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Abstract. This paper considers the problem of pricing discrete barrier op-
tions. A discrete barrier option is a barrier option where the barrier is
monitored only at specific dates. This paper continues the work initiated
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tions. Numerical examples presented in this paper show that the formulas
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1 Introduction

A barrier option is activated (knocked in) or extinguished (knocked out)
when a specified asset price, index or rate reaches a specified level, or barrier.
If a barrier option has two barriers then it is usually referred to as a double
barrier option.

It is common to assume that the underlying asset is continuously mon-
itored against the barrier. However, for many traded barrier options the
barrier is monitored only at specific dates. These options are usually re-
ferred to as discrete barrier options.

!The author would like to thank Christer Borell, Chalmers University of Technology,
and Anna Areskoug and Hakan Norekrans, Front Capital Systems AB, for their comments
and suggestions.



In contrast to continuous barrier options the price of a discrete barrier
option does not in general possess a closed form price formula. The price
can be expressed in terms of the multivariate normal distribution. Here the
dimension of the relevant multivariate normal distribution is equal to the
number of price fixing dates, which, in most cases, is too large for numerical
evaluation.

Methods to price discrete barrier options have been discussed earlier in
the literature. Methods based on the trinomial method have been investi-
gated by, among many others, Broadie et al. [BGK2], Horfelt [H2] and Ahn
et al. [AFG]. In [BBG] Monte Carlo methods were employed to price dis-
crete barrier options. Another technique which has given remarkably good
results was first proposed by Chuang, [Ch], and, independently, by Broadie,
Glasserman, and Kou, [BGK]. They proposed that one should use a result
from sequential analysis and queue theory, namely “Siegmund’s corrected
heavy traffic approximation”, which is useful to estimate the joint distribu-
tion of a random walk and its maximum.

Chuang only suggested the possibility of using Siegmund’s result for
pricing discrete barrier options. However, Chuang never pursued the idea.
Broadie et al. derived pricing formulas for some discrete (single) barrier
options, but not all.

The purpose of this paper is to continue the work initiated by Broadie
et al. and, by using approximations developed by Siegmund, estimate the
price of all discrete single and double barrier options. The work presented
in this article has similarities with an independent work by Kou, see [K]2.
This work will be further discussed in the next section.

We make the same assumptions as in the papers mentioned above by
Broadie et al. That is, we assume throughout that the price of the underlying
asset {S;}i>0 evolves under the risk-neutral martingale measure according
to

S, = Soe(r—q—o'z/Q) t—|—0’Wt’ t>0,

where {W;};>o is a Brownian motion and where the risk free rate r, the
dividend yield ¢, the volatility o, and the initial price Sy are assumed to be
constants. Moreover, it will be assumed that the monitoring dates, or the
price fixing dates, are equally spaced in time.

This paper is structured as follows. In Section 2 we will present the
results by Broadie et al. as well as our main result about single barrier
options. The latter result will be proved in Sections 3 and 4. Moreover,
Section 4 discusses Siegmund’s corrected heavy traffic approximation. In
Section 5 we will present some numerical examples. Section 6 deals with
approximations for the price of discrete double barrier options. Section 7
contains numerical examples for double barrier options.

*We would like to thank an anonymous referee for having brought to our attention
Kou'’s work



2 Discrete Single Barrier Options

The first part of this section specifies the payoff functions for those single
barrier options that will be treated in this paper. In Section 6 we return to
double barrier options.

In what follows, let K, T', and H denote the strike price, time of ma-
turity and barrier level, respectively. Moreover, let A denote the set of all
monitoring dates, i.e.

A={At, 2At,..., mALY, At=T/m,

where m is the number of monitoring times.
Assume Sy < H. If x = 1 then the payoff of a discrete up-and-out call
is given by

max (X(ST_K)aO)l{maxteASt<H}' (1)

If instead x = —1 then we get the payoff of a discrete up-and-out put. Up-
and-out calls/puts are sometimes also referred to as knock-out (up) options.
By replacing the event {max;c4 S; < H} in equation (1) with the comple-
ment {maxyc4 S¢ > H} we get the pay out function of discrete up-and-in
calls/puts, or knock-in (up) option. By replacing the set A in equation (1)
with the interval [0, 7] we get the payoff of a continuous up-and-out call/put.

Assume Sy > H. The payoff of a discrete down-and-out call/put, or
knock-out (down) option, can be written as

max (x(St — K),0) L minge s Se>H )

with x equal to 1 or —1, respectively. The payoff of a discrete/continuous
down-and-in call/put, or knock-in (down) option, are straightforward.

The most naive approach to approximate the value of a discrete barrier
option would be to ignore the fact that the barrier is discrete and price the
option as a continuous barrier option with the same barrier. For continuous
barrier options there are known formulas, see for instance [R]. However, nu-
merical examples show that this method can lead to substantial mispricings
(see [BGK]) even in the case of daily monitoring. In a paper by Broadie et
al. [BGK] it was shown that this simple approximation can be improved for
some barrier options just by shifting the barrier. The next theorem is taken
from [BGK].

Theorem 1. Let v?(H) be the price of a discretely monitored knock-in or
knock-out down call or up put with barrier H. Let v(H) be the price of the
corresponding continuously monitored barrier option. Then, as m — 0o,

1
vI(H) = o(HHVTI™) 1 o)
where + applies if H > So,— applies if H < Sy, and = —((1/2)/V 27 =~
0.5826, with ¢ the Riemann zeta function.



Numerical results presented in the same paper indicate that the shift
of the barrier gives surprisingly good approximations for moderate to large
values of m if the initial asset price is not too close to the barrier.

The proof of Theorem 1 in [BGK] was based on certain results developed
in a series of articles written by Sigmund and, to some extend, Yuh. In this
paper we will use the same results to determine approximation formulas for
discrete down-and-out/in puts and up-and-out/in calls. Note that none of
these options are included in Theorem 1.

Before we present our main result of this section we will introduce some
functions. Let N denote the standard normal distribution function and let
the function F; be defined in the following way

F,(a,b;0) = N(a —6) — e® N(a —2b—0)
for a < b, b > 0 and 6 € R. Moreover, ifa > b, b < 0 and § € R then we put
F_(a,b;0) = Fy(—a,—b;—0).
It is well-known that

F,(a,b;0) = P(0 +W; < a, 0127?241(975+Wt) <b)

and

_ ;0) = > i >b).
F_(a,b;0) =P(0+W; > a, 01;1;11(015—!- W) > b)

These facts will be used later on in this paper.
We are now in the position to present our main result about discrete
single barrier options.

Theorem 2. Suppose that
In(z/So)
r)=—-—-, x>0,
W) =T
and let c = ¢(K) and d = ¢(H). Set moreover
(r—q—o%/2VT

g

0y = and 6y =6y + oV/T.

Let vyoe denote the theoretical value at time t = 0 of a discretely monitored
up-and-out call. If K < H then, as m — oo,

Vuoc :SOeiqT (F+(da d+ /6/\/7_”’ 91) - F_|_(C, d+ ,B/\/T_n, 91))

_Ke_TT(F_}_(d,d‘}‘,B/\/T_n; 00) —F_|_(C,d+,3/\/'r_n; 90)) (2)



where (B is defined as in Theorem 1. If K > H, vyo, = 0.
The theoretical value v4op at time t = 0 for a discretely monitored down-
and-out put is given by

Vdop :Ke_rT(Ff(d’ d— /8/\/7_”’ 90) —F (C, d— /8/\/7_”5 00))
— Soe" " (F_(d,d — B/v/m;01) — F_(c,d — B/v/m;61))  (3)

1
+o(—=), m — oo,

vm
provided K > H. If K < H, vgop, = 0.

Remarkably enough, one will not get the above approximations by sim-
ply shifting the barrier as in Theorem 1. The pricing formulas for the
corresponding continuous barrier options are of course obtained by letting
m — oo in equation (2) or (3).

The value of the corresponding knock-in options now follow by the fact
that the sum of two otherwise identical in- and out- call (put) options is a
plain call (put) option.

Before we proceed and prove Theorem 2 we will make some comments
about the results in [K]. In that paper it is shown that Theorem 1 actually
can be extended to cover down-and-out/in puts and up-and-out/in calls as
well. However, numerical examples presented in Section 5 indicate that the
approximation formulas in Theorem 2 in most cases yield better results.

3 Pricing Discrete Barrier Options

The next lemma will be useful to price both discrete single and double barrier
options. The proof is based on a technique often referred to as change of
numeraire. The technique is also employed in [K].

Lemma 1. Let the function ¢ and the constants c, 01, and 0y be defined
as in Theorem 2. Suppose that H, and Hs are real numbers such that 0 <
H, < Sy < Hy and set dy = ¢(H1) and do = ¢(Hs). If x is a constant equal
to 1 or —1 then

™" E[max (x(St — K),0) Liminca S > 1, maxsen S: < o))
=xSoe” " P(x (01 + W1) > xc; Tt (d1,d2) > 1)
— xKe "'P(x (60 +W1) > xc, 0(dy,dg) > 1)
where, for all 6 € R and b; < 0 < by,

78 (b1, bo) = inf { t € {1/m, 2/m,...}; (0t + W3) ¢ (b1, b2) }.



Proof. Set mp = mingec4 Sy and My = maxyc 4 S;. Firstly, note that

e_TTE[ma‘X (X(ST - K)’ 0)1{mT>H1, Mrp<H> }]

2
_ (o2
=xSoe ™" E[exp (- 5T+ IWT) L x50 > XK, mp>Hy, Mp<H})

—XKe_TTP(XST > xK, mr > Hy, Mp < HQ).

Define a probability measure P by dP = exp(—(c2/2)T +oWy)dP. We now
get

eirTE[ma‘X (X(ST - K)’O) 1{TI’LT>H1, MT<H2}]
:XSOe*qT]s(XST > xK, mr > Hy, My < HQ)
— XKe_TTP(XST > xK, mr > Hy, My < HQ).

Set B = {1/7’)’1,,2/7’)’1,, ,1}, k = ]n(K/S()), h1 = ln(Hl/So), h,2 =
In(H,/8Sy), and @ = /T /o for n € R. The scaling property for Brown-
ian motion gives

P(x(nT + oWr) > xk, Itréi}ll(nt + oWi) > hy, rtneajc(nt +oWi) < ha)

0 @)
=P(x(0+W1) > xc, 7,,(d1,d2) > 1).

If we replace 7 by 7 — q — 02/2 in equation (4) we obtain
P(XST > XK, mr > Hl, MT < HQ)

= P(x (6o + W1) > xc, Tg?(dl,dQ) > 1).

The Cameron-Martin theorem states that { Wy — ot }o<i<r is a P-
Brownian motion. Thus, by setting n = r — ¢ + 02/2 in equation (4) we
get

P(xSt > xK, mr > Hi, My < Hy)
:P(X(el-l_wl) > Xc, Trenl(dladQ) > 1)7
which completes the proof. O

We will now introduce the discrete counterpart to Fy (cf. Section 2).
Set for b > 0, a < b, and 0 € R,

Fim)(a,b;O) =P(60+W; <a, 1}1631;((975+Wt) <b),

6



where B = {1/m,2/m,... ,1}. The next aim is to show that the price for
both a discrete up-and-out call and a down-and-out put may be expressed

)

in terms of the function Fim .

First, let us consider discrete up-and-out calls. Suppose that K < H.
Let ¢, d, 6y, and 01 be defined as in Theorem 2. By letting H; — 0 and
setting Hy = H and x = 1 in Lemma 1 we get

Vuoc :S()e_qTP(91 + W1 > ¢, I%aé( (01t + W) < d)
— Ke"TP(6y + W1 >, max (Bot + Wy) < d).

From the definition of Fj_m) we have
P(0+W1 > ¢, max (6t + Wy) <d) = F™(d, d;0) — F™ (¢, d;0),

for any 6 € R, which gives the desired representation, namely

vuoe =Soe T (F™ (d, d; 0,) — F\™ (c, d; 6,))
(5)
— Ke ™ (F\™(d, d; 80) — F™ (c, d; 65)).

In a similar way and by using the symmetry of Brownian motion it can
be shown that the value of a discrete down-and-out put is given by

Vaop =K e~ (F™ (—d, —d; —0) — F\™ (—c, —d; —6,))

— Soe™ M (F\"™ (~d, ~d; ~,) — F{™ (¢, —d; —01)),
provided K > H.
The next section discusses an approximation of the function Fj_m).

4 Siegmund’s Corrected Heavy Traffic Approxi-
mation

The following result is often referred to as Siegmund’s corrected heavy traffic
approzimation.

Theorem 3. Suppose b> 0, a <b and 8 € R. If

+ Wn > bym },

on

A (b) = inf {n € N; T

then, as m — oo,

P(0v/m+W,, < ay/m, A2 (b) <m)

= 629(b+ﬂ/\/m)N(a - 2(b + IB/\/’I’_I’L) - 0) + 0(—)7

where B is defined as in Theorem 1.



For a proof of Theorem 3, see [Si2] p.220-224.
First some comments about the constant 8. It can be shown that

8= W}i_r)nooE[W)\gn () — bvm; A, (b) < 0]

for any # € R (see [Si2], p.215). Thus, the constant 5 may be viewed as
an approximation to the average of the amount by which the random walk
{6n//m + W, }nen exceeds the boundary by/m the first time the random
walk is above the boundary.

)

Our aim is now to find an approximation of Fim based on Theorem 3.

Note that the scaling property yields
P(OVm + Wi, < av/m, Ao (b) <m) = P(0+ Wi < a, max (0t + Wi) > b),

where, as previous, B = {1/m, 2/m,... ,1}. Therefore, according to Theo-
rem 3,

Fj(Lm)(a,b;H) =P(0+Wi<a)
—P(0+W; <a, Igleaéc(Ht—l—Wt) >b)
=N(a —0)

— 200+B/Vm) N (6 — 2(b .y —
‘ (@ =206+ /ym) = 0) + o =)
as m — oo. If we compare this expression of Fim) with F in Section 2,
then we see that

F™ (a,5;0) = Fy (a,b + B/v/m: 0) + o —=), asm — o0, (7)

3

Thus, to calculate the probability of the event
{0+ W; <a, I%aéC(Gt-l-Wt) <b}

using the formula for a continuous barrier, one should first lift the barrier
B/+/m units upwards. This compensates for the fact that when the random
walk {0t + Wy, t = 1/m,2/m,...} breaches the barrier, it exceeds it on
average with 3//m units.

Equation (7) in conjunction with the equations (5) and (6) complete
the proof of Theorem 2. In the next section we will show some numerical
examples.

5 Numerical Examples

Let us first consider the value of discrete up-and-out calls with different
barrier levels but with the other parameters fixed. Table 1 shows the value



obtained by using different methods. In the first column in the table we
have the level of the barrier. The values of the other option parameters are
in the caption. The second column contains the value of the corresponding
continuous barrier option. In the third column we have used the formula in
Theorem 2, with o(1/y/m) set to zero.

The values in the fourth column are obtained by using a method pro-
posed in [BGK] and [K], that is, lifting the barrier upwards by a factor
exp(Bo+/T'/m) and then use the formula for the value of a continuous up-
and-out call.

In the fifth column we have collected prices obtained by a so called
trinomial method presented in [BGK2] (the errors of the trinomial prices
are according to the same article approximately +0.001). Finally, in the
last three columns we have the relative error measured in percentage for the
different approximations.

Note the surprisingly great differences in price between the discrete and
the corresponding continuous barrier option. So it is worth to emphasise that
one should not neglect the fact that some barrier options are discretely and
not continuously monitored. We also see that the approximation derived
in this chapter yields good results, and that the accuracy of the result is
dependent of how close the barrier is to the initial price. This method also
performs better than the approximation proposed in [BGK] and [K].

In Table 2 we have varied the number of price fixing dates as well. As is
to be expected, the approximation developed in this paper degrade as the
number of monitoring times decreases. In the extreme case with the barrier
very close to the initial asset price, the method even performs worse than
the approximation proposed by [BGK] and [K]. However, one may remark
that in the extreme case none of the methods work especially well.

In the final example, presented in Table 3, we have examined how the
other parameters influence the accuracy of the approximation.

It is of course not possible to draw any certain conclusions from just
numerical examples. But the results presented here indicate that the ap-
proximation gives good results for small values of T'/m and if the barrier is
not too close to the initial asset price.

6 Pricing Discrete Double Barrier Options

The purpose of this section is to determine approximations for the value
of discrete double barrier options. The payoff of a discrete double barrier
knock-out call/put, with barriers H; and Ho, is given by

max (X(ST - K)7O)1{mint€A St >H1, maXsc A St <H2}

with x equal to 1 and -1, respectively. By replacing the event {minyc4 S; >
Hy, maxca St < Ha} with its complement we get the pay out function of



Continuous BGK Trinomial Relative error
Barrier Ho and K Method (in percent)

H (1) (2) (3) 1H @ @
155 12.775 12.891 12.905 12.894 09 0.0 0.1
150 12.240 12.426 12.448 12.431 1.5 0.0 0.1
145 11.395 11.676 11.707 11.684 25 0.1 0.2
140 10.144 10.541 10.581 10.551 3.9 0.1 0.3
135 8.433 8.947  8.994 8.959 59 0.1 04
130 6.314 6.909 6.959 6.922 8.8 0.2 0.5
125 4.012 4.605 4.649 4.616 13.0 0.2 0.7
120 1.938 2.410 2.442 2.418 19.8 0.3 1.0
115 0.545 0.803  0.819 0.807 325 05 1.5
112 0.127 0.257 0.264 0.260 51.1 1.2 1.6

Table 1: Up-and-out call options price results, varying H. The option parameters
are So = 110, K =100, ¢ = 0.3, r = 0.10, ¢ = 0.0, T = 0.2 and m = 50. If
one assumes that there are 250 trading days per year, then m = 50 corresponds to
daily monitoring.

Continuous BGK Trinomial Relative error
Barrier H6 and K  Method (in percent)
m_H (1) 2 6 H @ 6

130 6.314 7.124  7.221 7.148 11.7 03 1.0
125 4.012 4.829 4.918 4.851 173 05 14
25 120 1.938 2.600 2.669 2.616 259 06 1.9
115 0.545 0.916 0.950 0.925 411 09 28
112 0.127 0.320 0.336 0.329 614 3.0 2.0
130 6.314 7.837 8.286 7.934 204 12 44
125 4.012 5.622  6.062 5.721 299 1.7 59
5 120 1.938 3.326  3.683 3.409 43.1 25 8.0
115 0.545 1.404 1.624 1.481 63.2 52 9.6
112 0.127 0.622 0.751 0.708 82.1 123 6.0

Table 2: Up-and-out call options price results, varying H and m. The option
parameters are So = 110, K =100, ¢ = 0.3, r =0.10, ¢ = 0.0 and T'=0.2.
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Continuous BGK Trinomial Relative error

Barrier H6 and K Method (in percent)
Panel H (1) (2) 3) 1H @ @
155 6.798 7.270 7.290 7.274 6.6 0.1 0.2
A 140 2.916 3.251  3.265 3.254 10.4 0.1 0.3
125 0.566 0.693 0.699 0.695 18.6 0.2 0.6
140 3.766 4.516 4.578 4.531 16.9 0.3 1.0
B 130 1.576 2.086 2.130 2.097 249 0.5 1.6
120 0.331 0.541 0.561 0.546 394 0.9 2.8
140 7.171 8.277 8.354 8.296 13.6 0.2 0.7
C 130 3.653 4.550  4.608 4.565 20.0 0.3 0.9
120 1.110 1.629 1.659 1.637 322 05 14

Table 3: Up-and-out call options price results, varying K, o and T. The option
parameters are Sg = 110, r = 0.1 and ¢ = 0.0 for all panels. Panel A has K = 100,
o =10.3, T =1 and m = 250 (daily monitoring). Panel B has K = 100, o = 0.6,
T = 0.2 and m = 50 (daily monitoring). Panel C has K = 90, 0 = 0.6, T = 0.2
and m = 50 (daily monitoring)

a discrete double barrier knock-in call/put.
Let the stopping time 77, (b1, by) and the constants ¢, di, da, 6y, and 6;
be defined as in Theorem 2 and Lemma 1. Define moreover the function

G(m)(al,GQ,bl,bQ;e) = P(afl <0+ Wl < az, T,,an(bl,bg) > 1)

for b1 <0< by and b1 < a1 < ag < bs.

As a direct consequence of Lemma 1 we now get that if K < Hj then the
theoretical value vg,. at time ¢ = 0 of a discrete double-barrier knock-out
call equals

ko =Soe” T G™ (max(c, d1), d2, d1, do; 61)
— Ke"Tgim) (max(c, dy),da, d1,d2;00) .

Similary, if K > Hp then the theoretical value vy, of a discrete double
barrier knock-out put at time ¢ = 0 is given by

Vkop =K e TG (dy, min(c, dy), dy, do; o)
— Soe TG ™) (dy, min(c, do), d1, d2; 61) -

The price of a double barrier knock-in option can be computed using a
similar argument as in Section 2. Thus, in order to estimate the price of
a discrete double barrier option we need to find an approximation of the
function G(™).

11



If we let G be the continuous analogue to G(™), i.e. for given by < 0 < by
and b1 S ail S a9 S b2 set

G(al,ag,bl,bg;e) = P(a1 <0+ Wi <as, Ta(bl,bz) > 1)
with
79(by,bo) = inf{t > 0; (0t + W;) ¢ (b1,b2) }.

Then Siegmund suggests, see [Si] p.716, that one approximate the function
G™) by computing the continuous analogue G with the lower barrier re-
placed (/y/m units downwards and the upper barrier moved (3/1/m units
upwards (cf. equation (7)). In other words, Siegmund suggests the following
approximation

G ™ (a1, az,b1,by;0) = G(ay, az,b1 — B/v/m, ba + B/v/m; 6).

However, in this case there are no estimates of the approximation error but
numerical examples presented in [Si] indicate that the approximation yields
good results.

Even for G the exact formulas are complicated. The function G may be
written as

G(al,ag,bl,bz;H) ZN(ag — 9) — N(a1 — 9)
— G4 (ag,b1,b2;0) + G4 (a1,br,b2;6) (8)
_G—(G'Q’blabZ;g) +G—(alab11b2;0)a

where G_(a, b1, b2;0) = G4 (—a,—b1, —be; —6) and

G(a,by,b2;0) = E (620‘51)0N(a — Zagz) —0)— eQag)eN(a — 2ag) —0))
i=1

with ol = i(by — by) + by and o = i(by — by), see [H].

As we can see, G is expressed as an infinite series. Fortunately, the
convergence rate for this series is exponential, see [H]. In most cases only
the first leading terms are necessary to obtain an accuracy which is sufficient
for our purposes. For further details concerning the truncation error, see [H]
and [L].

There are other ways to represent the function G, for instance as Fourier
series, see [IM] p.31. For a further discussion concerning various represen-
tations and corresponding numerical properties of the function G, see [DL],
[H], [HLY] or [Sc].

To see how Siegmund’s approximation performs, we will now present
some numerical examples.

12



7 Numerical examples

Table 4 and 5 give the price of a discrete double barrier knock-out call.
The prices in the column called “Trinomial method” are determined from a
trinomial method developed in [H2]. This numerical procedure is based on
certain results from the theory of Besov spaces. These results imply that the
convergence rate of the trinomial method is dependent on the smoothness of
the payoff function. By iteratively applying a certain smoothing operator to
the value function at each monitoring date, one obtains an efficient numerical
method to price discrete barrier options. For further details, see [H2]. The
errors for the prices in “Trinomial method” are approximately +0.001.

If we consider the prices in Table 4 and 5 we see that the accuracy in
the pricing formulas for double barrier options seems to be slightly worse
than in the single barrier case. However, still the approximation gives good
results for small values of T'//m and if the barriers are not too close to the
initial asset price.

8 Conclusions

We have addressed the problem of pricing discrete barrier options. We have
continued the work of Broadie et al. in [BGK] and derived approximation
formulas for discrete up-and-out/in calls, down-and-out/in puts and double
barrier options. Numerical examples presented in this paper show that the
accuracy of the approximation is good, especially when the underlying asset
is monitored against the barrier(s) with short time intervals and when the
initial asset price is not too close to (any of) the barrier(s).

13



Continuous Trinomial Relative error
Barrier Ho Method (in percent)
H, H, (1) (2) 3) (1) (2)
70 130 4.5651 4.7784 4.7842 4.6 0.1
75 125 3.5614 3.8375 3.8446 7.3 0.2
80 120 2.3499 2.6524 2.6601 11.7 0.3
85 115 1.1408 1.4055 1.4120 19.2 0.5
90 110 0.2284 0.3791 0.3826 40.3 0.9
75 110 0.3423 0.4799 0.4841 29.3 0.8
90 125 3.2292 3.6074 3.6143 10.7 0.2

Table 4: Double barrier knock-out calls price results, varying H; and Hy. The
option parameters are Sop = 100, K = 100, ¢ = 0.3, r = 0.10, ¢ = 0.0, T'= 0.2
and m = 50 (daily monitoring).

Continuous Trinomial Relative error
Barrier Ho6 Method (in percent)
m Hy, H, (1) (2) (3) (1) (2)

80 120 2.3499 2.7606 2.7752 15.3 0.5
85 115 1.1408 1.50562 1.5180 24.9 0.9
25 90 110 0.2284 0.4441 0.4514 49.3 1.6
75 110 0.3423 0.5445 0.5362 37.1 1.5
90 125 3.2292 3.7363 3.7491 13.9 0.3
80 120 2.3499 3.1157 3.1726 25.9 1.8
85 115 1.1408 1.8563 1.9115 40.3 2.9
5 90 110 0.2284 0.7035 0.7401 69.1 4.9
7 110 0.3423 0.7570 0.7962 97.0 4.9
90 125 3.2292 4.1294 4.1724 22.6 1.0

Table 5: Double barrier knock-out calls price results, varying Hy, Ho and m. The
option parameters are So = 100, K =100, 6 = 0.3, r = 0.10, ¢ = 0.0 and T = 0.2.
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