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Abstract

This paper designs a numerical procedure to price discrete Euro-
pean barrier options in Black-Scholes model. The pricing problem is
divided in a series of initial value problems, one for each monitoring
time. Each initial value problem is solved by replacing the driving
Brownian motion by a lattice random walk.

Some results from the theory of Besov spaces will be presented
which show that the convergence rate of lattice methods for initial
value problems depends on two factors, namely the smoothness of the
initial value (or the value function) and the moments for the increments
of the lattice random walk. This fact is used in order to obtain an
efficient method to price discrete European barrier options. Numerical
examples and comparisons with other methods are carried out to show
that the proposed method yields fast and accurate results.
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1 Introduction

A barrier option is activated (knocked in) or extinguished (knocked out)
when the underlying asset price reaches a specified level, or barrier. It
is common to assume that the underlying asset is continuously monitored
against the barrier. However, for many traded barrier options the barrier(s)
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is (are) monitored only at specific dates. These options are usually referred
to as discrete barrier options.

The problem of pricing discrete barrier options in Black-Scholes model
has been discussed previously in the literature. A numerical procedure based
on the trinomial method has been investigated by Broadie et al. [BGK].
Zwan et al. [ZVF] consider implicit finite difference methods, Ahn et al.
[AFG] study an adaptive mesh model and Sullivan [Su] develops a method
based on numerical quadrature. Approximation formulas have been derived
in [BGK2] and [H]. The more general problem to compute Wiener integrals
was probably first studied by Cameron [C] in 1951. More recently in 1999
Steinbauer [St] developed a quadrature formula for Wiener measure and
discussed other numerical methods as well. For additional information about
Monte Carlo methods, see [BBG] and [BGK].

The purpose of the present paper is twofold. One goal is to design an
efficient numerical procedure to price discrete European barrier options. The
procedure is based on the idea of replacing the driving Brownian motion
in the underlying asset price with a lattice random walk. The procedure
that is presented in this paper will be able to handle discrete double as
well as discrete moving barrier options. In this way we extend a previous
work by Broadie et al. [BGK] which treats a trinomial tree appropriate to
price discrete barrier options provided that the option only has one constant
barrier. Recall that a trinomial tree is a lattice random walk where the terms
have at the most three possible outcomes. A numerical example indicates
that the procedure developed in this paper is considerably more efficient
for European styled options than the method proposed in [BGK]. However,
it should be remarked that our method cannot, in contrast to the method
designed by Broadie et al., be extended to price American barrier options.

The second aim with this paper is to continue the research by, among
many others, Leisen et al. [LR] and Heston et al. [HZ] to characterize the
rate of convergence of lattice methods for initial value problems. To this end
we will present certain results from the theory of Besov spaces (see [BL])
which will be useful to construct an efficient method to price discrete barrier
options. It should be emphasized that most previous research in this area
in the financial literature is restricted to solely trinomial trees. This paper
will, however, consider arbitrary lattice random walks with finite variance.

The paper is structured as follows. In Section 2 we give a brief introduc-
tion to the lattice method and make a first ansatz to price discrete barrier
options. Section 3 discusses Besov spaces and characterizes the rate of con-
vergence of lattice methods. In Section 4 we return to the problem of pricing
discrete barrier options. Based on the results in Section 3 we improve the
method discussed in Section 2. Section 5 shows some numerical examples.
Finally, Section 6 concludes this paper with some suggestions for future
research.



2 Preliminaries

Throughout it is assumed that the price of the underlying asset {S;}:>0
evolves under the risk-neutral martingale measure according to

o2

S, = SpelmT)HWe 4>

where {W;};>0 is a normalized Brownian motion and where the risk free
rate r, the volatility o, and the initial price Sy are assumed to be constants.

The theoretical price v at time ¢ = 0 of a discrete barrier knock-out
call/put with maturity date T and strike price K is given by

v=re "TE[Uk(Sr) 1{ m(t)<si<Ha(t),teM}] (1)

with Uk (z) = (z — K)T or Ui(zr) = (K — z)", respectively. The set
M = {t1,t2,... ,tm—1,tm} denotes the monitoring dates. We assume that
0 <t <ty... <ty ="T. The functions H; : M — [0,00) and H, : M —
(0, 0], where H; < H,, describe the barrier levels at the monitoring dates
M.

This paper will focus on the pricing of knock-out options. The values of
the corresponding knock-in options then follow by the fact that the sum of
two otherwise identical in- and out- call (put) options is a plain call (put)
option.

Next we will introduce some definitions. Let v = r — 02/2 and put for
eachi=1,2,... ,m,

a; = In (Hl(tz)/SO) - Vtz' and bz _ In (Hu(tz)/S()) - Z/tz' .

g g

Let for : = 1,2,... ,m the function x; : R — R be the indicator function of
the interval I; = (a;, b;), that is

( ) 1 ifx eI,
(z) =
X 0 otherwise.
Moreover, suppose that
=t —ti_1, 1=1,...,m,

where £y = 0.
Now, let the class of operators {U;};>0 denote the Brownian semi-group,
ie.

Uif)(z) = E[f(z+W)], z€eR, (2)

where f : R — R, and assume that

vm-1(2) = €T U, (Wi (S0 7O)xm() ) (2), T ER. (3)



If we define recursively
vi 1(x) = (U (vixi)) (@), z€R 1<i<m-—1, (4)

then the Markov property for Brownian motion tells us that the theoretical
value v of a discrete barrier option equals v = v(0).
Thus, one way to compute the theoretical price of a discrete barrier

option is to determine the functions v;, 1 = 0,1,... ,m — 1. We are thereby
led to the problem to compute the function
z = (U f)(z) (5)

for a given function f and fixed 7 > 0. This problem may alternatively
be expressed in terms of partial differential equations. Namely, under some
appropriate assumptions on f the function u(z,t) = (Upf)(z), z € R, t €
[0, 7], is the solution to the initial value problem

2 .
Gu =194 inRx(0,7],
uli=o=f onR

see for instance [KS]. Thus, the function z — (U, f)(z) equals the solution
of the initial value problem for the heat equation at a fixed time 7.

One well-known approach to estimate the function in equation (5) is
given by the binomial method. That is, the Brownian motion in equation (2)
is replaced with a binomial distributed random walk. In this paper we will
consider an extension of this method which can be described as follows. Let
¢ be a lattice random variable with P(( € Z)=1,Z ={... ,—1,0,1,... },

E[¢(]=0 and 0< X=Var(¢) < oo.

Furthermore, suppose (i, ..., (, are stochastic independent copies of ( and
set
() - t
UEP 1)) = Bl + n 3G, withn = o, 6)

forall h > 0, t € Ry, = Ah2N, N = {0,1,...}, and each z € R. We use
the convention that if A C R and ¢ € R then cA = {z; 2 = ca, a € A}.
In addition, in the sequel we assume that Zf;,cl a; = 0 for any k € Z.
According to the central limit theorem the sequence of random variables

n
. T
{hn 2_; Gi}oo,, with b, = —

will converge in distribution to W,. This gives us reason to believe that
UT(C’h”) f might be a good approximation of U, f for sufficiently large values

of n. However, as we will show in Section 4, this first ansatz can be improved
considerably.



3 Rate of Convergence

As a consequence of the continuous mapping theorem (see [D], p.87), UT(C’h") f
will converge point wise to U, f as n — oo if f is bounded and if the set of
all discontinuity points of f has Lebesgue measure 0. This section discusses
the rate of convergence as the number of terms in the random walk tends
to infinity. Thus, we want to state necessary and sufficient conditions on f
and ¢ such that, given £ € R and 7 > 0,

(U f)(z) — (U f)(z)] = O(n™®), asn— oo, (7)

for some a > 0.

There are lots of contributions to this problem in the literature. For
instance Berry and Esseen, [Be] and [Es], consider the special case when
f is piecewise constant and von Bahr [Bahr] when the initial value is a
polynomial. Diener et al. [DD] and Leimar et al. [LR] analyse the binomial
tree for initial values corresponding to the payoff function of a call option.
Kreiss et al. [KTW], Heston et al. [HZ] and Walsh et al. [WW] examine,
among other things, the dependence between the smoothness of f and the
convergence rate of the difference in equation (7). Butzer et al. [BHW]
investigate the convergence rate when the initial values f are differentiable
functions. Finally, Lofstrom [Lo6] presents sharp estimates on the difference
in equation (7) uniformly for all z € R if f belongs to a so called Besov
space.

Before we comment on these papers any further we will introduce some
definitions. The next definition has its origin in the theory on finite difference
methods (see [RM]).

Definition 1. Let ¢ be a lattice random variable with 0 < A = Var(¢) < oc.
We will say that ¢ is consistent of order u, where u is an integer, if

E[e’fc] = E[eiﬁw"] +0(E*2), as&—0,
where 1 is the imaginary unit and £ € R.

It is well-known that there is a close connection between the consistency
number and the moments of a random variable. On one hand, if ¢ has an
absolute moment of order p + 1, i.e. E[|¢|*T1] < oo, and ( is consistent
of order p then E[¢*] = E[WF] for all positive integers k < p + 1 (see
[D], p. 101). On the other hand, if {( has a moment of order p + 2 and
E[(*] = E[WF] for all positive integers k < p + 1 then ( is consistent of
order u (see [Lu], p. 23).

If ¢ is consistent of order y then it is also consistent of any order less
than y. For this reason one sometimes say that ¢ is ezactly consistent of
order y if ¢ is consistent of order p but not consistent of order y + 1.



In connection with a trinomial tree, each fixed increment of the underly-
ing random walk equals 0 or £1. Suppose the symmetrical random variable
7 has (at the most) three possible outcomes. Thus

P(n=0)=po and P(n=1)=Pn=-1)=p, (8)

with pg+ 2p1 = 1. The random variable 7 can be exactly consistent of order
2 or 4. To see this, note that from Taylor’s formula we have as ¢ — 0,

E[e®"] = po + 2p;1 cos(€)

2 4

=1—2p1%+2p1ﬂ+0(56)

_ 'S 'S 6
=125 Ak o)

2 4 1
=exp(—A %) + /\% (§ — )\) +0(€%).

Since E[exp(iW))] = exp(—A&2/2) we see that 7 is exactly consistent of
order 4 if

A=1/3
or, equivalently,

p0:2/3, p1:1/6.

For any other choice of A in (0, 1] the random variable 7 is exactly consistent
of order 2. In particular, we see that a random variable only taking the values
+1 is exactly consistent of order 2.

Next we will introduce certain Banach spaces known as Besov spaces and
below denoted by BS_, s > 0. The Besov spaces are subspaces of the Banach
space Cy, where Cy denotes the class of all continuous functions f : R - R
such that

i, S(@) =0
equipped with the norm || f||c, = maxzer |f(z)|.
The norm in the Besov space Bj,, henceforth denoted || - || Bs_, is given
as follows. Set s = k + y, where k is a nonnegative integer and 0 < v < 1.
If 0 < v < 1 then the norm will be defined in terms of a so called Holder
condition with exponent 7,

1
11l = 1 llca +sup Z1FDC+8) = FP o

6



where (%) denotes the k:th derivative of f. If v = 1 then the norm is defined
in terms of a so called Zygmund condition,

11l g1 =Ifllco + sup %Ilf"”)(- +1) = 2fB ) + B = 1)l -

In the literature there exist many other equivalent definitions of the norm
in the Besov space B . The definition here is taken from Brenner et al.
[BTW].

If s1 < sg then BSl D BZ2 (see [BL], p.142). Thus the functions in BJ2
are generally smoother than the functions in Bf!. Much more can of course
be said about Besov spaces and the interested reader is referred to [BL],
Chapters 6 and 7, and the references therein.

In the sequel we will sometimes use the term local Zygmund condition.
A function f will be said to satisfy a local Zygmund condition if for all ¢ > 0
and each € R we have

sup 1|f(:10+t) —2f(x) -|—f(:v—t)| < 0.
o<t<e t

Note that if f*) € Cy and f*) satisfies a local Zygmund condition then
f € BEFL

We shall introduce yet another Banach space, below denoted A2, s > 0.
The space A is a subspace to Cy with norm

1 h
1£la, = 1flleo + sup sup o [T f = Uef
0<h<1 tERy,

where R, = MhZN.
The following striking result is due to Lofstrom (see [Lo], p.408).

Theorem 1. Suppose that ( is exactly consistent of order . Then
A =By, 0<¢<uy,
with equivalent norms. Moreover, if f € Cy and

sup || UM f = Unf oy = o(h*), as h =0,
tERy,

then f =0.

Thus, the convergence rate is closely related to the smoothness of the
initial value f and to the moments of {. In particular, if f € B and if { is
consistent of order y, Theorem 1 yields that there is for each ¢ < min(y, s)
a constant C, independent of f and n, such that

C T
shn
1U5)f —Urflloy < —Z5lfllms: n> .

7



Here we recall that

p
Ry = 4/ —.
n n

Consequently, if f € BS, and if ¢ is consistent of order y then
| UL ) (@) = (Urf)(2) | = O(n™®), asn— oo, (9)

where

1

a=; min(y, s).

By applying this result to the trinomial tree it follows that if f has a
derivative f’ belonging to Cjy and satisfying a local Zygmund condition, then

| (U ) (@) = (U f) (@) | = O(1/n), asn — oo,

for any z € R. The random variable 7 is defined as in equation (8). If,
in addition, the derivative of order three f®) is in Cj and satisfies a local
Zygmund condition and, furthermore, 7 is consistent of order 4 then

| (U f) (@) = (U, f) (@) | = O(1/n?), asn — oo.

In the literature there are results similar to the one in the equation (9)
derived from Taylor expansions of the initial value f or U;f. See for instance
the work by Butzer et al. [BHW] or, for the trinomial tree, Heston and Zhou
[HZ]. However, the results by Butzer et al. and Heston et al. require more
local regularity of the initial value than in equation (9). For other results
along these lines, see [WW] or [KTW].

One can note as well that Theorem 1 states that if the uniform error
on the whole lattice equals O(h¢), 0 < ¢ < p, then f € BS,. The next
proposition, which is taken from [TW], shows a similar result for a fixed
time.

Proposition 1. Suppose that ( is consistent of order p and let 1 < ¢ < p.
Assume that for a fized f € Cy holds

[T f = Uy flicy = Ohs,),  as n— oo
Then f € B

Next we will focus on the important special case when the initial value
fr(z) = max(e® —k,0), £ > 0, and the lattice variable { = €, where € denotes
a symmetrical random variable with only two outcomes +1. It is known,
see for instance [DD], [LR] and [WW], that

(ULt fo) (@) = (Ur fa)(2)] = O(1/n),  as n— oo, (10)



for any fixed x € R. Thus, for the payoff function of a call option the
binomial method converges point-wise as O(1/n). In [WW] it is shown that
this result is the best possible in the sense that there exists a constant C,
independent of n, such that

UL fo) (@) — (Uy fi) () ~ C/n,

where a,, ~ b, means a,/b, — 1 as n tends to infinity.

Finally, we consider the convergence rate when the initial value is dis-
continuous. For this problem the next famous theorem by Berry and Esseen
is of great value (see [Be| or [Es|).

Theorem 2. Let {X;}2, be a sequence of i.i.d. random variables with mean
0, variance 1 and finite absolute third moment. There is a constant C only
depending on the third absolute moment such that the distribution function
Fu(z) = P(ﬁ Yo Xi < ) satisfies

|Fr(z) — @(2)| < C/Vn
for any x, where @ is the standard normal distribution function.

Let x4 denote the indicator function for the set A C R and let f, =
X(—o0,a]- Theorem 2 gives us

| (U fo)(2) = (Urfa)(2) | = O(1/V/n),  asn — oo, (11)

for any x and any ¢ such that E[|(|*] < oco. It is possible to show that
the convergence rate in equation (11) cannot be better than 1/y/n for the
special case ( = € and =z = a. More precisely, we have

U1 f)(@) = (U £)(@) | ~ 3=

see e.g. [Es] or [D] p.126.
We are now ready to deal with the main problem of this paper.

4 Pricing Discrete European Barrier Options Us-
ing Lattice Random Walks

In this section we will return to the problem of estimating the price v of
a discrete barrier option. Recall from Section 2 that v = v(0), where the
function vq is given by the following recursion scheme

[ =0t

(12)
Vi—1 = UTi ('Ui Xi), for 1 <i1<m-—1.



Firstly, the function v,—1(z) can easily be expressed in terms of the
standard normal distribution function. So in what follows we consider the
function v,,—1 as known.

As already described in Section 2, for each ¢ = 1,2,... ;m — 1 it is
natural to estimate the function v;_; by UT(f’h) (vi xi)- There is, however, one
disadvantage with this approach. Depending on the barriers, the function
v; x; 18, for any ¢ = 1,... ,m — 1, discontinuous at the boundary points
of the interval I;. According to the discussion in the preceding section, a
discontinuous initial value f may cause a slow convergence of the sequence
{UT(C’h)f} as h tends to 0. But suppose for a moment that f can be written
as

where g is a function such that U, g can easily be evaluated analytically and
¢ is in some sense a smooth function. Then the discussion in Section 3 gives
us strong reasons to believe that one will obtain a better estimate of U, f
by using

UT(C,h)¢ - U’Tg

instead of U(Ch f- Our next aim is to show how the functions v;x;, © =
1,... ,m — 1, can be decomposed as in equation (13).

For the sake of simplicity, assume that I;, 7 = 1,2,... ,m—1, are bounded
intervals, that is a; > —oo and b; < co. We will return to the special case
when some of the intervals may be unbounded later on in this section.

Fix an 7 such that s = 1,2,... ,m — 1 and consider the functions
i a(l
Yaulz) = o700 30 Sk (g gk (14
k=0
and
di ﬁ(l)
o, () = & ) 37 Bh (), (15)
k=0

where d; is a nonnegative integer. The constants 7,; and 73, can be thought
of as a positive and a negative number, respectively. However, we will for
the moment put no restrictions on 4, or 7,,. The coefficients ak and ﬁ
above are chosen such that 1),, and v, equal the (analytic) function v; and
its first d; derivatives at the points a; and b;, respectively. Thus

dkv; d*1p,, kv, ke,
an (%) = g (@) and oo (b) = dx’:h(bi)

for each £k =0,1,... ,d;.

10
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Figure 1: The functions v;, ¥4, and v, (cf. equations (12),(14), and (15), respec-
tively). The solid line is the graph of z — v;(z) for z € I;. The dashed lines are
the graphs of x — v, (z) and = — ¢y, (z) for z < a; and x > b;, respectively.

In practice, however, we will not (or rather cannot) differentiate the func-

tion v; to estimate the coefficients ag) or ﬁ,(:). Instead we will use numerical

differentiation. This step is described in greater details in Appendix A.
Now set

gi = ?Pai X(—00,a;] + wbi X[bi,00)> (16)

where x4 denotes the indicator function of the interval A, and

¢i = viXi + gi- (17)
Hence
Yo;(x) iz < ay,
di(z) = vi(z) ifa; <z <by
y, (z) ifz > b
The function ¢; is obviously d; times differentiable and, furthermore, since
the d;:th derivative qﬁgdi) is differentiable of all orders on the set R\ {a;, b;},

the function qﬁEdi) satisfies a local Zygmund condition.

If, in addition, we assume that s, > 0 and 7, < 0 then ¢\*) € Co and
thus ¢; € ng*l. Since U, g; can be evaluated using the normal distribution
and elementary functions (see Appendix B), we have obtained the desired
decomposition

ViXi = i — Gi

11



as in equation (13). Moreover, note in particular that, if d; > p; — 1 with
u; € Ny then ¢; € B5:. Hence, if d; = pu; — 1 and ¢ (1) is consistent of order
. . @ 1.
pi then equation (9) yields that |(US "™ ¢)(z) — (Ur,i)(z)] = O(n~2H)
as n — o0o.
To sum up, we propose

Algorithm 1. Let h > 0 and suppose that {¢),1 < i < m —1} is a

sequence of lattice random wvariables with Var(C(i)) = \;, where A\; and h
must satisfy the condition

T; € )\ihQN (18)

foreachi=1,... ,m—1. The theoretical price v of a discrete barrier option
is then approzimately equal to 99(0), where the function ¥y is determined by
the following recursion scheme

Om-1 =€ T Up, (‘I’K(Soe"T+a('))Xm('))’

19
o S (SN ) Ry : 19)
Bi—1 = Un, (Vixi + 9i) — Urgi, for1<i<m-—1
Here the functions g;, i =1,... ,m—1, are defined as in equation (16). The

Junctions Uy, g; can be computed using the receipt in Appendiz B. The coeffi-
cients {a](;)}zi:o and {ﬁ](;)}zizo in the definition of 1q; and ¥y, cf. equations
(14)-(15), are chosen such that

dkd)ai( ) = @
dok YT gk

for k=0,1,...d;, see Appendiz A for further details concerning the estima-
tion of the coefficients {a,(;)}ii:o and {ﬁ,(cz)}zizo.

dkapy, dk5;

(a;) and

Before proceeding, some comments about Algorithm 1 are in order. So
far we have assumed that a; > —o0 and b; < co. If a; = —00 or b; = oo for
some i, then we simply let g;(z) = ¥y, () X[p;,00) OF 9i(T) = Y, (Z) X (=o00,a:]5
respectively, in equation (19).

Note that the quantity h is constant, that is, independent of 7. This
restriction is imposed so that the lattice recombines between the monitoring
dates. Needless to say, the functions 9;, i = 1,2,... ,m —1, in equation (19)
shall only be calculated at the lattice points.

Before we conclude this section we will make some comments about the
computational complexity. Suppose, for some fixed 7 = 1,2,... ,m — 1,
that there are j numbers of nodes between a; and b;. It then requires
0O(j), j — oo, computations to calculate the function Uy, g; in equation (19).
On the other hand, the number of computations to evaluate the functions
UT(f’h) (0i xi + gi) or Uf(f’h)(ﬁi xi) is of order O(j2), j — oo. Thus, the cor-
rection term U, g; added to the lattice method will not change the compu-
tational complexity. However, since the algorithm in equation (19) requires

12



several evaluations of polynomials it is possible to improve the performance
of the algorithm by using Horner’s scheme (see [DB], p.14-15), which is an
efficient way to evaluate a polynomial.

5 Numerical Examples; Choice of Parameters and
Lattice Random Variables

This section gives some numerical examples and study the performance of
the algorithm for different choices of random variables (1) and parameters
di, ve; and yp,, 2 = 1,... ,m—1. The section is divided into two subsections.
Subsection 5.1 focuses on trinomial trees and equidistant monitoring times,
that is, () = 5 (cf. equation (8)) and 7; = T//m for each i = 1,... ,m —
1. Subsection 5.2 discusses other choices of lattice random variables and
arbitrary monitoring times.

5.1 The Trinomial Tree and Equidistant Monitoring Times

Thus, we assume that ¢() = 5 and 7; = T/m for each ¢t = 1,... ,m — 1.
Furthermore, let for simplicity the parameters d;, y,; and y,, be independent
of i and put d = d;, 7, = v, and 7, = 7, foreach i =1,... ,m — 1.

Figure 2 presents the value of 79(0), given by Algorithm 1, as a function of
n, the number of terms in the random walk between the monitoring dates (cf.
equation 6). In this first example we have picked A = 2/3 and 7, =y, = 0.
The option price is approximately 1.2624 (cf. the straight line in Figure
2). Consider first the case when we use just the basic trinomial tree and do
not add (or withdraw) any polynomial. The corresponding price is denoted
d = —1 in Figure 2. We see that the convergence is slow and oscillating. If
we add a polynomial of degree d = 0 the convergence is more regular but
the rate of convergence seems to be more or less the same. In contrast to
these examples, when d is equal to 1, which corresponds to differentiable
initial values, we get a faster and smoother convergence. When d = 2 or 3
the convergence rate does not increase. In fact, it becomes slower.

Before we proceed, let us just mention that this so called ’zigzag con-
vergence’ that can be observed in the cases d = —1 and d = 0 have been
analysed more carefully in [DD],[G], and [WW].

Figure 2 reflects very well the convergence behaviour for the proposed
method for all choices of A € (0,1] except A = 1/3, that is, when 7 is
consistent of order 4.

The next two figures present the convergence rate for d = 1,2,3, and
A =1 (the binomial tree) and A = 1/3, respectively. The option parameters
are the same as in the previous example. In the special case A = 1, Figure
3 displays that the convergence pattern is roughly the same as in the case
A = 2/3. On the other hand, if A = 1/3 Figure 4 shows that the method

13
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Figure 2: Convergence rate for the proposed method with { = 5 (trinomial tree),
A =2/3 and v, = v, = 0. The option parameters are Sy = 100, K = 90, H; = 80,
H,=120,0 =03, =0.1, T =1 year, and m = 50 (number of monitoring times,
corresponds to weekly monitoring). The monitoring times are equally spaced in
time.

1.291

1.28f F#—H—* d=3
d=2
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@
2
5126 _ S
u = - ==
g N P ————— -
S
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123 . . . . . . .
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Figure 3: Convergence rate for the proposed method with A = 1. The other
parameters are as in Figure 2.
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Figure 4: Convergence rate for the proposed method with A = 1/3. The other
parameters are as in Figure 2.

obtains the best convergence rate when d = 3. Table 1 collects the prices
obtained for different values of A and d. The table clearly illustrates that
the fastest convergence occurs when d = 3 and A = 1/3. Finally, Figure 5
shows how the smoothing of the initial value improves the convergence rate.

The next example, Table 2, investigates how the values of 7, and -,
influence the error, or rather, if there is a difference in the convergence rate
in the two cases v, = v = 0 and 7y, > 0, 7, < 0. From a theoretical point of
view there is a distinct difference between these cases. If 7, > 0 and 7, < 0,
then the function g (cf. Section 4) is bounded, whereas if v, = v, = 0 then
g(z) = O(z?%) as = tends to infinity.

Recall that the density function for the standard normal distribution
decreases as O(e_m2/ 2) as z tends to infinity. Thus we believe that the
growth in g has hardly any greater impact on the rate of convergence, as
the example in Table 2 indicates. Unfortunately, we have not been able to
prove this (see Section 6 for a further discussion). But still, we suggest that
Algorithm (1) should be used with the parameter values d = 3, A = 1/3 and
Yo = b = 0. Setting 7, = 7» = 0 has one practical advantage, the algorithm
is easier to implement.

Before we proceed and show some further examples of the performance
of the algorithm, one can add that there is a great difference in price between
a discrete and a corresponding continuous barrier option. There are known
pricing formulas for continuous barrier options with constant barriers (e.g.
[KI]). If we apply these formulas to the continuous counterpart to the double
barrier option presented in the caption of Figure 2, then we get that the value
of this continuous barrier option is 0.7022, which is only 56 percent of the

15



n d=1,A=2/3 d=1,A=1 d=3,)A=1/3

3 1.2539 1.2578 1.2605
4 1.2559 1.2555 1.2623
5 1.2566 1.2586 1.2619
6 1.2572 1.2581 1.2623
7 1.2581 1.2581 1.2624
8 1.2591 1.2576 1.2623
9 1.2589 1.2576 1.2624
10 1.2595 1.2588 1.2624
11 1.2594 1.2590 1.2624

Table 1: Convergence rate for the proposed method for different values on A and
d. The other parameters are as in Figure 2.

*—k—* d=3

13

price

v

1.281

124

L
2 4 6 8 10 12 14 16
n

Figure 5: Convergence rate for the proposed method when A = 1/3. The other
parameters are as in Figure 2.
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n v =00 v9%=01 =1 =10
3 1.2605 1.2605 1.2606 1.2608
4 1.2623 1.2623  1.2623  1.2625
5 1.2619 1.2619  1.2619 1.2620
6  1.2623 1.2623  1.2624 1.2624
7 1.2624 1.2624  1.2624 1.2624
8  1.2623 1.2623  1.2623  1.2623
9 1.2624 1.2624  1.2624 1.2624

10 1.2624 1.2624  1.2624 1.2624
11 1.2624 1.2624  1.2624 1.2624

Table 2: Convergence rate for the proposed method for different values on -y,
and 7. The value on d, A, and 7, are 3, 1/3, and —~,, respectively. The other
parameters are as in Figure 2.

value for the discrete barrier option. So it is worth to emphasize that one
should not neglect the fact that some barrier options are discretely and not
continuously monitored.

In the next example we have compared our method with an algorithm
developed by Broadie et al. (see [BGK]) which is designed to estimate the
value of discrete single barrier options. For simplicity we henceforth call
this method the BGK method. The idea behind the BGK method is as
follows. A discrete barrier at place H is replaced by a discrete barrier at
place H exp(+0.5hy,), with + for an upper barrier, — for a lower barrier
and where h,, is the stepsize for the log price. The factor 0.5k, is the ex-
pected overshoot of a trinomial random walk. Subsequently the theoretical
value is computed using the trinomial method on a mesh with the prop-
erty that certain nodes on the mesh coincide with the new barrier at place
H exp(+0.5hy,,). Numerical experiments in that paper indicate that the con-
vergence rate for the method is O(1/n). In order to increase the convergence
rate a Richardson interpolation is used. For further details, see [BGK].

Table 3 shows results from the different methods. The values in the sec-
ond and third column are taken from a numerical example in [BGK]. The
BGK method has been used with as well as without Richardson extrapola-
tion. In the final column we have the values from the method presented in
this work. As we can see, the example indicates that the method presented
in this paper outperforms the BGK method.

The final example in this subsection computes the value of a discrete
moving barrier option. The results are presented in Table 4. The price of
a moving barrier option with continuous barriers can be estimated using a

method described in [RZ].
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BGK BGK Ho
N (2-pt Extrapol.) | N
256 9.4969 40  9.4895
504  9.4935 9.4899 60  9.4907
1240 9.4919 9.4907 80  9.4907
2308 9.4912 9.4905 100  9.4906
4524 9.4909 9.4905 120 9.4905
8632  9.4907 9.4905 140  9.4905

Table 3: The value of a discrete down-and-out call, the option parameters are
So =K =100, H, =95, H, = 00, T = 0.2 year, 0 = 0.6, and r = 0.1. There are
4 monitoring dates which are equally spaced in time, i.e. the monitoring dates are
given by {7,27,37,47} where 7 = T'/4. The quantity N denotes the total number
of iterations, i.e. N = 4n. The random variables/parameters in H6 are ( = 7
(trinomial tree), v, = v =0,d =3, and A = 1/3.

m n kl:—ku:—5 k‘l:—ku:5

10 6.9918 5.0999
12 20 6.9918 5.1001
30 6.9918 5.1001
10 5.7039 3.8642
o0 15 5.7040 3.8641
20 5.7040 3.8641
6 4.9418 3.1920
250 8 4.9420 3.1921
10 4.9421 3.1920

Table 4: The value of a discrete moving double barrier knock-out call for different
number of monitoring dates (monthly, weekly and daily). The monitoring times
are equally spaced in time. The option parameters are Sy = 95, K = 100, H;(t) =
90+k;t, H,(t) = 160+k,t, T =1 year,c = 0.25, and r = 0.1. The random variables
and parameters are ( = n (trinomial tree), v, = v =0, d = 3, and A = 1/3. The
corresponding continuous prices are, according to [RZ], approximately 4.34 and
2.54, respectively.
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5.2 Arbitrary Monitoring Dates and Other Lattice Random
Walks

In the previous subsection we assumed that the monitoring dates were
equidistant in time. What happens if we drop this assumption? Recall
from Algorithm 1 that the monitoring times 7; must satisfy

i € Mih°N (20)

forall7 = 1,... ;m — 1. Thus, if the monitoring times are arbitrary then
the values of the parameters \; must in certain cases be dependent of 7.

Of course, it is not necessary to assume that the monitoring times are
equidistant, as in the previous subsection, to be able to find a A; which is
independent of i and satisfies equation (20) for all ¢ = 1,... ,m — 1. For
instance, if there is a A > 0 such that

7; € AN, (21)
forall:=1,... ,m — 1, and if we let
A
h=1/—
Ak

where k € Ny and A > 0, then it is evident that equation (20) holds with
Ai = A

Now, suppose that we must pick A; differently depending on i. How
should we choose the lattice random walk? Of course, we may apply the
trinomial tree for all A € (0, 1] but this approach has the disadvantage that
the random variable 7 is, unless A = 1/3, only consistent of order 2. As we
have seen in the previous sections, the proposed algorithm is more efficient
if the lattice random variable is consistent of order 4 than of order 2 and
hence, it would be of interest to find a class of lattice random variables where
the members of this class have different variance but still are consistent of
order 4. Next we will construct such a class.

Consider a symmetrical lattice random variable ¢ that have (at the most)
five possible outcomes with

P =0)=py and P =j)=P=—j)=p;, j=12

where pg+2p1 +2po = 1. The Taylor formula gives that the random variable
9 is exactly consistent of order 4 if

A A A
p0_1_1(5_3/\)5 p1—€(4_3A)a and p2—ﬂ(3/\_1)5
for any A = Var(«) such that
L, e
3 3



N My N Mo N Ms

21  2.6504 | 26 2.1340 | 28 2.0236
42 2.3586 | 52 2.2739 | 56 2.0219
63 2.3591 | 78 2.0549 | 84 2.0216
84 23591 | 104 2.0548 | 112 2.0216
105 2.3591 | 130 2.0548 | 140 2.0216

Table 5: The value of a discrete double barrier knock-out call with ran-
domly chosen monitoring dates. The quantity N denotes the total num-
ber of iterations, cf. Table 3. In the examples above the monitoring dates
are given by M; = {0.06,0.08,0.15,0.35,0.38,0.44,0.45,0.63,0.67,0.69,0.71,1.00}
M, = {0.12,0.25,0.27,0.45,0.48,0.55,0.69,0.72,0.73,0.87,0.89,1.00}, and M3 =
{0.19,0.37,0.57.0.62, 0.63,0.73,0.75,0,79,0.84,0.90,0.92,1.00}. The other option
parameters are as in Figure 2. The proposed algorithm has been used with { = 4,
Yo =7 =0 and d = 3.

Table 5 presents a numerical example which shows the convergence rate
when Algorithm 1 is applied with { = 4.

Next we will draw attention to certain other random variables that are
consistent of order 6. Recall that according to the discussion that precedes
Algorithm 1, we may expect that the convergence rate improves for greater
values of consistency number y;, provided that d; = u; — 1.

For instance, consider the random variable 6, defined by

P(g:O):po, and P(QZJ)ZP(HZ_]):p]a j:1’273’

with
(po =1— (49 — 42X + 15)?),
P = 4 (12— 13X+ 5)%),
< p2 = (=34 101 —5)2),
(p3s = =55(4 — 15X+ 15)2),
and
1

3(5—\/ﬁ)9§%(5+\/ﬁ).

Cumbersome computations yield that 6 is exactly consistent of order 6.

If we apply Algorithm 1 with the random variable € then we also get a
very fast convergence rate. For instance, for the option presented in Figure
2 the algorithm converges to the price 1.2624 already for n > 2 if A = 1 and
d = 5, see Table 6.

For a further discussion on other lattice random variables that can be
useful in lattice methods we refer to [H2].
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n A=3(5-v10) A=1

1 1.2525 1.2613
2 1.2615 1.2624
3 1.2617 1.2624
4 1.2623 1.2624
5 1.2624 1.2624

Table 6: The value of a discrete double barrier knock-out call. The option pa-
rameters are as in Figure 2. The proposed algorithm has been used with { = 6,
Yo =Y =0 and d = 5.

6 Conclusions and Suggestions for Future Research

This paper has designed a numerical procedure to price discrete European
barrier options and showed that the convergence rate of lattice methods
depends on two factors, namely the smoothness of the initial function and
the moments of the terms in the random walk. The pricing of discrete barrier
options is equivalent to solving a series of initial value problem for the heat
equation. The main idea has been to decompose each initial value f; as a
difference

fi = éi — g, (22)

where ¢; is smooth and the expectation of g; with respect to the gaussian
measure can be computed explicit. By applying the lattice method to the
smooth part ¢; we have obtained a numerical procedure that yields fast and
accurate results.

However, the research presented in this article leaves certain questions
unanswered. We will now conclude this section by raising some questions
that might be of some interest for future research.

e It would be of great value to prove certain modifications of Theorem
1. In our application we are perhaps more interested in point-wise
estimates of the error rather than estimates in the supremum norm.
It seems plausible that the convergence rate for

(UM f)(z) = (U f) (=) (23)

for some fixed x mainly depends on f around some neighbourhood of
. Therefore, it may be possible to derive sharp point-wise bounds
for the difference in equation (23) without having to assume that the
initial value f is in Cy (for instance).

e It would be of interest to investigate how the derivatives ﬁgk) best
should be estimated. This problem is also relevant in the estimation
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of delta and gamma (the first and second derivative of the option price
with respect to the underlying asset price).

e Given an positive integer u, is it possible to construct a lattice random
variable ¢ such that ( is consistent of order u?
Appendix A

The intention with this appendix is to show how the coefficients {ak}%zo in

can be estimated so that

dFep,
dzk

(a) = @(a) for each £ = 0,1 d
_d.’L'k - 91ttt 9

where ¥ is a function only known at discrete points, say at z € hZ with
h > 0.
Firstly, the Leibnitz rule implies

k k _
d 1pa(a) = Z (k,)'yk_Jaj, k=0,1,...,d.

k
dr =

Thus, oy, is defined recursively by

ki AN
ak:ﬁ(a)—g (_)’yk loj, k=0,1,...,d.
=0

It remains to estimate the derivatives of (z) at the point £ = a. A natural
approach to this problem is to differentiate an appropriate interpolations
polynomial. Suppose that [r] stands for the smallest integer > r and j* =
[a/h]. In addition, assume d < § € N and let x = [§/2]. If p denotes the
(interpolation) polynomial of degree § which satisfies

then the first d derivatives at the point a can be estimated by

dko dkp

w(a)fvdmk k:(),l,...,d.

2
&

In the numerical examples presented in Section 5 the above procedure
have been used with § = 3 with exception of Table 6 where § = 5.
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Appendix B

Using the following lemma, the functions U,g;, i = 1,2,... ,m
evaluated in an efficient way.
Lemma 1. Let ¢(z) = %@(x). If
9 = Ya X(—c0,a] T Vb X[b,00)
where 1, and Py are defined by
L
@ba = ¢elo (z—a) k_l'c T — a
k=0
and
% B
dule) = D3 L oy
k=0
then
_pelay 2§ ( Gk @ T
(Urg)(a) =e Z( o M (5= = avT))
+ enla-btaf 72 Z (@ EISINCALESWEY
— k! VT
where
dk o ‘
= rk/2 Z —;T (x —a+7,7)
i=0
and

) kg |
ﬁkZTk/QZ—Z;,F (z—b+p7)*
i

and where the functions My, are defined recursively by

@(y) if k=0,
My (y) =  —»(y) ifk =1,

Yy Mi(y) + (k— 1) Myo(y) ifk=2,3,...
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Proof. Let éy be defined as above and set 4, = Yov/7 . If P2 (&) = ta(z +
V7€) then

d .
Pa(€) = @ OTEN" T 65 4k

prd k!
since for any £ =0,1,... ,d,
(d—ki%(w+ﬁ€—a)i) ZTk/anHk(w-i-\/? —a)’
dek 2= ) £=0 £l Jo 4
= Gy

Let ¢, = (a — z)/+/7. The scaling property for Brownian motion and the
definition of v, give

(UT ('lpa X(—00,a] )) ('T) =K [¢a(-’15 + WT) X(—00,a] (-’13 + WT)]

=E [$ha(W1) X(—c0,ca] (W1) ]
d

_ & [ .
—elea Yok [ e ¢ - qu)tle)de.
k=0 =~ YT®
Note moreover that

[ e —atelers = [ (€0t 2 ote - )i

—0o0

= AP / © T ek (e) de.

-0

Thus, if we set

M) = [ " ko(e)de (25)

for each integer & > 0, then

d
T—a)+7 a N
(Ur (0 X(-00)) ) (&) = 2T/ 7 28 M (ca — o).
k=0

By using a similar argument we get

R B [
(Ur (95 Xjpo0) ) ) () = eP@OFH/2H ™ E / ek p(€)de,

! N
k=0 k! b~
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where ¢, = (b— z)/+/T, % = 75y/7 and where the Bj:s are defined as in the
proposition. From the symmetry of the normal density we now conclude

d A
(Ur (%5 Xppo0) ) ) () = €M@ DF1/2 Z ﬁ— —1)F My, (5 — c)-
k=0

It remains to show that the functions My, kK = 0,1,... ,d, satisfy equa-
tion (24). It is evident that My(y) = ®(y). Since d%(p(f) = —£p(&) we also
have Mi(y) = —p(y). Partial integration now yields for k > 2

Miy) = ¢ 10| +(-1) [ el

= ’yk_1 Ml(y) + (k - 1) Mk_g(y) .
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