ¢|, Simplex code in B. The dual of the Simplex code is a Hamming
code which is proper ([14], p. 47). Hence Cj" itself is proper.

Now, let Cy be formally equivalent to the [12, 6, 6]3 extended Golay code in A5.
The latter is proper (see, e.g., [9]) and is known to be self-dual. Thus Cj is
proper as well.

If Cy is equivalent to the dual [11, 5, 6]3 Golay code as in A6 then Cj- is equivalent
to the [11,6,5]3 Golay code which is proper ([14], p. 106). Consequently, Cy is
proper. Note that this can also be concluded by using the sufficient conditions
(3%) in the proof of Lemma 2 below. Since for C; d—1=5andn—d-—1=5
in this case (3%) contains only the inequality 0 > A% — 2, which is true since
Ag =132 by (5) and thus Af = As/ () = 0.2857 < 2.

Furthermore, if Cj is equivalent to the [k + 1,k, 2], MDS code as in C, then Cjy
is an MDS code and is therefore proper (see [12] and also the Remark in the
previous section).

Assume now that Cj is formally equivalent to some code C from A1 with ¢ > 2,
A2-A4 or B with s > 1. We know that if the weight distribution of C satisfies
the inequalities (3), then Cj is proper. Since Cy and C’ are formally equivalent,
the inequalities (3) hold for Cj if and only if they hold for C'. In this way, to
complete the proof it suffices to show that the weight distributions of the codes
in A1 with t > 2, A2-A4 and B with s > 1 satisfy the inequalities (3). This
will be established in Lemma 2 below after a preliminary lemma, in which we
reformulate the conditions (3) in a form more appropriate for the codes under
consideration, reducing in this way the technical work of the proof of Lemma 2.



Lemma 1. Let the code C+ of defect s+ and minimum distance d* be the dual
of the [n, k,d], code C of defect s and weight distribution {A,,...,An}. If

Agp1 = Agpa = ... = Ap_gr =0, (6)
(g—1D(n—d") <q(d-1), (7)
(=12 0% “Day 4, ®)

(n—1)(4-1 n

and

then C* is proper.
Proof. Assume that (6)-(9) hold for C. The statement will follow if we show that

(6)-(9) imply (3). Introduce the coefficients

A /.
Ap=0, A4;=>-24, r=1..,n (10)

In terms of the parameters of the code C' the conditions (3) take the form
Ay v > AN i — g (g—1), £ =d-+1,... n.

Denote f =n—/¢, £=0,...,n—d*"—1 and write these inequalities in the
form

Ap> Ap — ¢ (g-1), £=0,...,n—d"—1.
From (6), d < n — d* — 1 and the above inequalities are then equivalent to
Ay > Ay, — ¢ (g-1), (=d-1,... n—d" -1 (3°)

We now split these conditions into two parts by considering the case £ = d — 1
separately. Replacing k* with n — k and d — 1 — n + k with —s we obtain that
for the code under consideration the conditions (3) are equivalent to

Aj o — A <g""Hg-1), £=d,...,n—d" -1, (3)

Ay <q(g—1). (3")

However, (3") holds for C, because A} = Ay/(") by (10) and (3") is then just
(9). We will show that (3') also holds for C' by proving that because of (6) and

6



(7) the n — d*+ — d inequalities in (3') are in fact equivalent to the inequality (8).
From (6) and (10), the coefficients A} involved in (3') are of the form

¢
Ar=-"9DQq, t=d. . n—d-

n(a)
In this way, for £ =d,... ,n —d* — 1 we have
Az+1_(£+1)(d)_ {+1 N d
Aj N g(d) 4+ 1—-d {+1—d
and thus
d d f(d)
Ay — A =— A} = . A
LT —d T i1 —d g
d l—1)...(l+1—d) d
= . Ag =Ly - —Aqg.
{+1—d n(d) d (@-1) n(q) d
Hence (3') is equivalent to
Z n_k d n
7 -4 Ay l=d,...,n—dt—1. (3")

lan ~q¢—1 ng
Consider the ratio

q£+1 qK {+2—d

(f + 1)((1,1) : g(dfl) — 1 {+1

:q@—%i%)<41—§5%),€=¢”wn—&—2

and apply (7) to get
41 ¢

q q qg—1 1
: <q(1-1=2)=1, ¢=d,... n—d+ -2
(C+1) @) La q( q )

and consequently

n— L
min ¢ = i :
d<t<n—dt -1 fiq 1) (n—d*— 1)((171)

Thus for the code C the n —d*+—d inequalities in (3") are actually equivalent
to the one inequality
n—dt—1 n—k
q S 4 d

. A
(n - dJ‘ — 1)(d—1) - q— 1 ’I’L(d) d

7



and hence to

(n — dJ‘ — 1)(d—1) dA
t 414,
(TL — 1)(d—1) n

which is in fact (8), since k —d*+ — 1= s+ — 2.

(g—1)g" ¢ 1>

We have shown in this way that (3') and (3") hold for C. Consequently, (3) holds
for C and C* is thus proper. O

Lemma 2. The codes in A1 with t > 2, A2-A4 and B with s > 2 satisfy the
conditions (6)-(9).

Proof. We start by the first case.

A1, t > 2. Let C be the [t%, k,tq""1], t—times repeated Simplex code with
k>3, t=2,3,....1It easily follows from (4) and (5) that

k k—1

g —1 E—1 q -
=t —k+1 -t =t— —k+1,
s qg—1 4 g—1 (11)
st=k—1, d'=2 Ag=¢" -1, Agp1=...=4,=0.

As we see, (6) holds for C. We now check (7). Since t+ (¢ —2) > 0, we have that
t(¢" —1)-2(¢-1) < t¢* —q,
or, equivalently, that
(g=1(n—-2) <qld-1),
which is (7). By (11), for the present code (8) has the form

(n—3)u- t¢*'(¢—1)
(n=1@y ¢ —=1)

(¢g—1)g" > (¢ — 1),

or, equivalently,

(n—1)(n—2) >
h—dmn-d-1 =71

But this inequality is valid since

n—1 n—2 >(n—1)2_<qk—1—qt—1)2
n—d n—d-—1 n—d/ gh-1—1

(q’“ —q+(g-1)(1- %))2

qk—l -1

-1 2
(14 7= 0-9) >



Hence (8) holds for C. To prove (9) we first note that

n—d—1 —d— .

n n n=j n—j
_ _ @+ T =2
<d) <n—d> Il 5=~ H n—d—;

J=0

n n—d—1 tqk L HE2
1 _
>(n—d) 'd:<tqkq1 1) 'tqk !

g—1

k _ k _
q° — 1 s+k—2 _ q° —q s+k—2 _ _
= (q’“‘l—l) g > (qk—1—1> =g

Using this in the left-hand side of (9) we obtain
—S n -8 S
(a—1)q (d) (q = 1)g "

=(q-1)¢*?*=(q-1)¢" % ¢ >¢">¢d"-1=4,

where we have used the fact that £ > 3 and that ¢ > 2. In this way, (9) also
holds for C.

A2. Now, let C be a [¢*"1, k, (¢ — 1)¢" 2], code with k > 4 when ¢ = 2. In this
case, (4) and (5) give

s=qk_2—k+1, stk—Z, d+ =

- (12)
Adzq(qk 1—1), Ad—|—1 =...:An_1:0.

Thus (6) holds for C. To prove (7) we use that ¢ > 3/2 implies ¢/(¢ — 1) < 3
and thus
-1 k-1
-3< -
q o
From this we obtain

(-1 -3) < q((q —1)¢F2 - 1)

which is (7). By (12), in this case (8) becomes

n—4)q- D¢+ 2
( )@-1) . (¢—1) a(¢*

q—1)¢" ">
=1 (n=D@-n ¢!

~1)



or, equivalently (note that since k& > 4 when ¢ = 2 there are no zero factors in
the denominators below)
¢1-1 < (n—1)(n—2)(n—3)
¢4+ “(n—-d)n—-d-1)(n—d-2)

_ (@ =D - 2)(¢* ' - 3)
¢ =12 -2)

Thus in this case (8) is equivalent to

("' =2)(" ' =3) 2" -2)= ("' - (" —29)

which is evidently true. Finally, using (12) again we see that for the code C the
inequality (9) becomes

g =1) < (g—1)g @ (Z’)

This is equivalent to

k=2 k420 k—1 _
no\. ¢ (g 1)’
n—d) ~ (¢—1)

which is the same as

nn—1)...(d+1) g k2 gk — 1)
m—d)(n—d—-1)...1 — (g—1)

Replacing n by ¢*~! and d by (¢ — 1)¢*~2 we get

qk—l(qk—l o 1) o (qk—l - qk—Z + 1) . qqk—2—k+2(qk—1 . 1)
¢+ 2(gF2-1)...1 - (¢—1)

and (9) becomes

qk—2_2 b—1 .
—1-=
g ja

L= T g1

g2 —k+1

To prove this inequality we note that (¢—1)j > 1. Hence ¢j > 1+ and therefore

¢ —1-7>¢" —qi=q(d" ).

Using this and that k£ > 3 we obtain

-2 g

k=2 k1
q -1- j k—2_ k—2_ (g k—2_ (. qq
” T2 >q" =gt OV Y

qg—1

10



and hence (9) is proved.

A3. Consider a [¢* + 1,4,¢* — ¢|, code C with ¢ # 2. In this case (4) and (5)
show

Ag=(¢* +1)q(g — 1) = nd; (13)

Thus (6) holds for C. We now check (7). Since 2¢g > 3 we have
¢~ ¢ =3¢+3<¢"—q"—¢
and

(¢—1)(¢* =3) <ql¢® —q—1),
which is just (7). Next, by (13) we find that in this case (8) takes the form

1 (n=5)@1 d
e S ol B
(g—1)g > D) 7

or, equivalently,

(n—1)(n—2)(n—3)(n—4)
n—d(n—d—-1)(n—-d-2)(n—d-23)’

¢’(g—1) <
where the right-hand side can be written as (¢ # 2)

P =1)(?-2)(*-3)  q(®—-2)(¢>—3) q(¢* —5¢*+ 6)

(¢+1)alg—1)(g—2) q—2 q—2

Therefore, in this case (8) is equivalent to the inequality
¢" = 5¢° +6> (¢—2)(¢" — ¢*) = ¢" — 3¢’ + 2¢°
and consequently to
3¢ = 7¢° +6 > 0.
This is true, since
3q3—7q2—|—6>3q3—7q2+4:3(q—1)(4—2)(Q+§) > 0.

Thus (8) is satisfied for C. Now, consider (9), which by (13) takes the form
@+ Dala 1) < - 02 ().

11



or, equivalently

(Z)zq“%f+4)

The latter holds true, since

(2) = (20 = s

_ @+l ]

-1 q2—j q2+1 (q2_1>q1
q - > .
g+1 i 4 qg+1 g—1

= (¢*+ )glg+1)7> > (¢ + 1)g* "

A4. Let C be a [(2' — 1)g+ 2%, 3, (2" — 1)¢],. For this code (4) and (5) give
s=2'-2, st =1, d"=3,
@:%@—n,Mﬂzm:%ﬂzo (14)

Again, (6) holds for C. By (14), in this case (7) becomes

(@—1)(2"=1)g+2"=3) <q((2"—1)g—1)
or
2 -1 —q2' -1+ (¢-1)(2'=3) < ¢*(2' - 1) —¢.

This is equivalent to
—q(2' —1)+q2" —1)—-2¢-2"+3 < —¢

and finally to

(2'-D+(@-2 >0

which is clearly true. Hence (7) holds for C. Using again (14) we find that in
this case (8) is

(n — 4)((1—1) ]
(n — 1)@=

|

n

5 (@ —1)

(g—1)g ">

N

and consequently

(n—1)(n—2)(n—3) 21,
n—d)(n—d—1)(n—d—2) > —5—d (g +1)

12



Note that since the defect of the code under consideration is positive, we must
have t > 1. The factor n — d — 2 = 2! — 2 is thus positive and so are the other
factors in the denominator of the right-hand side above. We now have

n—1_ (28—1)g+2'—1 21

n—d of @+l
and
n—3 S n—2 :(2t—1)q+2t—2:q+2t—2>q’
n—d—2 n—d-1 2t —1 2t —1
so that
t
Z—cll'nﬁdil.nidi2>22t1q2(q+1)’

i.e., (8) holds for C. Furthermore, (9) is in this case

n

e W]

or,

This is equivalent to

nn—1)...(d+1) n
(n—d)(n—d-1)...1 — 2

and, since n —d = 2%, to

(n—1)...(d+1)
(n—d—-1)...1

t_
> (g+1)¢* 2

For the left-hand side above we have

n—j ( n—1 )nd1: ((2t—1)q+2t—1)2t1
' n—d—1 2t — 1

=@+ 1" > (¢ +1)g" 2
Hence (9) also holds for C.

We have now come to the last case of the proof of Lemma 2.

13



B, s > 1. Let C be the [(s +1)(¢ +1),2,(s+ 1)q], (s+ 1)-times repeated
Simplex code of defect s, s =1,..., and dimension 2. We have shown in the
case A1 of this proof that the t-times repeated Simplex code of dimension £ > 3
with ¢t = 2,... satisfies (6)-(9). Since the proof of (6)-(8) did not take advantage
of the fact that & > 3, it carries over to k = 2 as well. To prove (9) in this case,
we notice that Ay = ¢*> — 1 by (5) and (9) thus becomes

(¢—1g° (Z) > ¢’ -1,

(M) > a1
() za+1

Since in this case s=n —d —1 > 1 we have

()= () =TT > () = e

or, equivalently,

and

q_s<z> > (q—l—l)(%)s >q+1,

i.e., (9) is satisfied for C. O

To conclude, we have shown in Lemma 2 above, that the codes in A1 with £ > 2,
A2-A4 and B with s > 1 satisfy conditions (6)-(9). So do the MMD codes
which are formally equivalent to codes considered in Lemma 2. By Lemma 1,
the duals of these MMD codes are proper, and the proof of the Theorem is now
complete. O
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