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Abstract

This article concerns variance estimation and a step down multi-
ple inference testing procedure in the case of orthogonal designs. The
testing procedure is compared with other testing procedures and sim-
ulations show a considerable increase of power compared with other
methods.

1 Introduction

To do experiments within industrial or technical research is often very expen-
sive. One way of maximising the information gained while minimising the
cost is to use statistical Design Of Experiments (DOE). An often used tool
is, for instance, two level orthogonal design. Since time and money often are
limiting factors the designs used are often reduced and without replicates.
This leads to that all the degrees of freedom in the experiment will be con-
sumed by the effect estimation. If this is the case we have no degrees of
freedom left for estimating the variance and hence any formal inference will
have to be of different type than the normal.

Let us assume that we are to perform a 2?(,4 designed experiment. The
factors involved are called A, B, C, D, E, F G, and H. The person performing
the experiment thinks it to be plausible that three main effect might be
present. Let’s say that A, B, C are believed to be true effects. If this is
true the only true effects that there can be are from the factors and the



interactions A, B, C, AB, AC, BC and ABC. If we have access to replicates
we could now estimate the variance and make inference like tests or confidence
intervals for the effects. But since we believe that only seven of the 15 effects
should be non-zero we actually have access to at least eight observations that
could be used to estimate the noise. When using designed experiments as a
screening process for optimising a process or product the situation mentioned
above is often the case. In this case we could actually do inference. One
should mention that when working with designed experiments, things like
confounding patters are very important but in this article the focus will be
on analysis of orthogonal designs not on DOE.

When analysing a saturated orthogonal experiment there are a number
of different methods. Various graphical methods are available like normal
probability plots and Pareto charts see, for instance, Box et al. (1978) for an
overview. There have been attempts to formalise the graphical procedures,
see Daniel (1959, 1976). In Daniel (1959) a half-normal plot was used when
the modulus was plotted. This work was continued by Zahn (1975) who stud-
ied the empirical properties and simulated bounds for a testing procedure.
For an overview of different methods for effect testing in saturated orthogonal
designs see Haaland and O’Connel (1995) or Berk and Picard (1991).

All of these methods are based on the normation of the estimated effects
by some kind of variance estimate. In Voss (1999) a more parametrical ap-
proach is used to construct the generalised modulus ratio (GMR) test. The
GMR test is proven to maintain the correct multiple level of significance. In
the proof of this property Voss uses a stochastic ordering lemma “borrowed”
from the literature on ranking and selection. Voss also shows that the same
method of proof will apply to the method in Berk and Picard (1991). Con-
fidence intervals are also constructed and are shown to maintain, at least,
the stated level of confidence. In the case of no true effect the confidence
intervals are exact. The GMR test uses a simple but rather crude estimate
for the variance. In this article we will use a slightly more complicated vari-
ance estimation process under the assumption that the measurement errors
are normal. We will show that the test procedure that arises from this es-
timation will also maintain the correct multiple level of significance. We
will also note that the proof of maintaining the correct level of significance
might be translated to other distributions than the normal distribution. The
asymptotic behaviour of the variance estimate will also be examined.

The setting is that we have Y; ~ N(u;,0), i = 1,...,n such that the ¥;
are independent. We then use |Y;| = X; as our sample. Assume that p; =0
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say at least r of the X;:s. The idea is to use the smallest r observations from
the sample, which we hope contains no effect, and use these to estimate the
variance. We will look at the r smallest observations of the sample and view
these as a censured sample from a normal distribution and simply use the
ml-estimates for o as our estimate. The notation is not limited to saturated
designs since the method might be applied to other problems.

2 Variance estimation

We will examine two different ways of estimating the variance in saturated
designs. The methods used are actually more general than the orthogonal
design setting, see Adolfsson (2002). In order to choose between the different
estimates we will calculate the asymptotic variance of the estimates i.e. the
Cramér-Rao limit. Both of the estimation methods have their positive and
negative features. The first method views the observations as a censored
sample which means that we take both the total number of effects and the
number of effects used for estimating the variance into account. In the second
method we view the sample as a sample from a cut off half-normal distribu-
tion. We then need to estimate both the cut off parameter and the variance.
The support of the distribution is then dependent on the cut off parameter
which makes asymptotic variance calculations difficult. The second method
is however actually more correct in the setting when there exists effects since
it really does not care what observations it misses. The true distribution
to be used is more complicated since we in the first test have the situation
used by the first method. If this test rejects we do have a sample from the r
smallest out of n where we have one randomly selected observation has been
excluded etc. This distribution changes in every step and hence so will the
variance estimate. The use of such an estimate for use in a step down test
procedure with correct multiple level of significance is, to my knowledge, an
open problem.

2.1 Variance estimation method 1

As stated previously our sample consists of X; = |Y;| where ¥; ~ N(0,0?)
Jj = 1,...,n. We now order these observations into 0 < Xy < X(g <
... < X(») and for notational convenience set X; = X(;). Now we take the
r smallest observations and use these for estimating o in the ml-sense. The



density function for these censured data is

() (1120(2)) (-0 ()"

if x, is the largest of the r smallest observations. This pdf is also the likeli-
hood function for o. So the log likelihood function is

l(o,2) =k(n,r) —rln(c) + (n—7)In(1 — ® ( ) 57 ZIQ' (1)

Using that

we get
72 4L Y @l =0 (2)

A more convenient way of writing this equation is (both from a theoretical
and practical point of view)

(3)

To get the ml-estimator we now have to solve this nonlinear equation. For
comments on numerical methods for solving this see section 2.4.

One question that has to be answered is how large r has to be in relation
to n for the estimate to be good enough. One way of getting a glimpse at this
is to look at the asymptotic variance of the ml-estimate. It is known that
under some regularity conditions a ml-estimator is asymptotically efficient
(i.e asymptotically achieves the Cramér-Rao lower bound). The Cramér-Rao
bound for the variance for the parameter 7(6) is given by

02
nE [(5 n(f(X]9)))]




Since in our case 7(¢) = o we only have to work with the denominator. We
approximate the alternative expression for the denominator with

0?1 1 "L 2? Lo ()

= 3 =+ (n—r)—T—2

(53 nr -0 s

i=1

(- 220y ) "

do?2 o2
g

One can also see that

1 <~ X2 ¢ Ly

2
n o
=1

— E[U?|U < u] :/ u?2¢ (u) du
0

using the law of large numbers. Using (5) and (6) we get an approximation
of (4) valid for large n and r, namely

821 n Uoo P (U’OO) 2

Uco
+ 3/ u?*2¢ (u) du — p)
0
n
= 52 (p)-
The asymptotic factor function f(p) is plotted in figure 1. This can be
compared to the variance of the variance estimate that one would derive if
one used the complete set of data. Calculating this is a simple task and one
gets
82l1 ~ n
o2~ o2
Some elementary calculus gives that the
Uoo P (uoo) . Uc2>o >
I-p
part of f(p) goes to zero as p approaches 1 from below, and hence the two
asymptotic variances are equal at p = 1.

U0 (Uoo) <2 +2
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Figure 1: Asymptotic variance factor for the first method

2.2 Variance estimation method 2

The method presented here has the advantage of being more robust for the
random censoring that will occur in the testing procedure that we are to
construct. On the other hand it is more dependent on how large a proportion
of the sample that we use for estimation since it uses less information than
the previous method.

The idea now is to simply cut off the distribution at some level A. We
then estimate o (and A) in the maximum likelihood sense. So we now see
the observations as observations from a distribution living only on (0, A) and
hence the likelihood function is

T

L(o,A,z) = H 5 (CI);(

=1

(7)

and the log-likelihood function is then

1 &<, A
l(o,Ayz) = —nlno +7r — ﬁ;% —nln <<I> (;)) +k (8)

where k is a known constant. From (7) we see that A should be estimated
with the lowest possible value that makes sense, i.e A = z,. We put this into
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(8), differentiate and get

ﬂ _E__Zm —|—n (‘O(T)

do o 202 7“) —1/2

Setting this to zero and solving gives

, (=)@ (=) - 1/2) o)

T e (%) |

This is also a nonlinear equation that has to be solved numerically. In the
case of this estimate the asymptotics are not as clear as in the previous
case. The problem is that the set for which fx(x) # 0 is dependent on the
parameter A. This might result in that the Cramér-Rao bound might not
be valid for o and super efficient estimates might exist. However, if A and
o estimates are independent the Cramér-Rao bound will hold for ¢. In the
present case we can not at all be sure that the asymptotic results hold but
never the less they will be presented, keep this in mind! Following the
methodology in the previous section we calculate

*L_ n 3~ o (20 (%) + 2o (%)
- = 1—— — 4+ —
do? o2 n<o®> o (P(“T) —1/2

* 3 (@ (25%1)1/2)2

Using the same notation and arguments as in the previous section we get

2 Uoo
aalz — E(?}/ uzw(u)du—p—uw¢(uw)<—4+u§0
o 0

o2
+ 2“0090 (uoo) ) ) '
b
Let us write this on the form
0%l n
— /).
~ 992 /()

This is valid since uy, is a function of p. We would like f(p) - 0asp — 0
and f(p) — 2 as p — 1. The latter limit is trivial but for the first limit to
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hold we need to see that

! 1 1 V2
lim Uoo(D) _ iy Yoo (P) = lim —— = lim =vYI_ /z
=0 p p=0 1 =0 D (Uoo) =0 2¢0 (Uso) 2 2

using I'Hopital’s rule and implicit derivatives. We can now conclude that the
function f has the same behaviour in the endpoints as the function in the
previous section. This function does however grow more rapidly close to 2
and is hence less effective in some sense. Figure 2 shows the plot of f(p).

f
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Figure 2: Asymptotic variance factor of the second method

2.3 Choosing variance estimation method

As we could see from the asymptotic variances, method one, viewing the
problem as a censored sample, is the better of the two. This is natural
since we actually have more information in this case. We have included in
our model that we have n observations from the beginning. In the case
of the second method we view the sample as from a cut off half-normal
distribution. If the sample proportion used for estimation is small, which
probably would be the case in saturated orthogonal designs, the cut off level
will be low. This imply that the sample will come from a region of the normal



distribution close to the origin. Since we are trying to estimate the curvature
of the normal distribution this puts us in a rather difficult position since the
normal distribution is rather flat in this region. The flatness of this region
makes the estimates unreliable and hence we choose to work with the first of
the variance estimations techniques.

2.4 Numerical comments on variance estimation

The function (1) and equation (2) might look a bit complicated but they are
quite easy to handle. The simplest method for assessing the ml-estimator
is probably to solve (2). When this function is plotted it gives an L-shaped
curve which is known to give a complicated equation to solve using normal
Newton methods based on estimation of the derivatives. I propose that a
simple interval splitting algorithm is used. One could use Mobius approx-
imations and solve these instead but this seems unnecessary. One should
check whether or not the algorithm one is about to use uses derivatives or
not since methods using derivatives might give very poor convergence (or
even no convergence). There is an important point to this: many estima-
tions using the ML-method give rather difficult numerical problems and one
should be careful and make sure that the optimising tool that is used is
actually suitable for the task.

3 Testing for true effects in saturated
orthogonal designs

We are going to construct a step down test for testing for true effects that
maintains the correct multiple level of significance and different types of
confidence intervals that both keeps the correct multiple level of significance
and some that only keep the individual level. In the first section we will work
out the theory needed for showing these results. Hence the underlying model
has the structure (since we are dealing with normal distributions folded round
the y-axis we can assume that p > 0)

By 2 H(2) = -e 2 G 2 i) = - = Hn) = 0.

The problem is now to find 7 such that ug;) > 0 and p(41) = 0.



3.1 Theory

To show that the test that we are about to construct gives the correct multiple
level of significants we need a lemma. The main idea in the proof of correct
multiple level of significance is the use of stochastic orderings. To show this
monotonicity of the test statistic we need to examine the variance estimates
further. In the proof of this lemma we also need a fact known from reliability
theory namely that the failure rate of a normal distribution is monotonically
increasing. An observation to be made is that the same arguments will do
for other distributions in the exponential family with monotony increasing
failure rates (see Adolfsson (2002) for the gamma distribution).

Lemma 1 The estimate o given by (3) is non-decreasing in S? for fiz x,.

Proof: We will use a contra positive proof. We will show that if 02 decreases
so will S2. We rewrite (3) in the form
9 r

o = (0 = S2)f (—)

n—r g

Rearranging the equation gives

9 _n-=r _ g
() -

We observe that f(z) = 1/(xz(x)) where z(z) is the failure rate function for
a normal distribution. We know now that f(z) is a decreasing function. The
proof is now easy: o2 decreases = x, /o increases = f(z,/0) decreases =

=" _ increases = 1 — —2=C_ decreases = o2 [ 1 — 2=~ decreases = S?
ri(%) (%) ri(%) "
decreases. Q.E.D.

Lemma 2 The estimate o given by (3) is non-decreasing in ..

Proof: Once more we rearrange equation (3) to get

7 ()
where k is a constant. We observe that o is a non-constant function of
z,. Now take z! € R* such that z, < z!. We observe that when z,/o

n—r 1 z? k
;._2:1__2 (10)

o o
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increases then (10) gives that o increases. We are now going to force out a
contradiction. Let o' = o(z]), assume that

T, T

o~ o
According to (10) we must have ¢ < o but this gives that z, > z/, a
contradiction, and hence

Tr T

o~ o
Once again we use (10) and conclude that o < o'. Q.E.D.

A basic part of the proof of correct multiple level of significants is stochas-
tic ordering. The following definition and lemma is needed.

Definition 1 (Lehmann (1986)) A family of distribution functions Fy(x)
on R, for 6§ a real parameter, is said to be stochastically increasing if 6 < @'
implies Fy(x) > Fy(x) Yx. Similarly, the family of distributions is said to be
stochastically decreasing if 0 < 6" implies Fy(z) < Fy (x) Vz.

Lemma 3 (Stochastic ordering lemma (Voss (1999))) Let Fy(x), for
real parameters 0, be a stochastically increasing family of distribution func-

tions on the real line. Let X1, X,,..., X be independent random variables,
where the distribution function of X; is Fy,(z;). For any fired i (1 <i < k),
if the statistic t = t(xy1,za,...,x) is non-increasing (nondecreasing) func-

tion of x; when all x; for j # i are held fized, then the distribution of
T = t(X1, Xo, ..., Xy) is stochastically decreasing (increasing) in 6;.

3.2 Test construction

We are going to construct a test based on the statistic

_ max{Xy,..., X;}
a &

T;

which we are going to compare with critical values ¢, (i, 7, n) from the distri-
bution of

max{Xy,...,X;}
a_ 7

CZ': i=1,...,n

such that
P{T; > co(i,7,n)} =«
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under the null-hypothesis. The indexes r and n in ¢,(%, 7, n) is due to the fact
that 6 = 6(r,n). With this we will be able to construct a testing method
that maintains a correct multiple level of significant.

For this test to have any practical relevance we need to show that 6 /0 is
independent of . We note that the distribution of X;/o is independent of o
and using (2) we get that

_ P —r)e (F)

(-2() (- 150, x)

Substituting Z; = X;/o and ¢ = 6/0 we get

. Z.(p—r)yp (%)
(1-e(%)) - by 2

and we see that this solution (in ¢) is independent of o. This tells us that
the test statistic 7; is independent of o and hence that the test may be of
practical use.

The test procedure is to reject the hypothesis Hy, : i, = 0 and conclude
Hi, o opy # 0if t, > co(n, r,n) otherwise no rejections are made. If we reject
in the first test we test Hopn—1: ptn—1 = 0 against Hy ,_1 : pp—1 # 0 and reject
ift, 1 > co(n—1,r,n). If no rejection is made in the second step we stop and
only conclude that pu, # 0, otherwise we conclude that u, # 0 and p, 1 # 0
and we continue. The procedure is now repeated until the first time we can
not reject. Hence, no hypothesis can be rejected if not all of its predecessors
have been rejected. One observation to be made is that the deeper we go
down the rejection chain the more difficult it will be to reject. This is due to
our variance estimate since if we have rejected a false hypothesis the variance
estimation is incorrect. The correct variance estimate should be one where
we have the r smallest out of n where one observation has been randomly
excluded. We will over estimate the variance and hence our method will be
conservative when true effects are present.

We now show that this test procedure maintains the correct level of sig-
nificants.

Theorem 1 If X; (i = 1,...,n) are independent and X; = |Y;|, Y; ~
N(u;,0?), then the test procedure above maintains the multiple level of sig-
nificants a. The multiple significants level is exactly o in the null case.

Ql®
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Proof: Let h denote the number of effects p; that are zero. The error rate is
exactly « in the null case, for which h = n, from the definition of ¢, (n,r, n).
If h = 0 we can not do any false rejections. Hence we assume that 1 < h < n.
Without loss of generality we relabel the effects so that pu; = 0 for ¢ < h and
;i # 0 otherwise. A false assertion can only be made if

max;<p{;
h = 71?{ i} > co(h,r,m).

A

Now according to lemma 1 and lemma 2 %, is a non-increasing function of
x; for each j > h, so the distribution of 7}, is stochastically decreasing in
each p; for each j > h by the stochastic ordering lemma. We note that the
critical values are chosen such that

P{Ty > co(h,m,n)} =«
when p; = 0 for all 7. Hence,

P{Ty > ca(h,m,n)} <

for any parameter configuration (1, po, - - ., fin)- Q.E.D.
n k

8 44584 3.732 2.846 1.967

9 4478 4.160 3.307 2.549 1.747

10 5| 4.228 3.747 3.058 2.434 1.758

11 5| 4.456 3.956 3.359 2.755 2.168 1.567

12 6| 4102 3.627 3.148 2.698 2.163 1.589

13 6| 4.238 3.817 3.334 2.956 2.432 1979 1.477

14 7 |4.003 3.634 3.291 2.824 2376 1.969 1.491

15 7| 4.184 3.772 3.407 3.080 2.583 2.172 1.848 1.384

16 83998 3.659 3.313 2.960 2.573 2214 1.854 1.438

17 8 | 4.040 3.742 3.406 3.048 2.709 2.442 2.061 1.737 1.355

18 93912 3.666 3.352 3.009 2.677 2382 2.094 1.745 1.386

19 93953 3.701 3426 3.106 2.834 2.557 2.247 1.975 1.649 1.316
20 10 | 3.906 3.629 3.358 3.045 2.814 2.554 2.236 1.988 1.687 1.351

Table 1: Table of critical values for 5% significance given n and k.
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3.3 Simulating critical values for the testing procedure

The speed of our computers is still growing by the hour. This gives that
simulations will be easier and easier to perform. But on the other hand we
will also want to solve larger and larger problems. It is my experience that
the implementation of the simulation method makes quite a difference. To
generate the table 1, which contains critical values for the testing procedure
in the previous section with an level of significance equal to 5% (based on
10000 simulations each), I used a specially designed C-program. Comparing
the executional times between MATLAB and my code is comparing days to
minutes. One should be aware that even though our computers are fast, and
getting faster, we can still gain a lot from good algorithms.

4 Construction of confidence intervals

The construction of multiple confidence intervals are closely related to the
method used for making intervals using the studentizied maximum modulus
distribution. The intervals will only be calculated for effect not used in the
variance estimate 62. One could actually make intervals for all effects but
then one needs to calculate a new distribution. We would have to construct
a new distribution where we make sure that the X; in the numerator is
not used in the denomerator. By this we would avoid dependence between
numerator and denomerator in the pivot distribution needed. Of course
intervals constructed this way will be conservative.

The construction of a confidence interval that maintains the multiple level
of significance is straight forward. We will use the same notation as in the
previous section. The pivotal distribution will be that of

X

%

assuming that p; = 0. The interval is derived from

Yi—
l—a = P{maxw<za}. (12)

? o

Since this is valid for all y,:s the intervals will maintain the correct level of
significance.
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For constructing individual confidence intervals one needs to calculate a
new pivotal distribution. To make this we need a new notation o;. The
distribution needed is that of

Y —
1Yi = pal (13)

0;
where &; is the estimate of o using the r smallest observations ezcluding
X;. We need to do this to be able to use the stochastic ordering lemma to
show that this distribution is stochastically decreasing in all p;, j # ¢ which
garanties that we maintains the individual level of significance.

Lemma 4 The distribution of Eq. 13 is stochastically decreasing in |p;| for
all i # 7.

Proof: The proof follows from the stochastic ordering lemma and lemmas 1
and 2. Q.E.D.
The lemma tells us that we can construct the confidence intervals from the
distribution of Eq. 13 by setting u; = 0 for all i.

Theorem 2 The confidence intervals for u; below keeps at least the confi-
dence level 100(1 — a)%:
x; £+ 2o(r,n)0;

where « is chosen such that P{X;/6; > z4(r,n)} = .

In table 2 the 0.05, 0.01 and 0.001 percentiles of the confidence interval-
distribution is shown. The table is based on 10,000 simulations each. The
confidence intervals will by necessity be conservative if large true effects are
present. Assume that we have a 2* full factorial design and use the 8 small-
est absolute values for estimating the variance and construct the confidence
intervals. We further assume that there is one very large effect. This effect
is so large that it in no way influences the variance estimation. Then the
confidence intervals should rather be based on a table for n =14 and r = 8
and hence the confidence intervals will be conservative.

5 Power simulations

The numerical study will limit itself to comparing with Voss (1999). In Voss
(1999) one can find comparisons between GMR and other methods. If one
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n k|5% 1% 0.1% n k|5% 1% 0.1%
3 12880 15.007 142.234 | 27 13 | 1.858 2.530 3.500
4 2] 1551 3.616 10.399 |28 14| 1.847 2.506 3.462
5 22123 5.082 15345 |29 14| 1.857 2.518 3.501
6 31736 3.256 7.430 30 15| 1.854 2.493 3.392
7 311979 3.716  8.339 31 15| 1.858 2.506 3.450
8 41779 2970 6.190 32 16 | 1.856 2.487 3.359
9 411905 3.176 6.516 33 16 | 1.867 2.498 3.366
10 5| 1.783 2.769  4.889 34 17 | 1.857 2.487 3.340
11 5| 1.878 2.954  5.306 35 17| 1.867 2.486 3.351
12 6| 1.811 2.707  4.455 36 18 | 1.865 2.469 3.281
13 6| 1.862 2802 4.517 37 18 | 1.873 2.489 3.304
14 7| 1.812 2,637 4.164 38 19 | 1.867 2.482 3.309
15 7| 1.858 2.742  4.329 39 19 | 1.877 2487 3.314
16 8| 1.823 2.608  3.925 40 20 | 1.870 2.466 3.231
17 8| 1.853 2.670 4.121 41 20| 1.874 2.472 3.271
18 9| 1.829 2.572  3.853 42 21 | 1.874 2460 3.244
19 9] 1.852 2.632 3.900 43 21 | 1.878 2.469 3.229
20 10| 1.840 2.570  3.730 44 22 | 1.875 2.470 3.221
21 10| 1.856 2.586  3.761 45 22 | 1.883 2.484 3.235
22 11 | 1.834 2,532  3.619 46 23 | 1.876 2.463 3.219
23 11| 1.856 2.563  3.643 47 23 | 1.883 2.467 3.255
24 12| 1.841 2.537  3.505 48 24 | 1.879 2.465 3.216
25 12| 1.854 2.539  3.476 49 24| 1.886 2471 3.215
26 13| 1.844 2,518  3.505 50 25| 1.881 2.460 3.196

is interested in the performance of our method compared with others than
GMR Voss (1999) is a good place to start. The GMR method is performed
as follows: Decide on the number of estimates believed to be merely random
noise. Let us say that there should be at least £ such estimates X;. We form

Table 2: Confidence intervals percentiles given n and k.

the Quasi Mean Square Error (QMSE) according to

k
1 E 2
=1

We now base the step down test on

2
X3

T; = .
7~ QMSE
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The largest of these T):s namely 7' is compared with a suitable critical value
c(l,n,k,). Ty < ¢(1,n,k, ) we make no rejections and stop. If 77 >
c(1,n, k, ) we reject the hypothesis that the largest effect is a null effect and
continue to test if 75 > ¢(2,n, k, a) etc.

The simulations are made by choosing a specific set of non-zero §; and
running repeated tests on these. Since we have a step down procedure the
power for each individual hypothesis will be decreasing since for instance the
second hypothesis can only be rejected if the first is rejected. We will count
the number of correct rejections for the true effects and the number of cases
where any false rejections are made. In all of the simulations we use n = 15
and k£ = 8 i.e. a total of 15 estimated effects from which the eight smallest
are used for the variance estimation.

5.1 Four equal effects

We now use four equal effects all the same size as the noise level of experiment.
If the standard deviation of the measurement error is ¢ then ; = o for four
randomly selected 7:s. In this setting both methods have very little power.
This is however natural since the true effect is small compared with the
noise level. The estimated Type I error probability is also given. This will
be smaller then the designated @ = 0.05 since our variance estimate is too
big when true effects are present. This conservativeness is however smaller
than that of the GMR testing procedure. This is probably due to the more
exact variance estimation method. The method presented in this paper will
be abbreviated CVMR (Censored Variance estimation Modulus Ratio). In

Method | Hy; Hy, Hys Hy, P{Type I error}
CVMR | 0.0874 0.0378 0.0185  0.0099 | 0.01275
GMR 0.0932 0.0284 0.00865 0.00245 | 0.00735

Table 3: Estimated power and type I error probability

table 3 the estimated power for each of the possible true hypothesis is given
together with the estimated probability of a type I error. The table is based
on 20,000 simulation where four §; were set to equal o.

In the next simulation four §;:s were set to 20. The result of this simu-
lations is shown in table 4.
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Method | Hyy, Hyp  Hg3s Hy P{Type I error}
CVMR | 0.411 0.312 0.260 0.188 | 0.03775
GMR 0.419 0.256 0.151 0.0723 | 0.0042

Table 4: Estimated power and type I error probability

5.2 Four unequal effects

For X; we now put y; = 40 and do as in the previous section. The result
of 40,000 simulations is shown in table 5. The table clearly shows that the

Method | Hyy Hgpe Hyps Hy P{Type I error}
CVMR | 0.933 0.764 0.410 0.0875 | 0.0314
GMR 0.931 0.661 0.237 0.0239 | 0.0051

Table 5: Estimated power and type I error probability

power is greater in the CVMR method than in the GMR method. This is
probably due to the fact that the variance estimation is less conservative
than the one used in GMR.

5.3 Conclusions concerning power

The CVMR method shows to have greater power when it comes to reject-
ing more than the first hypothesis. The variance estimation method used
in CVMR uses information from the tail of the distribution in terms of the
failure rate function. This stabilises the estimation and makes it more robust
against the random censoring that the presence of true effects gives raise to.
To gain more robustness against random censoring we need to use more ad-
vanced estimation methods that are adaptive. The use of adaptive methods
for testing is an open problem when trying to maintain the correct multiple
level of significance.
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