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The modules ��� and ��� play an important role in deformation theory, the first as space
of infinitesimal deformations, while the obstructions land in the second. Much work
has been done to compute their dimension for rational surface singularities, culminat-
ing in the formulas of CHRISTOPHERSEN and GUSTAVSEN [4]. The ‘correct’ way to
define ��� and ��� also yields higher ��� . The purpose of this note is to generalise the
dimension formulas to these modules.
For rational surfaces with reduced fundamental cycle DE JONG and VAN STRATEN [6]
showed that the dimension of � � can be computed inductively from the multiplicities
of the singularities on the successive blow-ups. In the general case of a rational surface
singularity � of multiplicity 	�

� with first blow-up

�� the result [4, Thm. 3.8] is:
����� � ������ 	������ � 	���� �"! �#��� � � $� !&% � �'�)(

where % � �'� is an unavoidable correction term, which vanishes for large classes of
singularities (including reduced fundamental cycle). With the same correction term
one has [4, Thm. 3.13]:

�#��� � ��*�+� 	��,� �-! ����� � �$� !&% � �'�/.
Our main result is that the corresponding formula holds for the higher � � without
correction term: �#�0� � ��1�32 � � 	4�"! �#��� � � $�
with 2 � � 	5� an explicit function of 	 . If

�� is smooth, then
�#�0� � �� equals 2 � � 	4� , so

the value of 2 � � 	4� follows from the computations in [1] for the cone over the rational
normal curve of degree 	 ; see also (1.6).
We follow the arguments of [4] closely, replacing the computations of the different��� ’s in terms of functions on relations by computations with Harrison cohomology.
By means of a Noether normalisation (a flat map � 6 7 of degree 	 onto a smooth
surface) it suffices to look at relative Harrison cohomology, whose defining complex8
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is ��� -linear and therefore much smaller. We use here in an essential way that the
iterated hyperplane section of a rational surface singularity is the fat point of minimal
multiplicity 	 . The computations with relative Harrison cohomology work well for� 
�� . Our arguments reprove the � � -formula from [4].
DE JONG and VAN STRATEN [6] prove their formulas for � � and ��� with a one-
parameter deformation of the singularity (with reduced fundamental cycle) to the cone
over the rational normal curve of degree 	 and all singularities on the first blow up.
In this deformation the codimension of the Artin component and the dimension of ���
are constant. By induction on the singularities on the blow up it then follows that
the number of equations needed for the base space equals the dimension of ��� , a
property known as the surjectivity of the obstruction map. Surjectivity still follows
if we forget about rational double points and relax the requirements. I had hoped to
prove that every rational surface singularity admits such a good maximal deformation ,
but examples show that this is not the case.
I am grateful to Jan Christophersen for discussions and comments.

1. Cotangent cohomology

(1.1) The definition of � �� is most conveniently given in the context of a more general
theory and we set therefore � ���� � � � � �	��

����� � � . Let � 6 7 be a map of analytic
germs and � an � � -module. One gets the cotangent cohomology groups as

� � � �	� 7���� � � ��� ���
Hom ��� ��� ��� �� (�� � �

with � �!� �� being the so-called cotangent complex. What we need to know about it
is summarised in [3], [4]. A good reference, also for the next subsection, is [8]. We
actually work with the analytic version of the cotangent complex, which can be con-
structed from a Tyurina resolvent of the analytic �"� -algebra � � , see PALAMODOV’s
survey [12] and for more details his papers [9], [10] and [11].

(1.2) The higher cotangent cohomology can also be computed as Harrison cohomo-
logy. To give the definition we first recall Hochschild cohomology. Let # be a com-
mutative algebra of essentially finite type over a base ring $ . For an # -module � , the
Hochschild cohomology �%� � � #&�'$(��� � is the cohomology of the complex) � � #&�'$(��� � � � Hom * � #,+ � (�� �
with differential

�.- 2 � �./10 ( . . . ( / � � � �
/10 2 �2/ � ( . . . ( / � �"! �3 4 5 � � ��� �

4
2 �2/60 ( . . . ( /

4
7 � /

4
( . . . ( / � �"! � ��� � �98 � / � 2 �./10 ( . . . ( / � 7 � � .
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The same cohomology can also be obtained from the so-called reduced subcomplex)�� � #&� $ ��� � consisting only of those maps 2 � # + � 6 � that vanish whenever at least
one of the arguments equals 1.

Definition . A permutation � is called a ��� (�� � -shuffle if � � � ��� . . .�� � ��� � and� �	� ! � �
� . . .�� � �	� !�� � . Moreover, in the group algebra 
�� 7�� 8���� we define the
elements

sh��� � � � 3
� ��� ��� 7���� � !#"$�

sgn � � � � .

These elements give rise to the so-called shuffle invariant subcomplexes) ��%� � #,� $(��� � � �'&52)( Hom * � # + � (��3�+* 2-,/.�0 ��� � 7 � �21 for 1 � � � �43
and

) �
��� � #&� $(� � �65 ) � � #&� $(� � � defined in the same manner. Both complexes yield

the same cohomology, which is called Harrison cohomology 798;:�: � � #,� $(���3� .
Proposition. If <'5�$ , then Harrison cohomology is a direct summand of Hochschild
cohomology.

In the analytic case one has to use the analytic tensor product; precise definitions are
given by Palamodov [11]. We can now state the relation with cotangent cohomology.

Theorem. If the map � 6 7 is flat, then
� � � �	� 7���� �>= � 798;:�: � 8 � � � � �6� � ��� �/.

(1.3) Let � be a Cohen-Macaulay singularity of dimension ? and multiplicity 	 . We
can choose as Noether normalisation � 6 @BA a flat map of degree 	 . In fact, this is
only a map of germs of analytic spaces, but we are abusing notation here. The exact
sequence relating absolute and relative cotangent cohomology gives for an � � -module�

CDCDC 6 � � � �	�E@ A ���3� 6 � � � � ��� � 6 � � � @ A � � � 6 � �98 � � � �;@ A ��� � 6 CDCDC

As @FA is smooth, ��� � @FA���� � ��1 for � 
 � . We obtain therefore

Lemma. For any � � -module � one has ��� � � ��� � = � � � � � �;@GA���� � for � 
�� .

In particular, if � has minimal multiplicity 	 (e.g., a rational surface singularity), so
embdim � � 	 !H? � � , we may choose coordinates �JI � ( . . . ( I�K 8 A 7 � � such that the
projection on the space spanned by the last ? coordinates is a Noether normalisation.
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In terms of rings we have a regular local ring � � @�� I K ( . . . ( I�K 8 A 7 ��� and a homo-
morphism �+6 # making the local ring # of � into a free � -module of rank 	 , with
basis � � ( I � ( . . . ( I�K 7 ��� . The equations for � are of the form

I � I
4
�

K 7 �3
� 5 � � � I � ! � 0 ( ��� � (
	��
	 ����(

where � � ( � for � � 1 , . . . , 	���� .
(1.4) Let � be a rational surface singularity of multiplicity 	 
 � with local ring #
and Noether normalisation � 6 @ � , or in terms of rings ��6 # . We can obtain the
higher cotangent cohomology as Harrison cohomology 768E:�: �98 � � #&�
� ��� � computed
from the reduced complex. As illustration of this technique we repeat here the proof
of the following lemma, shown in [1]. We shall need the argument later on.

Lemma. The natural map 768E:�: �98 � � #,�
� ��# � 6 798E: : �98 � � #&��� � @ � is the zero map.

Proof . As � � ( I � ( . . . ( I�K 7 ��� forms a basis of # as � -module, a reduced Harrison� � !3� � -cocycle 2 is, by � -linearity, determined by its values on the � � !3� � -tuples of
the coordinates I � , . . . , IDK 7 � . Suppose 2 �JI

4
� ( . . . ( I

4
� � �(���� . Since 	,
 � , we may

choose a I * with $ ( � � ( . . . ( 	���� � and $��� 	 0 . Hence,

1 � �2- 2 � �JI
4
� ( . . . ( I

4
� ( I * � �2I

4
� 2 �JI

4
� ( . . . ( I * ��� 2 �JI

4
� ( . . . ( I

4
� � I *

! terms containing products I � I
4

as arguments .
Using the equations for � as in (1.3) we may again apply � -linearity to see that the
latter terms are contained in ��� C # . Hence, modulo ��� , these terms vanish, but the
resulting equation inside � ����� � ��� # contradicts the fact that I

4
� and I * are linearly

independent. �
(1.5) Another powerful tool is the comparison between the cotangent cohomology of
a singularity and its hyperplane section [3]. Let 2 � � 6 @ be a flat map such that both
� and the special fibre � have isolated singularities.

Main Lemma ([3], (1.3.2)). There is a long exact sequence
� � � �	�E@ ��� � �/� 6 � � � 6 � �� !� 6 � �� � 6 � � � 6 �#"� !� 6 �#"� � 6 CDCDC .

Moreover, �#��� ����%$ 2 C ���� �'&  �)( ! with &  � � �#�0� � � and ( ! the dimension of
the smoothing on which 2 lies in the versal base space of � .

(1.6) The Main Lemma becomes particularly useful if the maximal ideal of � anni-
hilates the ���� for � 
�� . In [1] it is shown that the cone over the rational normal curve
of degree 	 has this property. Moreover a formula is given for the dimension of all � � .
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To formulate it we first consider the fat point ��� of minimal multiplicity 	 ��� ! � ,
which is the iterated hyperplane section of the cone over the rational normal curve. We
define the number %�� � * as the dimension of � * 7 � � ��� � @ � . The dimension of � ��	� is
then � %
� � �98 � �,%
� � � . By e.g. [1, 2.4]

%
� � * � �$ 3
��� * � ��� � * 8�
�	� � � � � 
 � .

The first few values are %
�B� � ��� , %
� � � � ��� � ! � � �'� , %��B� " � ��� " � � � � � , %
� � � �
��� � � � � � �	� , %
� � � � ��� � � � � ��� , %
� � � �+��� � ! � " � � � � � � ��� . We combine them
in the power series �

K ��� � � 3
� � � % K 7 � � � � � .

Proposition [1, 4.7]. The Poincaré series

� K �!� � � 3
� � � 2 � � 	4�

C � � � � 3
�"� �

����� � ��$# C � �

of the cone � K over the rational normal curve is given by

� K ��� � � �
�

K �!� �"! � � ! � � C � 	 �*��� � � � �
�!� !
� � � � � �

� ! � .

For low values of � we get as dimensions of � �� # :

2 � � 	5� � � 	 �%�
2 � � 	5� � � 	 ����� � 	��,� �
2 " � 	5� � � 	 ����� � 	�� � � � 	��,� � � �
2 � � 	5� � � 	 ����� � 	�� � � � � 	 � �'& 	 !)( � ���
2 � � 	5� � � 	 ����� � 	�� � � � � � 	 � �'& 	�!)( � �5� �
2 � � 	5� � � 	 ����� � 	�� � � � � � 	 � �'��� 	 " !
�*� � 	 � ���*+�( 	 !,( 1 � �	� 1 .

For the cone � K the dimension of the ��� equals the number of generators as � � -
module. For an � � -module � we denote the minimal number of generators, which
is
�#��� � � � � , by -/. � . Feeding the above results in the Main Lemma and using the

arguments of [3, 5.1], one obtains (see [1]):

Theorem. For all rational surface singularities of multiplicity 	 one has that -/. � � �2 � � 	4� for � 
�� .
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2. The tangent complex with values in a sheaf

(2.1) To describe the relation between cotangent cohomology of a singularity and
its first blow-up one has to globalise local constructions. We use the analytic cotan-
gent complex of PALAMODOV; for a general overview see [12], while some technical
details are to be found in [10].
Let 2 � � 6 7 be a map of complex spaces. An analytic sheaf over � is a mor-
phism of complex spaces � ��� 6 � together with an ��� -sheaf � . On � we have
the sheaf � � � �	� 7���� � whose stalk at a point � (	� is the cotangent cohomology� � � � � � 
 ��� � �6��� � ! 
 ��� � ��� � � . This sheaf occurs in a local to global spectral sequence


 � �� ��� � � 2 � � � � � � � �	� 7���� � � ��� � � � � � 7 ��� � .
In our application, where we will calculate the left hand side, also the right hand
side reduces to a familiar object. Under the condition that � � 2 � � � � � 1 for ��� 1
CHRISTOPHERSEN and GUSTAVSEN [4] obtain from Prop. 56 of the Appendix in [2]
that � � � �	� 7���� ��� � � � �	� 7�� 2 � � � , where 2 � � is a sheaf on � . For lack of reference
we give here a proof using PALAMODOV’s theory in the case that 2 � � 6 7 is a finite
map of germs.

(2.2) A polyhedron � in a complex space � is a relatively compact subset � 5�� 5
� together with a proper embedding � � � 6 � 5 @�� , where � is an open neigh-
bourhood of the unit polydisc � � , such that � � � 7 � � � � � . A polyhedral covering� � � ���#(� ("! � should satisfy �$# 5%�&� , if �$#(' �$� ��%) . A simplex of the nerve* � � � is a map # � � ? � 6 ! , written # � �  0 ( . . . (� A � , such that + �$� � ��,) . The set� � � + �&� � is again a polyhedron with � � �,- �&� � � + �&� � 6 - �.� � 5 @ �0/ , where1 � �32 1 � � .
Given a map 2 � � 6 7 and a polyhedron

�
5 7 a relative polyhedron over

�
is a

subset � with � � � 6 �	4�� � such that �65 2 � � 6 �75'7 is a proper embedding
and � � � 7 � � � � �8' 2 7 � � � � . A polyhedral covering � of �	� 7 over a covering 9
of 7 is a covering by relative polyhedra such that each �:� lies over some

� � � � � . The
mapping � between index sets induces a morphism � � * � � � 6 * � 9 � .
A resolving sheaf for � � 7 is a functor ; defined on

* � � � with values in the category
of sheaves of graded differential algebras, such that each ; � is a free graded commu-
tative algebra with a distinguished system of generators ( � # � of negative grading with
differential < such that the complex � ; � (=< � is a resolution of the sheaf

� � � ��� � � 5 2 � � � � � � * > /@? A0BDC /FE .
Furthermore, for G 5 # each generator of ;IH is mapped to a generator of ; � under
the morphism �	� � H � � ;JH*6 ; � , where � � H � @�� / 6 @K�.L is the canonical projection,
and the map ( � G ��6 ( � # � is injective. The elements in ( � # � which are not in the
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image of any of the maps ( � G � 6 ( � # � with G a proper subsimplex, are called proper
generators . The functor ; is completely determined by giving all the proper generators( � �

4
and the values < � ( � �

4
� . The proof of the existence of a resolving sheaf for �	� 7

for any polyhedral covering � of � over a covering 9 of � in [10, Thm. 1.1] follows
closely the absolute case in [9].
Let � � � � � 5 � � � � � 6 � . The functor � from

* � � � into the category of graded � �
algebras, whose value on # is � � � � � � � � � � ; � * > / ? A BDC /FE � is called the resolution of
�	� 7 on � .

Let now � 
� 6 � !� 6 7 and � a sheaf on � . Let � be a resolution of �	� 7 on some
polyhedral covering � , � a polyhedral covering of � over � and � � * � � � 6 * � � �
the induced map between the nerves of the coverings. The functor � � � � � � � � has
value � � � � � � � on # ( * � � � . Finally 2 � � is a functor from

* � � � to the category
of � � -sheaves.

Definition [10, Def. 2.2]. The tangent complex � � � � (�� � � 2��0 � A � � (�� � of the
resolution � with values in � has as term of degree ? the �"� -sheaf of � � -derivations
of functors � � � 6 2 � � of degree ? . In other words, an element � ( � A � � (�� �	� is
a collection of compatible � � � � -derivations � � ����
 � � � � � 6 � 2 � � � � � * � � �	� for # (* � � � . The differential in the tangent complex is given by 	�� � � � � � �	
 "���� � < with <
the differential in � . The cohomology of this complex is � A � �	� 7���� � .
(2.3) Let now 2 � � � (�� � 6 � 7 (=< � be a finite map of germs. We can choose the
coverings � of � and 9 of 7 to consist of one element each.

Proposition. There exists a spectral sequence

 ��� �� � � � � �	� 7�� � � � � � � � � A � � � 7 ��� � .

Proof . To compute the tangent complex � � � � (�� � we describe the resolving sheaf ;
in more detail. Let ��� be the polyhedron covering � . Let ;�� be a resolution of ��� with
generators (��4�

4
. This is basically the Tyurina resolvent of � � � � . The only simplices

occurring in
* � � � are of the form # � �2/ ( . . . ( / � . The proper generators of ; � are

divided into a basic group, consisting of ( � �
4

with
��� . ( � �

4
� ��� .�(�� �

4
� �#��� # , and a

complementary group of elements of degree � �#��� # , corresponding to the coordinate
functions I

4
on @FA�� . By considering the I

4
as complementary generators of ;�� of

degree 0 we have the relation
��� . ( � �

4
� ��� . (�� �

4
� �#�0� # for all proper generators.

The improper generators of ; � are of the form ( H �
4

with G 5 # a proper subsimplex.
We introduce a filtration � on ( � # � by setting � � (FH �

4
� � ��� . ( H �

4
! �#�0� G , which is

the degree of the corresponding generator of ; � . This is the same filtration as in the
proof of [10, Thm. 1.1], but this special case is simpler because there are no elements
with filtration 1. We denote for all $ � 1 by ! *� the subalgebra of ; � generated by the
identity and the generators of filtration at least $ . We define a derivation " � by

" � � ( H �
4
� � � � ��� � ( H$# # � �

4
! � � � � � 7 � ( H%# # � �

4
! CDCDC ! ( H$# # � �

4
(
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where G � ��� 0 ( . . . ( � �)� . The proof of [10, Thm. 1.1] yields that the differential in
; � can be written as < � � " � !�� � with � � a derivation such that � � � ( � �

4
� is a section

of ! * 8 �� if � � ( � �
4
� � $ .

Note that our " � differs from that in [10], in that it extends to the last index. We
indicate the first few terms of the resolution. Let # � �./ ( / � . To distinguish between
the indices we write # ���  ( � � . On @�� � we have coordinates I

4
. The map � � embeds

� � � ��� in the diagonal of @ � � 5 @ � � , so if we take coordinates I � � �
4

and I � # �
4

, we get
the 1 � equations I � � �

4
� I � # �

4
, which equals " � � I � � �

4
� . To each generator 2 of the ideal

of � correspond a generator ( � � ! . One has < � � ( �E� ! � � 2 � I � � � � , < � � ( # � ! � � 2 � I � # � �
and 2 �JI � # � � � 2 � I � � � � lies in the ideal of the diagonal, so equals 2

4
� I � � �
4

� I � # �
4

��� � � �
4

for some functions � � � �
4

. Therefore < � � ( � � ! � � � ( # � ! ! ( �E� ! ! 2
4
� � � �
4

I � � �
4

.
The filtration � induces a decreasing filtration on � � � � (�� � , of derivations � � � 6 2 � �
vanishing on the functor � � 7 7 * . In its spectral sequence the differential 	 0 is the
differential of the Čech complex of the covering � of � . The 
 � term is therefore� � � �	� 7�� � � � � � � . �

3. The formula

(3.1) We apply the results of the preceding section in the case that � is a rational
surface singularity of multiplicity 	 and � � �� 6 � is the first blow-up. Then � � � $� �� � and � � � � � � $� � ��1 for � � 1 . We choose a Noether normalisation � 6 7 =� @ � .
Note that the induced map

�� 6 �7 to the blow-up of the plane is again a finite map of
degree 	 , so we can compute the higher cotangent cohomology sheaves of

�� also as
relative Harrison cohomology: � �$� = � � � � �� � �7 � � $� � for � 
�� .
By Prop. 2.3 we obtain ��� � �	� 7���� $� � � � � � �	� 7���� � � , which equals ���� if � 
 � . The
local-to-global spectral sequence becomes


 ��� �� ��� ��� �� (�� � � �	� 7���� $� ��� � � A � �	� 7���� � �).
The sheaves on

�� occurring here are the basic objects of study. To shorten notation
we write

� � � � � � �	� 7���� $� �).
As only � 0

and � � contribute to the spectral sequence, we obtain (cf. [4, Cor. 1.7]):

Proposition. If � � �� 6 � is the first blow-up of a rational surface singularity then
one has short exact sequences

1 � 6 � � � ���(�� � 7 � �/� 6 � � � � � 7 � � � � � 6 � 0 � ���(�� � �/� 6 1
for all � 
 1 .
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Remark . CHRISTOPHERSEN and GUSTAVSEN [4] consider the absolute case. For� 
 � one has that � � = � � � � � ��� $� � . Comparison of the exact sequences for � �� and� � � �	� 7���� � � shows that even � � � ���(�� � � = � � � � ���(�� � � � ��� $� � � . This can be seen
directly as follows: we have the exact sequence

� 0 � 7���� $� �)� 6 � � � 6 � � � � ��� $� �/� 6 1 .
As 7 is smooth 2-dimensional the sheaf � 0 � 7���� $� � is isomorphic to � $��� � $� and
therefore its � �

vanishes, implying the isomorphism in question.

(3.2) Let
)

be the exceptional curve with its scheme structure, i.e., defined by � � $� .
We study the sheaves � � with the exact sequence

1 � 6 � � � � 6 � � � 6 � �� � � 6 1 .
Proposition. For all � one has

� � � = � � � � �� � �7 ��� $� ��� � $� � � ) �/.
Proof . We describe � with coordinates � � (��(� I � ( . . . ( I �)� , where � � 	 � � , and
project onto the � � ( ��� -plane. The blow-up of the plane can be covered by two charts.
By genericity of the projection we may assume that the two charts also suffice to cover�� . One chart (which is a germ along the exceptional divisor, for which we take a
Stein representative) has coordinates � � (�� � � � ( . . . ( � � � with � � ��� , I � � � � � . On the
second chart we have coordinates �	� (��(� ��
 � ( . . . ( ��
� � with � �
� � , I � � � ��
� so on the
intersection � � ���	� 
� .
We first look at the � -chart. We compute the stalk � �� from the Harrison complex) ��%� � � � � 0 �6� � � 0 ��� $� � � � . As abbreviation we write

) ��%� � #&��� ��G � . An � � ! ��� -cochain
� is determined by its values on � � ! � � -tuples of coordinates I

4
. For � � � �� � �7���� $� �

we have the complex
) ���� � � $� � � �6� $� ���
 ��� � ��� $� � � � (we write shortly

) ��%� � G � � ��G � ) with
cochains determined by their values on � � ! � � -tuples of coordinates �

4
.

We define maps < � ) �98 ���� � #&�
� (�G � 6 ) �98 ��%� � G � �
( G � simply by

� < � � ���
4
� ( . . . ( �

4
� � � � � I

4
� ( . . . ( I

4
� �/.

This does not give a map of complexes, but the following holds:
<�	 � � 	 <�(

where � stands for the map ‘multiplication by � ’. We check:
� < 	 � � ���

4
� ( . . . ( �

4
� � ��� 	 � � � I

4
� ( . . . ( I

4
� �

�2I
4
� � �JI

4
� ( . . . ( I

4
� � � � � I

4
� I

4
� ( I

4
� ( . . . ( I

4
� �"! CDCDC

�2I
4
� � �JI

4
� ( . . . ( I

4
� � � 3 � �

4
�
4
� � � ( �#��� �JI � ( I

4
� ( . . . ( I

4
� �"! CDCDC

� � �
4
� � < � � �!�

4
� ( . . . ( �

4
� � � 3

� �� �
4
�
4
� � � (���� � <F� � ��� � ( �

4
� ( . . . ( �

4
� �"! CDCDC

� � �
4
� � < � � �!�

4
� ( . . . ( �

4
� � � � � < � � ���

4
� �
4
� ( �

4
� ( . . . ( �

4
� �"! CDCDC

� � � < 	 � � ���
4
� ( . . . ( �

4
� �).
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The maps < induce a map < � on cohomology: if 	 � �21 , then � 	 < � �21 and therefore
	 < � �'1 as � is not a zero-divisor; furthermore, if � � 	�� then < � � 	 � <�� . As the
maps < are surjective, < � is also surjective.
The kernel of < � is the kernel of multiplication by � on 768E:�: �98 � � #,�
� (�G � : if < � ��� � ��1 ,
then < � � 	 <�� for some � and therefore � � � 	�� and conversely if � � � 	�� then
� < � � � 	 <�� , so < � � � � � 1 . This makes 798E: : � 8 � � G � �

(�G � isomorphic to the image
�9798E: : �98 � � #&�
� (�G � , giving the claimed isomorphism locally.
To see what happens globally we also look at the � -chart, where we have the map < 
 . If
� ( � � � we can write � �JI

4
� ( . . . ( I

4
� � � �%� �JI

4
� ( . . . ( I

4
� � and under the isomorphism

it is mapped unto � <��/� ���
4
� ( . . . ( �

4
� � � � �JI

4
� ( . . . ( I

4
� � . On the intersection we can

write � �JI
4
� ( . . . ( I

4
� � � � � � �JI

4
� ( . . . ( I

4
� � so the other isomorphism maps to a cocycle

homologous to �	� < 
 �)� �!� 

4
� ( . . . ( � 


4
� � � � � � I

4
� ( . . . ( I

4
� � . By � -linearity we have that� <��)� �!� 


4
� ( . . . ( � 


4
� � � � �98 � � <��/� ���

4
� ( . . . ( �

4
� � ��� � � � < 
 �)� �!� 


4
� ( . . . ( � 


4
� � . �

Remark . If � 
 � then � � � �� � �7���� $� � = � � �$� is concentrated in points, but in general
� � � �� � �7 ��� $� � is not. Its support is the critical locus of the map

�� 6 �7 . This follows
from a local computation in smooth points of

�� using the exact sequence

� 0$� � 6 � 0 � �7 ��� $� �)� 6 � � � �� � �7���� $� �/� 6 � �$� � 6 1 .
In particular, if

)
is reduced (i.e., � has reduced fundamental cycle), then the support

has no one-dimensional compact components and the � � of the sheaf vanishes.

(3.3) Proposition. � 0 � ���(�� �� � � � 1 .

Proof . A global section of the sheaf � �� � consists of a collection of local sections
� ( ) � 8 ��%� � #,�
� (�G � with 	 � � 1 such that the difference between two of them lies
in the ideal of

)
. So each � � I

4
� ( . . . ( I

4
� � gives rise to a global section of � � , which

therefore is a constant. To prove the proposition we have to show that this constant is
zero.
We now argue as in the proof of Lemma 1.4. In the ring G we have the equality

1 � �2- 2 � �JI
4
� ( . . . ( I

4
� ( I * � �2I

4
� � �JI

4
� ( . . . ( I

4
� ��� I * 2 �JI

4
� ( . . . ( I

4
� �

� 3 � �
4
�
4
� � � ( ����� � I � ( I

4
� ( . . . ( I

4
� �"! CDCDC

and we may divide by � to obtain
1 � �

4
� � �JI

4
� ( . . . ( I

4
� ��� � * 2 �JI

4
� ( . . . ( I

4
� �

� 3 �� �
4
�
4
� � � ( �#��� �JI � ( I

4
� ( . . . ( I

4
� �"! CDCDC .

We note that
)

is a principal divisor, defined by � . As � , � � , . . . , � K 7 � are linearly
independent modulo � � (��#� we find that � �JI

4
� ( . . . ( I

4
� � �21 ( � 0 � � � � . �
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Corollary. For � 
�� one has � 0 � � � �>= � � 0 � � �$� � .
(3.4) In order to compute � � � � � 7 � � we identify this group with the kernel of the map� � � � � 7 � � � � 6 � 0 � � � � . From now on we fix an element � , which is supposed to be
chosen generically.

Lemma. The kernel of multiplication by � on ��� � �	� 7���� � � is contained in the kernel
of the map � � � �	� 7���� � � 6 � 0 � � � � .
Proof . Suppose � ( ��� � �	� 7���� � � is annihilated by � , i.e. � � � 	�� . As 	�� � 1
modulo � , the argument of Lemma 1.4 shows that � takes values in the maximal ideal.
Consider � as global section of � � . We may assume by genericity of � that a global
section vanishes if and only if it vanishes in the chart � �� 1 (the special points of � �
on the exceptional divisor lie in this chart). The values of � lie in � and are therefore
in G divisible by � . We obtain that � � 	 � ��� � � . �
Lemma. Let � be a submodule of � �� , � 
 � containing the kernel of multiplication
by � . Then �#��� � � � � � -/. ��� .
Proof . Consider the multiplication � � �� 6 � . As � 5 � � the kernel is always
contained in �

� : � ��� � �� 6 � � � so under the assumption of the Lemma both kernels are
equal. As � is finite-dimensional, kernel and cokernel have the same dimension, and
the same holds for ��� . Therefore

�#�0� � � � � � �#�0� ��� � � � � . For a general hyperplane
section this dimension is -/. � � . �
The previous two lemmas show that

����� � � � � � 7 � � � � � � � � � 7 � � has dimension 2 � � 	5� .
We have to determine � � � � � � 7 � � . Since � is generic the cokernel of � � 7 � � �� 6� � � 7 � has support at the strict transform of the divisor of � . In particular its � �
vanishes and therefore the map � � � � � 7 � � � �� 6 � � � � � � 7 � � is surjective. The image
of the composed map � � � � � 7 � � � �� 6 � � � � � � 7 � ��6 � � � � � 7 � � is � � � � � � 7 � � . As� � � � � � 7 � � 6 � � � � � 7 � � is injective we obtain � � � � � � 7 � � ��� � � � � � 7 � � . For � � �
this group vanishes.

(3.5) To collect our results in formulas for the dimension of � � we introduce a name
for the remaining unknown term.

Definition . For a rational surface singularity � we define the invariant

% � �'� � �#��� � � � � � � �).
Remarks .
1) By Remark 3.2 the correction term � � � � � � � � � � � ���(�� � � �� � �7���� $� � � ) � � van-
ishes if � has reduced fundamental cycle.
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2) Our invariant is the same as the one CHRISTOPHERSEN–GUSTAVSEN [4] define
using their absolute version � ���� of the sheaf � � . This follows from the formula for� � . A direct proof can be obtained as in Remark 3.1. One tensors the exact sequence
occurring there with the invertible sheaf � $� � � ) � and uses that � � � ���( � � ���� � �� � � ���(�� ���� � � ) � � [4, Prop. 4.1].

Theorem. If � is a rational surface singularity of multiplicity 	 and
�� 6 � the first

blow up, then for � � � ����� � ��1� - . � �� ! ����� � � $�
with -/. ������ 2 � � 	5� as given in (1.6), and

����� � ������ 	������ � 	���� �"! �#��� � � $� !&% � �'�).

4. Good maximal deformations

(4.1) The dimension formula above is an inductive formula. To make it more explicit
we first define the multiplicity sequence of a rational singularity in the obvious way
as the sequence of multiplicities of the singularities on successive blow ups (this are
the infinitely near singularities, including the singularity itself). We denote by � � the
singularity at an infinitely near point � and by 	 � � � its multiplicity.
The � � -formula of [4] can be best stated as a formula for the codimension of the
(smooth) Artin component in the Zariski tangent space of the versal base space. We
denote this by invariant by -�� ����� � �'� . For the cone over the rational normal curve of
degree 	�

� it has value 	 �,� .
By induction we obtain from [4, Thms. 3.8 and 3.13] with Thm. 3.5 the following
formulas.

Theorem. For a rational surface singularity � of multiplicity 	
�#�0� � �� � 3

� 2 � � 	4�/( � 

� (
�#�0� � �� � 3

� � 	 � � � �*� � � 	 � � � �,� �"! 3
� % � � � �)(

-�� ����� � �'� � 3
� � 	 � � � ��� �"! 3

� % � � � �/(

where the sum ranges over all infinitely near singular points � of multiplicity at least
three.

(4.2) DE JONG and VAN STRATEN [6] derived their dimension formulas for � � and� � using a special deformation to the cone over the rational normal curve of degree
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	 and all singularities on the first blow up. The same deformation also yields the
surjectivity of the obstruction map.
The important ingredient in our dimension formulas is the multiplicity sequence. With
this in mind we define a more general class of special deformations.

Definition . A good maximal deformation of a rational surface singularity � of mul-
tiplicity 	 is a one-parameter deformation ��� 6 � such that the general fibre ��� has
as singularities cones over rational normal curves of multiplicity 	 � � � , one for each
infinitely near singularity of multiplicity at least 3.

Proposition. If a rational surface singularity � has a good maximal deformation, then
the number of equations of the versal base space equals the dimension of � �� .

Proof . Let ��� 6 � be a good maximal deformation of � . Versality induces a map� � � 6 G � , to the base space of the miniversal deformation. In a general point
� ��� � the

Zariski tangent space to G � has codimension 2 � % � � � � in the Zariski tangent space
at the origin, so one needs so many linear equations. To describe the base space at
the point

� ��� � one needs in addition 2 � � 	 � � �)� � � � 	 � � �)� � � quadratic equations.
Therefore one needs at the origin at least 2 � � 	 � � � ��� � � 	 � � ���3� �/! 2 � % � � � �
equations. As this number is the dimension of � �� , they also suffice. �
Remark . The � �

-formula above follows easily from the existence of a good maximal
deformation. Consider the long exact sequence

� ����1� � �� 6 � �� � 6 � ���� � � � �� 6 � ���� � � #� 6 � �� � 6 �#"��� � � � �� 6 �#"��� � � 	� 6 �#"�
The dimension of � " is constant in this deformation, so the rank of the @ � � � -module� "� � � � is equal to

����� � "� . Therefore 
 is surjective, and as the rank is equal to�#�0���
��
 � : � C � � � �#�0�

�
� : � C � � , we obtain that multiplication by � is injective, and there-

fore the map � is also surjective. By assumption on the deformation we have
�#�0� � �� �� 8���
 � �� � � � ��2 � % � � � � . The dimension of �

� : � C ��� � �� � � � � 6 � �� � � � � equals there-
fore also 2 � % � � � � and we obtain

�#��� � �� � ������� �  ! 2 � % � � � � . But we know
the dimension of the image of  : by [5] it equals the dimension of the Zariski tangent
space to G � in the general point

� �!� � . The codimension of the Artin component is
there 2 � � 	 � � � �,� � .
(4.3) The existence of a good maximal deformation is established by DE JONG and
VAN STRATEN for rational singularities with reduced fundamental cycle and by DE
JONG in the determinantal case [7].
In the first case one can deform to the singularities on the first blow up plus a cone
of degree 	 , but for determinantal singularities this is in general impossible. Specifi-
cally, if � contains one configuration of type ������ K 8 � (in the notation of [7]), then the
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dimension of ��� will be too small to allow a deformation to a determinantal with # �� K -
configuration and a cone (I checked this by computing � � in the case 	 � � ). But the
singularity does deform into two cones.
In the definition of a good maximal deformation we ignore all occurring rational dou-
ble points, for a good reason: the singularities on the first blow-up of � � are three# � ’s, and the cone over the rational normal curve of degree two is also # � but there is
no deformation � � 6 � # � .
I hoped to prove that every rational singularity has a good maximal deformation but
unfortunately this is not true. First we note that the dimension of the Artin component
equals � � ���� ( ���� � , where �� 6 � is the minimal resolution, with exceptional set
 � 
 ��� . . . � 
�� . As usual we denote by � � � the self-intersection of the irreducible
component 
 � . By [13, Prop. 2.2 and 2.5],

� � �	���( � �� � �
�3
� 5 � � � � ��� �"! � � �
���( � �� ��� ��. 
 � � .

The second summand gives the dimension of the equisingular stratum. The stratum in
the Artin component of fibres with a cone over the rational normal curve of multiplicity
	 as singularity has codimension 	 � � . By openess of versality these strata intersect
transversally in the base of a good maximal deformation.

Lemma. The general rational singularity with a given resolution graph does not have
a good maximal deformation, if 2 � � 	 � � � �1� �/
 2 � � � �*� � .
An example where this condition is satisfied, is obtained by generalising the � � -
singularity to higher multiplicity: consider a singularity with fundamental cycle re-
duced everywhere except at one � �,� � -curve, such that the first blow up has three sin-
gularities of multiplicity $ . The simplest way to do this gives the following graph,
where as usual a dot stands for a � �,� � -curve.


 7 * 7 *
. . .

� * 7 � �. .
.� * 7 � � 
 
7 *�� � ����



 � * 7 � �. . .




 


The singularity has multiplicity �1$ � � ; for $ � � it is indeed � � . Here we have
2 � � 	 � � � ��� � � 2 � � � ��� � � �1$ �'& .
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