Rational points on finite covers of P! and IP?

Niklas Broberg

Department of Mathematics,
Chalmers University of Technology and Goteborg University,
SE-412 96 Géteborg, Sweden

1 Introduction

Let P denote the n—dimensional projective space over the rational numbers.
For any morphism f : X — P" from a scheme X, one can define a counting
function

N(f,B) =#{x € f(X(Q) : H(x) <B},

where H : P*"(Q) — Ry is the standard multiplicative height on P"(Q). If
X is integral and f : X — P"” is finite dominant of degree at least 2, then

N(f,B) — Of,g(Bn+1/2+€),

for every € > 0. The proof is by sieve-methods. See chapter 13 of [9]. In the
same book Serre conjectures that

N(f,B) = Oy,(B"")
for such morphisms f : X — P". We intend to prove the following results.

Theorem 1. If X is integral and f : X — P! is finite dominant of degree
d, then

N(f,B) = O7(B***)
for every € > 0.

Theorem 2. If X is integral and f : X — P? is finite dominant of degree
at least 3, then

N(f,B) = O5(B**).
If f : X = P? is finite dominant of degree 2, then
N(f,B) = Oy(BY**).



The paper is structured as follows.
In section 2 we fix the notation and state some preliminary results.

In section 3 we obtain estimates of N(f, B) for a special kind of covers
f : X — P The result is formulated in terms of polynomials and the
estimates depend explicitly on the coefficients of the polynomials. The proof
is by means of a method due to Heath-Brown [6]. As a corollary we obtain
theorem 1.

In section 4 we prove theorem 2. The idea of the proof is simple. First we
reduce to a case where the cover f : X — P? is given by a single equation.
We then choose O(B3/?) lines Hy, ..., H;, C P? such that every rational
point in the plane of height at most B is contained in H;(Q) for some i. By
using the explicit estimates of N(f|f-1p,, B) from section 3 we are able to
estimate the right-hand side of

k

N(f,B) <Y N(flf-1p;,B)-

i=1
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2 Preliminaries

We shall use the following notations throughout the paper.

& is used synonymously with the big Oh notation. If f, g are real-
valued functions with g positive, then f = Op, . p,(9) and f <y, . p, g
means that |f| < cg for some positive constant ¢ which depends on
the parameters p1, ..., pg-

|x| is the Euclidean length of x € R™.
(x,y) is the standard inner product of x,y € R".
||F|| is the maximum modulus of the coefficients of F' € R[x].
P" is the set of all non-zero x € Z"*! for which ged(zg, ..., z,) = 1.

P"(B) is the set of all x € P™ for which |z;| < B; for i = 0,1,...,n. The
components of B € R**! are supposed to satisfy B; > 1.



P"(B) is short-hand for P"(B) in case all the components of B are equal to

B.

Zy[t,x] is the set of polynomials F' € Z[t,x] which are monic in the variable ¢

and such that F'(t*,x) are homogeneous. Here w is a positive integer.

N(F;B) is a counting function assigned to F' € Z[t,x]. It counts the number

N(

of x € P"(B) for which F(t,x) = 0 has a rational solution.

F,B) is short-hand for N(F;B) in case all the components of B are equal
to B.

We will require two auxiliary results.

Lemma 1. Let f : X — P" be a finite dominant morphism of degree d,
where X 1is integral. Then there exist a proper closed subset V C X and an
irreducible polynomial F € Zyt,x] of degree d in t such that

Proof. Let U C X be the affine variety f'A", where A» C P" is given by
zo # 0, and let y; = z;/zo for i = 1,2,...,n. Let ¢t be a generator of the
function field K (U) over K(A™) = Q(y1,...,yn) such that the coefficients
of its minimal polynomial

p(t,y) =t + pi(y)t* 4+ - + paly)

are polynomials with integer coefficients. Let Y C A"'! be the variety
defined by p(t,y) =0 and h : Y — A" the projection H(t,y) = y. Finally,
let Vo C U be a proper closed subset such that f : U\ V) — A" factors
through h : Y — A™. Such a set exists since the isomorphism between the
function fields K(Y') and K (U) induces a birational map U --» Y.

We now define V.C X by V=V, U (X \U) and F € Z,[t,x] by
F(t,zg,...,zy) = wgwp(wgwt,xalxl, ... ,walxn),

where w is the smallest positive integer for which degp; < iw for all ¢ =
1,2,...,d. Then f: X \V — P" factors through h : Y — A" C P" and
F(z§'t,x) = 0 whenever p(t,walwl, ... ,xalwn) = 0. Hence,

N(f,B) < N(flv,B) + N(h, B) < N(f|v, B) + N(F, B).

Note that F' is irreducible since p is. O



Lemma 2. Let f : X — P" be a finite morphism over a field K of charac-
teristic 0 and let C be a closed subscheme of X. Assume that the invertible
sheaf f*O(m) on X is very ample for some m > 0. Then f :C — P" isa
closed immersion onto a k—dimensional linear subvariety of P" if and only
if the Hilbert polynomial of C with respect to f*O(m) is equal to

Pg) = (m‘”’“).

mq

Proof. Recall that the Hilbert polynomial of C' with respect to f*O(m) is
defined by

Po(g) = x(i*f*O(mq)) = Y (~1)* dimg H*(C,i* f*O(myg)),

where i : C — X is the embedding. Analogously, the Hilbert polynomial
Pp(q) of the scheme-theoretic image D = f(C) with respect to O(1) is given
by Pp(q) = x(Op(q))- The restriction g : C — D of f to C is affine, so

H'(C,i*f*O(q)) = H'(C,g*Op(q)) = H'(D,9.O0c ® Op(q))

for every g > 0. Consider the exact sequence

#
0—0p25 600 - F =0 (1)

of coherent sheaves on D. The map ¢# is injective by the definition of
scheme-theoretic image, and F is coherent since g.O¢ is. If we twist (1) by
g and compare the Euler characteristics we get

x(9:0c ® Op(q)) = x(On(q)) + x(F(q))-

Now Op(1l) is ample and F coherent so x(F(mg)) = 0 for every ¢ > 0
only if F = 0. Consequently, g : C — D is an isomorphism if and only if
Pc(q) = Pp(mgq) for every g > 0. It is well-known that

Pp(q) = (q * k)

q

exactly when D C P” is a k—dimensional linear variety. O

3 Covers of P!

The main result of this section is the following:
Theorem 3. Let F' € Zy[t, x,y] be irreducible of degree d in t. Then
N(F; A, B) Kauw,e (AB)Y" | F7,

for every € > 0.



We get theorem 1 as a corollary by noting that a proper closed subset of
a curve is finite and then refer to lemma 1. The rest of this section is
devoted to the proof of theorem 3. It is similar to the proof of theorem 3 of
Heath-Brown [6].

Let Ap € Z[z,y] be the discriminant of F and let Ny(F'; A, B) be the num-
ber of (z,y) € P'(A,B) for which F(t,z,y) = 0 has a rational solution
and yAp(z,y) # 0. Since F is irreducible, Ap is a non-trivial form of
degree d(d — 1)w. There are thus Oy, (1) points (z,y) € P! for which
yAp(z,y) = 0. Hence, it is sufficient to prove theorem 3 with N(F'; A, B)
replaced by Ny(F'; A, B). Following [6], we define N,(F'; A, B) to be the
number of (z,y) € P*(A, B) for which F(t,z,y) = 0 has a rational solution
and p{ yAr(z,y)-

Lemma 3. Suppose that P satisfies

P > log? max Ar(z,y)|.
=08 (z.y)€P'(A,B) lyAr(zv)
YAF(z,y)7#0

Then there exist distinct primes p1,...,p, such that

e PLp; K P,
o 1 L4 log(AB||F])),
o No(F;A,B) <Y1 Ny(F; A, B).

Proof. See lemma 4 of [6]. O

Theorem 3 is proved by combining lemma, 3 and the following result.
Lemma 4. Assume that
F(t,z,y) =t + Fi(z,y)t " + - + Fa(z,y),

where F; € Z[x,y| and deg F; = iw. If

p > 4(2dw || Fyl|)*(AB)' /4, (2)
then Np(F; A, B) = O :(p).
Proof. Let (z1,v1),--.,(Zn,yn) be the points counted by N,(F;A,B) for
some p satisfying (2). If ¢ € Z satisfies F(t,z,y) = 0 for some (z,y) € P!,

then t | Fy(z,y). Moreover, if Fy(z,y) = 0, then F(0,z,y) = 0. Hence, we
can choose integers t1,. .., t, such that F(¢;, z;,y;) = 0 and

til < |[Fulwi, yi)| < 2dw(AB)™ || Fy|. (3)



1) and (u,v;) = (yi_wti,yi_lxi) for i = 1,2,...,n.

Let f(u,v) = F(u,v,
=0, and (u;,v;) € ZIZ, by the assumption p 1 y;.

Then f(u;,v;)

There are Oy, (p) solutions of f(u,v) = 0 modulo p. In order to establish the
estimate n = Og . (p) it is thus sufficient to show that there are Og (1)
points among (u1,v1),- .., (un,v,) which belong to a general class modulo
p. Assume that

(u1,v1) = (ug,v;) (modp), 1<i<k
(u1,v1) # (ui,v;) (mod p), k<i<n.

We claim that there exists a polynomial g of degree D = Og 4, (1) such that
f1gbut g(u;,v;) =0fori=1,2,...,k According to Bezout’s theorem, we
then have & = Oy ¢(1).

Let (a1,b1),--- ,(ae,be) be an enumeration of the set
{0,1,...,d—1} x{0,1,...,D — 1},
where D is the smallest integer satisfying
D > 2max(1,dw/e).

A non-trivial polynomial of the shape
€
g(u,v) =Y gju®v®
j=1

is not divisible by f (g has degree at most d — 1 in the variable u while f
has degree d). Moreover, if the matrix

M = [uf o i<k
1<j<e
has rank less than e, then there exist g1,...,ge € Z, which are not all equal
to 0, such that g(u;,v;) = 0 for i« = 1,2,... k. This is obviously the case
if £ < e so assume that £ > e. Then rank M < e if and only if all the
e X e-minors of M vanishes. Without loss of generality we may consider

a; b;
A= det[ui]Ui]]lgiSe-
1<j<e

The assumption p { Ap(z1,y1) implies that %(ul,vl) # 0 (mod p). We
can thus apply the lifting argument from the proof of Hensel’s lemma to
construct a polynomial h € Zy[v] such that u; = h(v;) (mod p¢’) for i =
1,2,...,k (see lemma 5 of [6]). Let z; = v; — v1 € pZ, and

ri(z) = h(vy + 2)% (v1 + 2)% € Zy[2].



Then
A = det[rj(z)] (mod p),

and we can act on [r;(2;)] by elementary column operations over Z, to obtain
a new matrix [zgflsj (zi)] for some s; € Zy[z]. Hence, if z; = pw;, then
— i—1, 3—1_ . (_\] — ..e(e—1)/2 Y e?
A =detly! "w] “sj(z)] =p det{w; “sj(z;)] (mod p®).

2

This shows that p&¢~1/2 divides the integer

A= (H yED_le(d_l)) A = detfty =y,
i=1
where
cg=D—-1-bj+w(d—1-—aj).
By expanding A’ we find that
|A'| < efA% BevCe,

where C is the right-hand side of (3), and

© dD(D —1
e$:ij:7(2 )
j=1

e
dD(D + w(d —1) — 1)

ey = E Cj = 2

j=1

[
d(d—1)D
o= ;= MDD
=1

Thus, A vanishes if
pe(e—l)/2 > e A% By (Ot — ee(2dw ”FdH)etAem—I—dwetBey—l—dwet'

One can check that e?/(¢=1) < 4 and

3 _ g2

2(ez+dwet):1+wd wd d+1§1+5’

e(e—1) d d(dD — 1) d
2(ey +dwer) 1 wdd—wd—d+1 1
—_— = — < 7

ee—1) 4 dapb-1 =at®

2675 _ d—1 <
efe—1) dD—1 =&
Hence, A vanishes due to (2). O



4 Covers of P?

Suppose that X is integral and f : X — P? is finite dominant of degree d.
By lemma 1 there exist a proper closed subset V' C X and an irreducible
polynomial F' € Zyt, zo, z1, z2] of degree d in ¢ such that

N(f,B) < N(flv,B)+ N(F,B).

Obviously, N(f|v,B) is dominated by the number of rational points of
height at most B on f(V) C P?. There are Oy )(B?) such points (see
theorem 1 in [6]). Theorem 2 thus follows from:

Theorem 4. Let F € Zy[t, o, z1,22] be irreducible of degree d in the vari-
able t. Then N(F,B) = Op.(B%**%) if d = 2, and N(F, B) = Op.(B**?)
if d > 3.

The rest of this section is concerned with the proof of this result.

Siegel’s lemma states that there exists a constant ¢ such that the equation
(x,u) = 0 has a solution u € P?(cB'/?) for every x € P?(B) (see lemma 1
in [6]). Hence,

NEB < Y NuFB), (@
ucP2(cBl/2)

where N, (F, B) is the number of x € P?(B) for which F(t,x) = 0 has a
rational solution and (x,u) = 0. Let xp, x; € P? be a basis of the lattice
(x,u) = 0 for a given u € P?. Then

F(t’ Yoxo + ylxl) = Gl(t’ y) -Gy (ta Y) (5)

for some irreducible G; € Z,|t,y] of corresponding degrees d; in the variable
t. Note that G;(t",y) is homogeneous since a divisor of a homogeneous
polynomial is homogeneous. The numbers di, ..., d; are independent of the
choice of the basis so it makes sense to use the notation

0uF = min d;.
1<i<k
If we define
NOF,B)= Y Nu(F,B)
ucP%(cB!/?)
duF=6

for § < d, we have

d
N(F,B) <> NY(F,B)
6=1

oo



from (4). We will prove theorem 4 by finding estimates of N (F, B) for
various 0. The following lemma will be essential in every case.

Lemma 5. If |u| € B, then
Nu(F, B) aue B u /07 | F|°.

Proof. Lemma 1 in [6] states that we can find a basis x¢,x; € P? of the
lattice (x,u) = 0 such that
(i) lyil < |x|/ || whenever x = yoxo + y1x1,

(i) u] < [xo] [x1] < |ul.

Let G1,...Gy € Zy[t,y] be as in (5). By (i) we have
k / /
c¢B ¢B
N, FaB < N G'a To |7 —) )
“(RB)< ) (% o er
for some constant ¢’. Since (ii) and |u| < B implies that |x;| < B, we may
assume that ¢ B/ |x;| > 1. Theorem 3 then gives

C’B CIB B2 1/d+e B
N (G- ) Ldwe (70 IGil|F < B0+ [u| V|| F|,

" |xo]” Jx1] x| |x1

where § = §,F. The second inequality follows from (ii) and
1G]l ==~ Gkl = G-+~ Gill <aw [u]™ ||F|| < B™ || F]|. (6)

The equality on the left of (6) is Gauss’ lemma (see chapter I, proposition
2.1 in [8]). O

The following lemma gives N (F, B) = Op(B%**), provided that § > 3.
Lemma 6. For every 6 < d, we have

N(J) (F, B) <<d,w,6 B3/2(1+1/6)+5 HFHE )

Proof. Suppose that T' < |u| < 2T, where 1 <T < B/2_ Then
Nu(F, B) L BT || F|7,
by lemma 5. There are O(T?) elements of P%(T), so
> NulF,B) Kaue BT 0| < B R (7)

T<|u|<2T
duF'=0
We finish the proof by dividing 1 < T < ¢B/? into dyadic intervals and
summing the corresponding bounds (7). O



We will need some arguments from algebraic geometry in order to find suffi-
cient estimates of N((F, B) and N (F, B). We can associate a geometric
object to F' as follows:

Let R; = Q[ti,xi]/ (F(ti,xi)) for « = 0,1,2, where x; = (wio,xil,xig) and
z;; = 1 at all times. Then R; are domains so the affine schemes X; = Spec R;
are integral. For each pair (7, ), the homomorphisms

$ij : (Ri)ayy = (Ry)ayir  (tiyxi) = (270, 25, %),
are well-defined because of the relations
F(¢ij(tisxi)) = ;" F(t),%; ).

One can check that ¢;; o ¢;; = ¢ whenever the equality makes sense.
Hence, we can construct an integral scheme X by gluing Xy, X1, X2 along
the open sets Spec(R;);,;;- If we treat P2 similarly as Spec Q[x;] glued along
Spec Q[xi,mi_jl], we see that the natural homomorphisms Q[x;] — R; are
well matched and define a finite morphism f : X — P2. The invertible sheaf
f*O(1) on X is ample (see proposition I.4.4 in [4]). Hence, X is a projective
variety over Q.

Lemma 7. If F is absolutely irreducible and d > 2, then
N3(F,B) «p. B*.

Proof. Let H, C P? be the line defined by (x,u) = 0. It is clear from the
construction of X that there is a one-to-one correspondence between the
different irreducible factors G; in (5) and the reduced irreducible components
of f7'H, C X. If F is absolutely irreducible, then X = X x SpecQ is
a projective variety of dimension 2 over an algebraically closed field. In
that case it is well-known that f ~lH C X is irreducible for a generic line
H C P2 (see the proof of proposition 18.10 in [3], or corollary 10.9 and
the following remarks in [5], chapter IIT). Hence, there exists a non-trivial
form G € Q[u] such that G(u) = 0 whenever 6,F < d. By theorem 1
in [6], there are Og(B) points u € P%(cB'Y/?) for which G(u) = 0. By
lemma 5, Ny(F,B) = Op(B'*¢) when §,F = 2 and |u| < B. Hence,
N@)(F,B) = Op.(B**9). O

Lemma 8. If F is absolutely irreducible, then
NU(F,B) «p. B¥.

Proof. We claim that there are Op (T "¢) points u € P?(T) for which
0uF = 1. Assuming this and referring to lemma, 5, we have

Y Nu(F,B) < B**T° < B***,

T<|u|<2T
ouF=1

10



for 1 < T <« BY2. By summing over dyadic intervals we get the promised
result. Now lemma 2 states that if 6,F = 1, then f~1H,, C X contains a
curve with Hilbert polynomial

mq+1
Pla) = (")
mq
with respect to some very ample sheaf f*O(m) on X. Let H be the Hilbert
scheme parametrising such curves and let X C X x H be the corresponding
universal family. Consider the composed map

X o X xH L p2 oy

over 4. By lemma 2, Xp — IP’%( P) is a closed immersion onto a line for every

P € #H. Hence, X is isomorphic to its image Y C P? x H (see corollary
18.12.6 in [2]). Moreover, Y — H has the Hilbert polynomial of a line, so
Y = H xp2+ L for a unique morphism g : # — P?*, where £ C P? x P?* is
the universal line. There are at most d curves on X which map to a given
line in P2. In other words, g is quasi-finite. It is also proper so it is finite
(see corollary 18.12.4 in [2]). The claim above is implied by the statement
N(g,T) = Ogo(TH2).

Assume that F' is absolutely irreducible. If # has dimension 2, then g(H) =
P2*. This means that f~'H C X is reducible for every H C P2. We
know that this is not the case so H has dimension at most 1. Let C be a
reduced and irreducible curve on H. If g(C) C P?* has degree at least 2,
then N(g|c,T) = Oy (T**¢) according to theorem 3 in [6]. Suppose that
g : C — g(C) is an isomorphism onto a line and let 77'C and 7~ 'g(C) be the
preimages under the projections 7 : X — H and 7 : £ — P?*, respectively.
The restriction 771C — 77 1g(C) of X — L is then an isomorphism since
(m1C)p — (v 1g(C))y(p) is an isomorphism for every P € C. One can
check that 7=!g(C) — P? is the blow up at the point of P? corresponding
to the line g(C) C P2*. That is, the composition 7 1C — X — P? is
a birational equivalence. This contradicts the assumption that f is not
an isomorphism. Hence, if g(C) C P?" is a line, then the finite dominant
morphism g : C — ¢(C) has degree at least 2. By theorem 1, N(g|¢,T) =
OQ,E(TH—E)' O

To sum up, if F' is absolutely irreducible and d > 3, then

d
N(F,B) < NW(F,B)+ N®(F,B) + Y NY)(F, B) <. B***.
OF,EZ;2+E) OF,E(‘;%FE) =3
by lemma 8 by lemma 7 Op «(B%*¢)
by 1emma. 6

11



If d = 2, then

N(F,B) = N (F, B) + N® (F,B) <pe BY/A+e.

Ore(B>H2)  Op(BY/4te)
by lemma 8 by lemma 6

The following observation completes the proof of theorem 4.

Lemma 9. If F' is not absolutely irreducible, then

N(F,B) <y B~

Proof. Let
F(t,x) = Fi(t,x) - - - F(t,x),

for some irreducible polynomials F; € Q[t,x] which are monic in the variable
t. Such a factorisation is unique except for the arrangement of the factors, so
the Galois group of Q over Q acts transitively on Fi,..., Fy. Consequently,
%(t,x) has the same rational roots as F(t,x) for any given x € P2. The
counting function N(f, B) is thus dominated by the number of rational
points of height at most B on the discriminant locus Ap(x) = 0. There are
Or(B?) such points (see theorem 1 in [6]). O
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