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ABSTRACT. In supercritical population-size-dependent branching processes with
independent and identically distributed random environments, it is shown that
under certain regularity conditions there exist parameters 0 < a1 < ag < +o0
such that the extinction probability starting with k individuals, g, has lower
and upper bounds C1k~%0 and Cak~ %! for sufficiently large k, where 0 <
C1,C2 < +oo are constants. Therefore, the asymptotic behaviour of g is
similar to k< for some a as k — oo.

1. INTRODUCTION

Suppose Z = {Z,} is a population-size-dependent branching process with ran-
dom environments ¢ = {¢,} (see [1],[2]). That is, {Z,} defines a temporally non-
homogeneous branching process, the evolution of which is depicted as follows. At
n = 0, there are Zj initial individuals, which make up the Oth generation, then
given the population number Z,, of the nth generation, the (n + 1)th popula-
tion number Z,;; is composed by the number of progeny of Z, individuals of
nth generation each reproducing independently according to the pgf (probability
generating function) ¢z, ¢, () = Y ieg Pza.c. ()s', (s € [0,1]), and so forth. By
mathematical terminology, the structure of the model can be delineated below. Let
(Q,F,P) be a given probability space, and (©,X) be a measurable space. Let
Horo(s) = Sooopre(i)s’,k = 0,1,2,---},8 € O}, (s € [0,1]) be a family of
sequences of pgf for non-negative integer value random variables, satisfying the
non-trivial conditions of

Zipk,a(i) <oo0; poe(0) =1, poe(k)=0;
i—0

0<pre(0)+pre(l)<l, forall k=1,2,---and € 0.

The random environments ( = {(,} can be regarded as a sequence of random
mappings from (Q,F, P) to (0,%). With any ( € © and any k > 0 associate the
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pef
o0
Prc(s) =Y prcli)s’, (s €10,1]).
=0

Without loss of generality, we can assume that Zy = k.

Write Fp,z(C) = 0(Zo,- -, Zn, %0, »Cn) and F(C) = 0(Co,--- sCn,-- ). Then we
have

(L1) E[s7+Fn z(0)] = [¢2..¢.(8)]7" and E[s”+'] = E[pz, ¢, ()7, (n>0).

Denote the extinction probability of {Z,} conditionally upon environments and
unconditionally respectively by

ar(¢) := P{Z, = 0, for some n|F((), Zo = k};

g = P{Z, = 0,for some n|Zy = k}.
We know that
ar = Elgi (O)] = Elg(O)]",

where we write ¢(¢) = ¥/qx (), not necessarily independent of k.

The random environment ¢ = {(,} is often assumed to form a stationary ergodic
process. In particularly, the random envrionment may be a sequence of iid (inde-
pendent identically distributed) random variables. In this paper, we consider only
the iid environment model, although subseqgent work may generalize the results to
certain types of stationary ergodic envrionments.

The most interesting case is the so-called supercritical case, in which ¢ < 1, for
all £ > 1. We know that sufficient conditions for supercriticality are

(i) 0 < Eflog i%f Br,c. (1] < +o0; (i) E[—log(1 — s:p Pk, (0))] < +o0

from [1] and we shall adopt these conditions. In this paper we will show that under
some certain regularity conditions, as k¥ — oo, the asymptotic behaviour of g, is
similar to k=% for some a > 0.

2. CONDITIONS, RESULTS AND PROOFS

For each ¢ € ©, we write
(2.1) Je(s) == drc(s), Fe(s):= sup Prc(s), (s €10,1]).

Clearly, a thus defined f¢(s) or F¢(s) need no longer be a pgf, but each of them still
is an increasing function of s. Noting that the sequences {f¢, (fe, (- - (fe. (8)) -+ )}
and {F¢, (Fe, (- - (Fe, (s))---))}, n = 0,1,2,--- both are non-decreasing for fixed
s = 0, we can see that

re(0) := lim feo(fe (--- (f¢, (0)) ---)) and R¢(0) := Tim Foo (Fe, (--- (F¢, (0)---))

n— o0

are well defined.

Theorem 1. 7£(0) < ¢(¢) = /g (0) < R(0).
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Proof. By (2.1), the definitions of f; and F¢, using (1.1) with n = 0, we have
[feo ()] <Els™[F(C), Zo = k] = [0 (8)]* < [Fo (5)]".

Now we suppose that

[feo (fer - (feuor (8)) - DIF < E[s™ | F(C), Zo = k] < [Feo (Fe (- -+ (Feo_i (5)) - )]
Noting that
E[s”*|F(C), Zo = k] = E[E[[s"** | F((), Zo = ]| Za]]
= El[¢z. .. [F(0), Zo = k] > El[fc., ()] |F(0), Zo = k]
and
E[s”+1|F((), Zo = k] = E[E[[s7+ | F(C), Zo = k]| Zn]]
= El¢z..¢. )" [F(0), Zo = k] < E[[F, ()] |F((): Zo = k],

Then by the inductive assumption we get

[feo(fer (- (fen (8)) -+ ))]* < Els”+1|F(C), Zo = k] < [Feo (Fey (- (Fe, () - )]F,

for all s € [0,1]. Therefore, by induction, we have shown that the formula above
holds for all n > 0. Furthermore, since

gx(C) = lim E[s”|7((), Zo = kls=o,
it follows that
Jim [feo (Feu (- (feu (0)) - DIF < qe(©) < Jim [Fey (Fe, (- (Fe, (0) -+ )],
which is equivalent to

[lim fou(fer (- (Fen (0)) NI < @u(@) < [lim Fy (e, (- (Fe, (0)) )],

n—oo

or
re(0)* < gr({) < Re(0)".

Taking kth root for each sides of the inequalities above, we obtain

re(0) < q(¢) = {/ar(¢) < R¢(0)

and the proof is complete. O

Denote &, := —logsup, P, (1) and G(a) = Elexp (af,)]. We know that {£,} is
an iid random variables sequence from the definition of (. By the supercriticality
assumption (i) above, we have

G'(0) = E[én] = E[-log sup Fi.c. (D] < E[-loginf ¢}, ¢ (1)] <0,

and since G is continuous and strictly convex there may exist ap > 0 such that
G(aw) = 1, G'(ap) < +o0. If o exists, it is unique. Under this condition and
following the ideas of Grey and Lu(see[3], [4]), we have the results below.

Theorem 2. Let ag > 0 ewist such that G(ap) = 1, G'(g) < +o00, then there
exists a constant ¢c; > 0 such that P{q(¢) <z} <1—ci1(1 —2)* for all z € [0,1].
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Proof. Write Xg =0, Xp41 = f¢,(Xy), (n > 0). We have
Xt = Jou Uers (- U (0) ) = FeoFea (= (ea (0) ),

since ( is a sequence of iid random variables. Therefore, lim,,_, o X,, = rE(O). Make
the transformations ¥ = —log(1 — r£(0)) and Y,, = —log(1l — X,,) for all n > 0.
Then we know that Y is the limiting random variable of {Y,,} and

1-— X
Vs = = 10g(1 = fe, (X)) = ~Tog(1 = Xo) + —log - 1) ).
Since
1— fe.(Xn) 1— ¢pc. (Xy) ,
n P 1S < 1
1-X, SPTI X, —S‘;p‘ﬁk,cn( ),
we get

Yn+1 2 Yn + f_n

Noting that ¥, > 0, we know that ¥, > max{0,Y, + &}. Define Wo = 0 and
Wyt = max{0, W, + &,} for n > 0. Then {W,} is a random walk with left
reflecting barrier at 0 and jumps {£,}. Since

E[¢.] = E[-log sup B¢, (D] < E[-loginf ¢, ¢, (1)] <0,

by our supercritical assumption (i) together with a result on random walk with one
reflecting barrier (see [5]), we can infer that there exists W, which is a random
variable with the limting/equilibrium distribution of W,,. It is easy to prove by
induction on n that Y,, > W,, for all n > 0 and thence that

P{Y <y} < P{W <y}, forally >0.
By the familiar duality argument
Wn = m&X{O,f_n—l,En—1 + é_-n—2a ot agn—l + En—2 +---+ 50}
= - min{o: _é-n—la (_fn—l - £n—2); T (_£H—1 - é‘n—Q - 50)}7

in distribution, we know that —W has the same distribution as the all-time M of
an unrestricted random walk with jumps {—£,}. Then by the assumption of the
existence of ag and the result of Feller (see [6]), we know that

P{M < —t} ~ ce”*!, for some constant ¢ > 0, as t — oco.

Hence P{Y < y} < P{W < y} < 1—cie ¥ for all y > 0 for some constant
c1 > 0. In terms of rz(0), this becomes

P{rz(0) <z} <1-ci(1 —x)?°, for all z € [0, 1].

Note that g(¢) > r¢(0). Therefore
P{q({) <z} < P{r¢(0) <z} <1—e1(1 — ), for all z € [0,1].
O

Now, we denote ug = —log(l — sq), é&n = —log %, H(a) = Eexp(aéy],
where s¢ € [0,1) and its value will be chosen later.
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Theorem 3. If when so is sufficiently close to 1 there exists o = a(sg) > 0 such
that H(a) = 1, H'(a) < +o0, then there exists a constant ca = c2(sg) > 0 such
that

P{q(¢) <z} > 1—ca(1 — )%, for all z € [0,1].
Proof. Write Xy =0, X, ., = F¢, (X,,), (n > 0). We have
X1 = Foo (Feuoy (- (Fio (0) -+ +)) = Foo (F, (- (F(, (0)) - -)),

also since ( is a sequence of iid random variables. Therefore, lim,, o, X/, = Rz(0) >
q(¢). Make the transformations Y’ = —log(1 — R¢(0)) and Y;; = —log(1 — X3,) for
all n > 0. Then we know that Y’ is the limiting random variable of {Y,'}. Denote
Uy = ug, Upy1 = max{ug, U, + én} for n > 0, so that {U,} is a random walk with
left reflecting barrier at ug and with jumps {£,}. Now we show that ¥, < U, for
all n > 0. Obviously, Yy =0 < ug = Up. If Y,) < U, then either Y,} < ug in which
case

Yoy = —log(l—F, (X)) < —log(l— F,(s0)) (since X, < s0)
1—-F -
= U+ (_IOg%S(SO)> <Un +£n < Un+1
— 90

or alternatively ug < Y,} < U, in which case

1-F. (X!
Yo = —log(l—F, (Xp)) = —log(1 - X;,) + (— log — 57 _ng, ")>
n
1-F, (X! 1-F
= Y+ (—log —T_x _C")g, ")) <Y, + (—log — _CHSE)SO))
n

S Un +€n S Un—i—la
where the first inequality holds since

1= R (Xa) _ . 1=dee, (X2) 1= dhg(s0) _ 1= Fe,(s0)
1- X! ko 1-X! Tk 1—s 1—sy

as X, > so. Now let us show that E[én] < 0 for all sq sufficiently close to 1, which
obviously implies that if, for each s chosen sufficiently close to 1, the corresponding

a = a(sg) can be found such that {U,} has an equilibrium distribution random
1=¢k.cn (30) ~

variable, say U. In fact, by the supercriticality assumption (ii) and T >

1 — ¢, (0), we have

1 — ¢r.c. (50)
— S0

Eé,] = E [_ log %CS(()SO)]

< E[-loginf(1l — ¢, (0)] = E[-log(1 ~ sup k.. (0))] < +oo0.

—loginf
IE[ loglrli

Moreover, when so 1 1, —loginfy 1=9k.ca (s0) | —loginfy ¢ . (1), hence, by domi-

1—sp
nated convergence theorem and the supercriticality assumption (i), we have

1 — ¢r¢. (50)

E | —loginf
[ ogin -

| VBl togint ¢, (1] = ~Bllog nt ., (1] <0,

Hence, s¢ can be chosen sufficiently close to 1 so that E[én] < 0. The other part of
the proof follows using similar arguments as in the proof of Theorem 2 but with the
inequalities reversed and taking place Y, W, r¢(0) by Y, U, R¢(0) respectively. [
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Remark. In Theorem 3 we write a = a(sg), ca = c2(8¢) by the reason of that ug
and &, are dependent on the choice value of sg in their definitions.

—a . 1-F;, (s0)] %
Theorem 4. IfE[1 —sup ¢k, (0)]*° < 400, then limy41 E [7"] >1,

1—sgp
where agy was defined in Theorem 2 and the convergence is monotone decreasing.

Proof. Since ay > 0 and

1— F¢, (s0) e 1= (s0) .
n — LR LI NS A —
— - I%f 1— s 2 Hl;f(l B¢, (0))
> 1- sup Prc. (0),
then
1-F, e
E [ﬁ] < E[1 — sup ., (0)] ™ < +oo.
1-— S0 k

Noting that

(52 - (e e (SO))QO < (inf ¢, (1),

1—80 1—50
and

(1 — ¢, (50)

1—80

) o, @) as s,

and the definition of ag, by dominated convergence theorem, we know that

lim E 1= Fe, () o = E[inf ¢}, . (1)]7% > E[sup ¢}, (1)]7* = G(ap) =1
sotl 1—sg kO ken - k kiGn ’

where the convergence is monotone decreasing. |

Theorem 5. Under the conditions of Theorem 2 and Theorem 4, for any sq €
[0,1) sufficiently close to 1, there always ezists o = a(sg), which is unique for sq
and satisfies the condition of Theorem 3, and lims 11 a(so) = a1 exists, where the
convergence is monotone increasing and oy < Q.

Proof. When s is fixed, H(a) = E[exp (an(s0)] is continuous and strictly convex
with respect to a, where we write én by én(so) for emphasizing that it depends on
the value of sg. Under the condition of Theorem 4, for every so € [0,1), we always
have H(0) = E[1] =1 and

1 — F, (s0)

1<E
< |: 1—80

—ao
] < 400, le. 1 < H(ap) < +00.

By the supercriticality assumption (ii), noting that H'(a) = E[é, (so) exp(aén(s0))],
we have H'(0) = E[¢, (s0)] < +00. Since in the proof of Theorem 3, we have shown
that lim,,11 B[, (s0)] = E[— log infy, B¢, (1)] < 0, and where the convergence is
monotone decreasing, we have lim, 41 H'(0) < 0 and the convergence is monotone
decreasing too. This implies that when so < 1 and is sufficiently close to 1, H(a)
decreases at a = 0. Hence there exists a constant § > 0 such that H(d) < H(0) = 1.
As H(a) is continuous and strictly convex, by the intermediate value theorem, there
must exist unique a = a(sg) € (0, aq), such that H(a) = 1, when the fixed value sq



A NOTE ON POPULATION-SIZE-DEPENDENT BPRE 7

is sufficiently close to 1. Furthermore, since H(a) is strictly convex, H(ag) < +00
and sq is sufficiently close to 1, we have

H{(ag) — H(e)

H'(a) < < +oo, for all @ = a(sp).

Now, let sj < sy be two points sufficiently close to 1. Then

; 1 - F, (s) o 1 — i, ()
€n(86) = - IOg 1—7360 = — IOg Hkl:f 1—7860
e 1= k. (s0) 1-F,(s0) _ ¢

Hence Efexp (a(sh)én(sh))] < Elexp(a(sh)én(sh))] = 1. By the strict convexity of
H(a) corresponding to sg, we know that a(sy) > a(sp). Therefore, a(so) is a strict
increasing function for so and bounded by g. This implies that limg 41 a(so) =
exists, where the convergence is monotone increasing and a; < ap. [l

Remark. 1. Under the conditions of Theorem 2 and Theorem 3, we have
1= ca(s0)(1 = 2)*) < P{q(Q) <@} < 1—er(1 —2)*,

for all z € [0,1].

2. The condition of Theorem 4 is stronger than the supercriticality assumption (ii).
3. Theorem 5 implies that when sg is chosen sufficiently close to 1, the condition
of Theorem 3 can be replaced by the conditions of Theorem 2 and Theorem 4, i.e.
the codition of Theorem 5 is stronger than the condition of Theorem 3.

4. From Theorem 5, we know that

oy = max{a(sg)|a(sy) satisfies the condition of Theorem 3},

and then we get a more precise lower boundary of the distribution function of ¢((),
which is no longer dependent on sy, i.e.

1—e(1—2)* < P{g(Q) <z},
for all z € [0,1].

Theorem 6. Under the condition of Theorem 5, there exist constants 0 < a; <
ag < 400 and 0 < C1,Cs < 400 such that

Crk™ < qr < Cok™*, for all large enough k.
Proof. From Theorem 5 we have
(2.2) 1—c(1—2) < P{q({) <z} <1—c1(1—2)%, for all z € [0,1].
By Feller(1971)V.6(p.150)Lemma 1(see [5]), We know that

— 1 —
o = EgQ) = / *dP{g(C) < «}

0
1
= k[ 2*'P{q() > z}dz.
0
Using the right inequality of (2.3), we have

1
qr > clk/ zF=1(1 — z)*dz = ¢ kB(k, a0 + 1).
0
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Noting that

F(ao + 1)
ka0+1

we have g > ¢1 (g + 1)k~ for all sufficiently large k. Write C1 = ¢1I'(ag + 1).

Then we get g > C1k~°. Similarly, using the left inequality of (2.3), we can infer

that g < Cok™“!. Thus the proof is complete. O

B(k,ap +1) ~ , as k — oo,
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