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Abstract

The pricing formulas for double barrier options with rebate can be
expressed as (infinite) series, see Kunitomo et al. (1992). This paper
derives error estimates for the truncation error that appears when these
series are approximated with a partial sum.
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1 Introduction

A double barrier option is an option which has a barrier above and below
the initial price of the underlying asset, and the option is activated (knocked
in) or extinguished (knocked out) as soon as one of the barrier is hit. A
double barrier option is sometimes combined with a rebate options. This is
an option which compensates for the loss that occurs if the knock-out option
is knocked out or the knock-in option never is knocked in.

Several people have analysed the pricing of double barrier options with
zero rebate. Kunitomo and Ikeda [7] calculated its value using the Levy
formula. They express the price of a double barrier option as series of normal
distributions. The formulas by Kunitomo et al. can also be found in Sidenius
[12].

Hui [4] solved the pricing problem using separation of variables and
Pelsser [11] derived the value with the aid of contour integration. Both
obtained formulas which describe the price of a double barrier option as
Fourier series.
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and Anna Areskoug and Hakan Norekrans, Front Capital Systems AB, for their comments
and suggestions.



Geman and Yor [3] derived expressions for the Laplace transform of the
double barrier option price. They invert the Laplace transform numerically
to obtain the option prices.

The rebate options corresponding to a double barrier option have been
examined in Hui [4], Pelsser [11], and Siddenius [12]|. In the two first men-
tioned papers the value of a rebate option is expressed as Fourier series, while
in [12] the price is described as series of normal distributions.

The numerical characteristics for the two different series solutions have
been compared in Hui et al. [6]. In that paper it is recommended that in a
trading system, the solution involving standard normal distributions should
be used, that is, the solution given by Kunitomo and Tkeda. The argument
is that cancellation errors can appear in the Fourier series which may lead
to substantial errors in the resulting theoretical values.

The main purpose of this paper is to continue to investigate Kunitomo-
Ikeda’s pricing formulas. We will derive error estimates for the truncation
error that appears when the infinite series are approximated with a partial
sum. Moreover, this paper shows that the rate of convergence for the trunca-
tion error decreases exponentially as the number of terms in the partial sum
increases. The investigation will provide us with an algorithm to compute
the price of a double barrier option which is easy to implement and gives
control of the truncation error. We will as well consider the pricing of rebate
options corresponding to a double barrier option. We will derive pricing
formulas and establish error bounds for the truncation error. It should be
emphasised that a similar research have been made independently by Lou,
see [9].

The remainder of this paper is structured as follows. In the next section
we will derive analytical expressions for certain distributions which involve
stopping times associated with a Brownian motion. We will discuss numeri-
cal characteristics of the formulas obtained. Section 2 may be of independent
interest since the distributions under consideration appear in other financial
problems, for instance the pricing of one touch double barrier binary options,
see Hui [4]. Section 3 discusses the pricing of double barrier options with
zero rebate and Section 4 deals with the pricing of rebate options.

2 Hitting and Exit Times
This section computes various laws involving the first hitting time and the
first exit time of a Brownian motion with drift. Take as given a filtered

probability space (2, F, P,{F:}i>0) carrying a Brownian motion {W;}s>o.
If b € R, the first hitting time of b, hereafter denoted A(b), is defined by

A(b) = inf{t > 0; W, = b).



Moreover, introduce a collection of probability measures {P?; § € R} given
by

PY(A) = E[e 2" +"11,], A€ F,

where E denotes expectation with respect to P. According to the Cameron-
Martin theorem we have that the stochastic process W, given by

Wl=w,—6t, 0<t<]1,

is a Brownian motion with respect to (P%, {F;}o<t<1). This fact will fre-
quently be used in the sequel.
The subject of the first part of this section is the following distribution,

Fi(a,b1,b9;0) = PY(W1 < a, A(b2) < A(b1), A(b2) < 1),

defined for b; < 0 < by, a < by and all & € R.
The key result in this section is the following lemma, the proof of which
is based on an idea described in Andersson, see [1].

Lemma 2.1. Suppose by < 0 < by, a < by and 6 € R. Set MO =0 gnd
PO =0 and define recursively the stopping times

AM = inf{t > p"=Y; W, = by}
and
p(n) = inf{t > A(nil) s Wy = bl}

forn > 1. Then, for anyn > 1,

n

Fy(a,by,b;0) = (PY(W1 < a, \*D < 1) — PY(W) < a, AP < 1))
1=1
+ PU (W) <a, XD <1, 00 < p),
1)

Proof. Firstly, let A= {\1) < p(U} and B, = {A\(® < 1}. Note that for all
w € A we have AN (w) = A®)(w), which implies p® (w) = p®) (w), which in
turn implies A®) (w) = A*)(w) and so forth. Hence, by induction on 7 it can

be shown that for all w € A° we have A" D (w) = A®")(w) for any n > 1,
and, accordingly from this

1By,—11ac = 1B,,14c (2)

for every n > 1. By a similar argument one can prove that for all w € A and
any n > 1 we have A(2%) = X(27+1) and, hence,

]‘B2n 1a= 1an+1 1a (3)



for every n > 1. Next observe that for any given sets C; and Cy we have
leylo, = 1oy — leyles. (4)
Successive applications of the equations (2), (3) and (4) yield

1,14 = 1p, — 1, 14e
= 131 — lelAc
=1p, — 1B, + 1,14
=1p, — 1B, +1B;1a

— 131 —]_32 +1B3 _"'_1an +1an+11A

for any n > 1. By integrating both sides over {W; < a} with respect to P’
we obtain equation (1). O

To give an explicit expression of the terms in the sum in equation (1) we
will introduce some definitions. In what follows we let ® denote the standard
normal distribution function, i.e.

() :/;e—%f%.

Morever, let {U;};>0 be the Brownian semi-group, i.e.

(U f)(z) = E[f(z + W],

where f : R — R is bounded and Borel measurable. Recall that if A is a
stopping time with respect to {#;} such that A < T P-a.s., where T is a fixed
positive number, then the strong Markov property for Brownian motion tells
us

E[f(Wr) | FAl(w) = (Ur—a@w)f) Waw)(w)) P-as..

This fact will be used in the next lemma, which considers the special case
0 =0.

Lemma 2.2. Let A be defined as in Lemma 2.1 and suppose a < by. For
any © > 1 it holds

P(Wy <a, A < 1) =d(a—2a0") (5)
and
P(Wy <a, \®) < 1) = &(a—2a"), (6)

where agi) =1(by — b1) + by and ag) =i(by — by).



Proof. We follow Karatzas et al. [8], p.95 and p.98. Firstly, fix a positive
number ¢ < 1 and note that the symmetry of Brownian motion implies
(U111 (—0,q)) () = P(b+ W1 ;< a)
:P(b+W1_t22b—a) (7)
= (Ul—t1[2b—a,oo))(b)
for any real numbers a and b.
The stopping time 7 = A A 1 is obviously bounded for any ¢ > 1.

The strong Markov property in combination with equation (7) now implies
for w € AN <1},

(2i—1)

Ui () (= o0sa]) (Wrw) (@)
Ui () L(—o0,a]) (B2

[ {W1<a} | F. ]

= (
= ( )
= (U1 () 123 —a,00)) (D2)
= (U1—r(w) 1 2bs—a,00) )(Wr (w))
= E[l{w,>26y—a} | Fr|(w
By integrating over {7 < 1} = {A#~1) < 1} we see that

P(W; <a, \&1 < 1) = P(W; > 2by —a, A&V < 1). (8)

Note that {A\?1) =1} ¢ {W; = by} and thus P(A% 1) =1) = 0. In
combination with equation (8) this yields

P(W; <a, A& <1)=P(W; > 2by —a, A& D <1).
Since by < 2by — a we find
{W1 > 2by —a, \& ) <1} ={Wy > 2y —a, p?2 <1}
and therefore
P(W; <a, \ZN <1) = P(W; > 2by —a, p%2 <1). (9)

Using the fact that 2bs — a > by and the symmetry of Brownian motion,
equation (9) gives

P(Wy >2by —a,p*™? < 1)
. (10)
= P(Wy < 2(b1 — by) +a, \&3) <1)

for i > 2. The equation (5) now follows by induction on .
By replacing A2~ by A(2) and p(?=2) by p(2~1) in the equations (9)
and (10) we also get equation (6). O



Next we extend Lemma 2.2 to arbitrary 6 € R.

Lemma 2.3. Let \(?) be defined as in Lemma 2.1 and suppose a < by. For
any i > 1 and any 6 € R it holds

Pe( Wi <a, AZ-1) < 1)= 626°‘§i)¢(a — 204?) —0)
and
PY(W; < a, A®) <1) =2 ®(q — 200) — ) (11)
where agi) and agi) are defined as in Lemma 2.5.

Proof. Fix an integer 5 > 1. Observe that
, 1
PY(W, <a, AV <1) :E[exp(—§ 0 + W) 1 1y, <o 20V <13)

a
1 )
:/ exp(—§ 6% + 0z)P(W; € dz, AV < 1).

—00

Introduce the constant «, defined by

o= agi), i=(j+1)/2, ifjisan odd number,
ag), i=73/2, if j is an even number,
From the previous lemma we get

diP( Wy <z, A9 < 1) = p(z — 20a),
T

1
exp(—g 62 + 0z) p(z — 2a)dz

—OoQ
a 1 1 dx
= exp(—=0>+0z — =(z —2a)? ) —
/;oo P ( 2 2( ) ) V2T
@ 1 dx
= exp (200 — = (z — 20— 0)?) —
/_ o 5 ) =
=e?0 / oz —2a — 0)dz
=2 ®(a — 2a — 0),
which proves Lemma 2.3. O



Next we will focus on the remainder term
PY(Wy < a, AC"HD <1, 2D < (D)
in the expression of F', given in equation (1). Observe that
PY (W1 <a, A®D <1 A0 < oMy < PO <0, A < 1)
(n)
= 2092 " P(a — 204%”) —0),

according to equation (11). By using the following well known inequality

1
d(z) < —Ze ™2 g <o,
x

we have that the remainder term is bounded by

PO(W; < a, A <120 < p0)

_ _ 9, _ py2
< 4(1) — exp (200 - (97202 — 07
a—2ay’ —0 2

ifa < 2a§n) + 6, which implies that, given v < 2,
PI(Wi < a, A7 <1, 00 < p0) = o(e )

as n tends to infinity. This result in combination with Lemmas 2.1 and 2.3
imply the next proposition.

Proposition 2.1. Suppose by < 0 < by, a < by and let agi) =1i(bg —b1) + b1
and o) = i(by — by). Ify < 2 then

F_|_(CI,, bla b2; 0) = Z (620‘9)9(@(“ — 204%1) — 9) — 620‘;)0(}((1 _ 204%1) _ 9))
i=1
+ Rn+1

,n’Y)

where R,11 = o(e , M — 00, or more precisely

Q) n
|Roy1| < €22 ®(a — 205" — 0).

Proposition 2.1 shows how the formula for the distribution F. should be
implemented in order to be able to control the truncation error. Set

; (%) ; ; (%) .
pgz) = e2f D(a — 20(%2) —0) and pg) = 2’0 b(a — 2ag) —0).
Let

F{9(a,bi,bps0) = > (00 —p), (12)
{i;p5)>¢}



where € > 0. Proposition 2.1 now yields
| Py (a,b1,b250) — F\V(a,by,b2;60) | < e. (13)

Thus, if the desired accuracy is set to €, then one has to add the terms
(pgi) — pgi)), 1=1,2,... until pg) < €. The result will then have the desired
accuracy.

Of course, in practice there is one additional error source besides the
truncation error. The standard normal distribution must be evaluated using
some numerical method. However, there are efficient methods with very high
accuracy to compute the normal distribution function, see e.g. Cody |2]. The
error appearing from the approximation of the normal distribution function
may therefore be considered to be negligible compared to the truncation
error. Thus, in what follows we will solely focus the truncation error.

The remaining part of this section is devoted to introduce and to deter-
mine certain transition distributions that will be useful in the sequel. First
recall that for any 0 € R,

Fi(a,b1,by;0) = P(Wy < a, A(ba) < A(b1), A(b) < 1)
if b5 <0 < by and a < by. Now let for any 6 € R,

F_(a,by,by;0) = P* (W > a, A(br) < A(b2), A(br) < 1) (14)
if b1 < 0 < by and a > by. Furthermore, given b; < 0 < bs, set

G4 (b1, b2;0) = PP(A(b2) < A(b1), A(b2) < 1), 15
G_(b1,b230) = PP(A(b1) < A(b2), A(b1) < 1)

and
Gg(al,ag,bl,bg;e) = Pa(al < Wi < a9, A(bl) N A(bg) > 1) (16)

if b1 < a1 < ag < by. These distributions can be expressed with the aid of
the function F, as we will show in the next proposition.

Proposition 2.2. Let the functions F_, G4, G_ and Gy be defined as in
the equations (14)-(16). Then
F (a,b1,by;0) = F.(—a,—b1,—by; —0),
G (b1,be;0) =(0 — bo)
+ Fl (b2, b1,b2;0) — F_(bo, b1, b 0)
G_(b1,b9;0) =G (—b1,—be; —0)
and
Go(ay,a2,b1,b9;0) =P(ag — 0) — (a1 — )
— Fy(ag,b1,b2;0) + Fy (a1, b1,b2;0)
— F_(ag2,b1,b9;0) + F_(a1, by, by;0).



Proof. The expression for F_ follows at once from the symmetry of Brownian
motion.

Below, we let Ay = A\(b1) and A = A(b2). To prove the second equation,
note that

G4 (b, b2;0) =PO (W1 < by, Ay < A1, A2 < 1)
+ P (W1 >bo, Mg <A, A2 < 1)
=F, (by, by, by; 0)
+ PO(Wy > by, Ay < Ay ),

(17)

since {Wy > by} C {Ag < 1}. Tt is obvious that P?(W; > by, Ay = Ag) = 0
and, accordingly from this,

PY(Wy > by, Ao < A1) =P(Wy > by)
— PO(Wy > b, A\ < A2)
=PY(W; > by)
—PY(W1 > by, Ay < Aoy A1 < 1)

(18)

because {A1 < Ao} N{W7 > by} C {A\1 < 1}. The equations (17) and
(18) now yield the expression for G;. The expression for G_ follows from
symmetry.

It remains to determine G5. Observe that

Ga(a1,a2,b1,b2;0) :Pa(al <Wi<ag)
—Pa(a1<W1§a2, A1AA <1)
=PO(W1 < ap) — PP(W1 < a1)
—PY (Wi <ag, MAX<1)
+PO(Wy <a;, AN <1).

The expression for G5 is now a consequence of the fact that

PO (Wi <a, M A <1)=P'(Wi<a,da <A, X< 1)
+P0(W1 <a, A1 <)\2, A1 Sl)

for any number a. O

Next we will introduce the “truncated” counterparts to F_, G4+, G_ and
Go. Let Ff) be defined as in equation (12) and set

F (a,b1,b1;0) = F—E—E)(_aa_bla_bl; —0) (19)



if b1 < 0 < by and a > by. Furthermore, given b; < 0 < bs, set

GSf)(bl,bz; 0) = (6 — b2)
+F7(L6)(b2,bl,b2;9) —Fﬁe)(b%bl’bﬁg)’ (20)

G (by, b3 0) = G (—by, —bo; —0)
and

Gy (a1, az,b1,b;0) =@ (az — 6) — (a1 — 0)
—FJ(:)(CL2,b1,b2;9) —|—F4(_€)(a1,b1,52;9) (21)
— Fﬁe)(am bi,b2;0) + Fg)(al’ by, ba; 0)

if by <a1 <ag < bo.
From equation (13) and Proposition 2.2 we now get the following error
estimates,

|G+(b1,52;9)—G$)(b1,b2;9)| < 2, 22)
22
| G_(bl,bg;g) — G(_é)(bl,bg;g) | < 2¢,

and
|G2(a1,a2,b1,b2;0) — Gge)(al,ag,bl,bg;O) ‘ < 4e. (23)

In the remaining sections it will be shown that the value of a double
barrier options with rebate can be expressed as a linear combination of the
functions G4, G_ and Gj.

3 Pricing Double Barrier Options with Zero Rebate

The purpose of this section is to calculate the theoretical value of a double
barrier option with zero rebate. To be more specific, our aim is to express
the price in terms of the function G9, defined in the previous section. The
rebate options will be treated in the next section.

Because the market is assumed to be free of arbitrage, the following
relation must hold

UV = Uk + Uko,

where v denotes the theoretical value of a (call/put) option and [vg;/vk,] de-
notes the value of a [knock-in/knock-out| (call/put) option with zero rebate
and with the same option parameters as the (call/put) option. Moreover,
the barrier options are presumed to have the barriers at the same level.
Since the theoretical values of calls and puts are known it is enough to solely

10



price knock-in or knock-out options. We will henceforth focus on knock-out
options.

We assume throughout that the price of the underlying asset {S;}i>0
evolves under the risk-neutral martingale measure according to

S, = Soe(r—q—02/2)t+UWt’ t>0,

where the risk free rate r, the dividend yield ¢ and the volatility o are
assumed to be constants. Moreover, let the constants K, T, H; and Hs
denote strike price, time of expiration, lower barrier, and upper barrier,
respectively.

In what follows, let

T(H) =inf{t >0; S;,=H}, H>D0.

We are now in the position to establish the theoretical value of the double
barrier knock-out options. The proof of the next theorem is based on a
technique often referred to as “change of numeraire”, see Musiela et al. (1998).

Theorem 3.1. Set

B ln(:c/S’o) T
d(z) = To/T > 0.

and let ¢ = ¢(K), di = ¢(H1), and dy = ¢(Hs). Let moreover

_ 2
9():(7" q—0*/DVT and 0, = 0y + oV/T.
g

If K < Hy then the theoretical value vioe at time t = 0 of a double-barrier
knock-out call option is given by

Vkoe =Soe” T Go(max(c,dy), d2, dy, d2; 01)
— Ke_TTGg(max(c, dl), dg, d1, d2; 90) ,

where Go is defined as in equation (16). If K > Ha, vgoe = 0.
If K > H; the theoretical value viop of a double barrier knock-out put
option at time t = 0 is given by

’U]wp :KG_TTGQ (dl, min(c, dz), dl, dg; 90)
— S()e_qTGQ (dl, min(c, dg), d1, dg; 01) .

IfK < Hl, Vkop = 0.

11



Proof. The theoretical value of a double barrier knock-out call can be written
as

Vkoc :6_TTE[ma'X(ST - K, 0)1{T(H1)>T,T(H2)>T}]
B (a2
=Sye (ITE[e (o /2)T+UWT1{STZK,T(H1)>T,T(H2)>T}:|

~KeE (L4875 K,r ()T, 7(H2)>T} -

Let P be a measure on F, defined by the Radon-Nikodym derivate P =
e~ @/ T+eWr P We now find

Vkoe =Soe” " P(Sp > K, (Hy) > T, 7(Hy) > T') (24)
24
—Ke ™P(Sr > K, 7(H,) > T, 7(Hy) >T).

Set k = In(K/Sy), h1 = In(H1/Ss), he = In(Hy/Sy) and let n € R. The
scaling property for Brownian motion and the Cameron-Martin theorem give

P((nT +oWr) <k, oD, (7t + oWa) > by, max (nt +oWr) < hy)
= P( (9 + W1) <eg, Oréltléll(ot + Wt) > dp 01252(1(915 + Wt) < dg)

= PY(W) <c, A(dy) > 1, A(dg) > 1),

(25)
where ¢, d; and do are defined as above and where
g VT
.

Let 6y and 0; be defined as above. If we replace n by » —q — 02/2 in
equation (25) we obtain

P(St > K,7(H) > T, 7(H2) >T)
= PO (Wy > ¢, Mdy) > 1, Mdp) > 1).

The Cameron-Martin theprem gives that { Wy — ot } <4< is a Brownian
motion with respect to (P, {F;}o<i<r). Thus, by setting n = r — g + 02/2
in equation (25) we get

P(ST > K,T(Hl) > T, T(HQ) > T)
= POYWr > ¢, M(dy) > 1, A(dp) > 1).

The expression of vg,. now follows from equation (24) and the definition of
G,.

In a similar way one can prove the pricing formula for a double barrier
knock-out put. O

12



We must emphasize that the expressions in Theorem 3.1 for the value
of a double barrier option agree with the results derived in Kunitomo et al.
(1992).

Introduce the “truncated” price v
letting

()

koc Of @ double barrier knock-out call by

/U(E) :SOG_qTGgE) (maX(C, dl)’ d25 d17 d2’ 91)

koc
— Ke_rTGge) (maaX(Ca dl)a d2’ dl’ d2’ 00)’

where ¢, di, d2, 8y, and 6; are defined as in Theorem 3.1 and where the

function Gé‘) is defined as in equation (21). Then, according to equation
(23),

| Vkoe — v,(:o)c | < 4(Soe_qT + Ke_TT) €.

In other words, if one wants to determine an estimation ¥,. for the price
of a double barrier knock-out call such that the truncation error is smaller
than ¢, then this value may be obtained by setting Vg, = U,(:o)c, where

€= <0
~ 4(Spe 9T + KerT)’

With a similar argument one can derive error bounds for the approx-
(€) (e)

imation v op boc)
knock-out put.

, defined in analogy to v for the price of a double barrier

4 Pricing Rebate Options

In this final section of this paper we will calculate the theoretical value of the
rebate options. Let us first consider the rebate option belonging to a double-
barrier knock-in option. A holder of this contract will receive a prespecified
positive amount R (the rebate) at the maturity date T provided that the
underlying asset price mever crosses the barriers before or at the maturity
date. Thus, the payoff at the maturity date T of the rebate option belonging
to a double barrier knock-in option can be written as

R 1{ T(H1)>T,7(H2)>T }>»

where, as previous, 7(H) = inf{t > 0; S; = H}, H > 0. The theoretical
value vg;r at time ¢ = 0 of this option is therefore given by

Vgir =€ "L E [RY{ r(a1)>T, r(H)>T }]

= Re""P(7(Hy) > T, 7(Hs) > T).

13



Let 6y, di, and ds be defined as in Theorem 3.1. The scaling property
for Brownian motion and the Cameron-Martin theorem imply for any ¢ > 0

P(7(Hy) > t, 7(Hy) > t) = P%(\(dy) > t/T, A(dy) > t/T)  (26)
(cf. the proof of Theorem 3.1). Thus
vgir = ReTTT PO (X\(dy) > 1, Mda) > 1)
= Re T Gy(d1, dy, dy, do; 0p).

We turn now our attention to the rebate option corresponding to a double
barrier knock-out call. Let for the sake of conciseness 71 = 7(H1) and 75 =
7(Hs). The payoff at maturity T' of this contract equals

Rl{n N\ To ST}

The pay out will occur at the same time the barrier is reached, which is at
time 71 ATo. Thus, a holder of this contract will receive a prespecified positive
amount R at the time when the underlying asset price breaches the barrier,
provided that the asset price crosses the barrier before or at the maturity
date T'.

The theoretical value vy, at time ¢ = 0 of a rebate option corresponding
to a double barrier knock-out option equals therefore

Ukor =E[Rexp (— (11 AT2)) Liry amy <13
:RE[exp(—TTl) ]-{71<T2,71§T}]
+ RE[exp(—rﬂ) 1{72<T1,7'2§T}] :

To begin with, consider the expected value E[exp(—ri) 1{T1<72,7'1§T}]'
Set A1 = A(d1) and A2 = A(d2). Equation (26) yields

E[exp(_TTl) 1{7’1<T2,T1§T}] = Eeo [exp(—r T>‘1) 1{)\1<)\2,/\1§1}] )
where E% denotes expectation with respect to P%. Set
A= {)\1 < )\2, A< 1}.
From the definition of P% we have
[ 1 2
E [exp(—rT)\l) 1A] = E[exp(—r TN\ — 500 + 6oW1) lA}.

Recall that if {Z;};>0 is a (P, {F}>0)-martingale and X is a bounded
Fa measurable random variable, where A is a stopping time such that A <1
P-a.s., then the optional sampling theorem implies

E[XZ1| = E[XZ,]. (27)

14



Since the random variable exp(—rTA1) 14 is F,, measurable and bounded,
equation (27) yields

Elexp(—r T)\l—%eg +60oW1)14]
1
= E[exp(—?"TAl — 508A1 + 00W)\1) 1A]

1
= E[exp (6o — 02) Wy, — §9§A1 +02W, ) 14],

where 6y = /05 + 2rT. Note that W), () (w) = d1 if w € A and, accordingly
from this,

1
E[exp ((6p — 02) W), — 503,\1 +60:W,) 14]

1
= exp ((00 — 92)d1 ) E[exp(—§9§)\1 + GQW)\I) 1A :| .
Moreover, according to the optional sampling theorem,
1
E[exp(—505) +6:Wy,) 1a] = P(4)

= G_(dy,d;02).
We can summarize this as follows
E[exp(—rn) 1{71<T2,71§T}] = exp ((90 — 92)d1) G_(di1,d2;05).
In a similar way it can be shown that
E[exp(—rm) 1{72<71,72§T}] = exp ((6p — 62)ds) G1(d1,d2; 62).
To sum up, we have

Theorem 4.1. Let dyi, do, and 0y be defined as in Theorem 3.1 and suppose
that Go is defined as in equation (16). The theoretical value viir at time
t =0 of a rebate option corresponding to a double barrier knock-in option is
given by

vgir = Re™"T Go(dy, da, d1, d2; 0).

Let G+ and G_ be defined as in equation (15). The theoretical value vy,
at time t = 0 of a rebate option corresponding to a double-barrier knock-out
option equals

Vgor = R exp ((6p — 02) d1) G_(d1,do; 02)
+ R exp ( (90 - 92) d2) G+(d1, dQ; 02),

where 0y = \/93 + 2rT.
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Now let

Ul(:i) = Re™"" Gge) (di,dy,d1,da; 0p)

and
0l = R exp( (00 — 62) d1) G (di, do; 62)
+ R exp( (60 — 62) d2) GO (dy, da; 62),

where dy, da, 6, and 02 are defined as in Theorem 4.1 and where GSf), G(f),

and Gge) are given by the equations (20)-(21). We now have, according to
the equations (22) and (23),

|Vkir — ’U](ciz,l < 4Re e
and
|okor — 0 | < 2R (exp((By — ) d1) + exp( (0 — 02) d2)) €,

which give the desired error estimates.

5 Conclusions

We have addressed the problem of estimating the value of double barrier
options with rebate. We have derived error bounds for the truncation error
and described how the pricing formulas can be implemented so that one is
assured that the resulting prices have a certain accuracy.
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