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1 Introduction

Two-level fractional factorial designs are important statistical tools in partic-
ular for screening experiments and in situations where the cost of experimen-
tation is high. It is common that no replicates are taken. Also full factorial
designs may often be performed without replicates. This means that there
does not exist any within series estimate of experimental error variance.

The problem has been overcome in different ways. If the fraction is not
too small, the estimates of interactions of some high orders, not aliased with
main effects or low order interactions may be used for variance estimation.

A common subjective method is to make a normal or half normal plot of
all effect estimates and then select as important (significant) the effects with
estimates deviating much from a straight line. This method by Daniel (1959)
is commonly adopted in textbooks, e.g. Box et al. (1978) and Montgomery
(1984).

There exist also some methods which have a warranted level of significance
for declaring effects to be nonzero when they are in fact zero. The most
important of those methods is Voss (1999, 1988). He constructs a variance
estimate based on the half of the estimates with the smallest moduli.



The aim of the present paper is to present an alternative method with
warranted level. It is based on another type of estimate, which makes it
flexible with respect to the true number of zero and nonzero effects. Further
this type of estimate makes it possible to construct a step-down test with a
multiple level of significance. Principles and definitions for step-down test
may be found in Hochberg and Tamhane (1987).

2 Coverage bounds

The test method to be presented later is based on coverage bounds for order
statistics. In this section we will make a general discussion of coverage bounds
in order to prepare for the method presentation in the next section.

Let XU X® X® be order statistics in a sample of size n from
a distribution with a cumulative distribution function F'(z). A left one-
sided coverage band with coverage probability ¢ is a sequence of constants
ai,as,...,a, such that ]P’{X(k) > ay, for k = 1,2,...,n} = ¢. The band is
said to be balanced if the individual missing probabilities P {X (k) < ak} are
the same for all £ =1,2,...,n. In some application it is reasonable to have
a coverage bound, which is balanced, but in others it is more reasonable to
have a varying individual coverage probability for the order statistics. A
right one-sided balanced coverage band may be defined analogously.

One may also define coverage bounds on both sides simultaneously, which
then gives a coverage band. A two-sided coverage band with coverage proba-
bility g consists of two sequences of constants aq, ao,...,a, and by, bo, ..., b,
such that ]P’{ak < XK <pfork=1,2,... ,n} = q. The band is said to be
balanced if the individual missing probabilities P {X® < a;} and
IF’{X(’“) > bk} are the same on both sides and for all £k =1,2,...,n.

An attempt to use balanced coverage bands for out-lier detection is made
by Atkinson (1981). He uses a half normal plot to detect outliers and in-
fluential observations. On the normal probability paper is constructed a
band and the position of order statistics are compared to that band. The
statistics are of a type given by Cook (1977). The band is constructed as
an envelop of the order statistics for 20 simulated series of statistics. The
reason for having 20 series seems to be related to some idea of standard cov-
erage probability, since for each order the band reaches from the smallest to
the largest of corresponding order statistics in the 20 simulated series. The
method is further developed by Flack and Flores (1989). They made more



accurate bands by basing it on a larger simulation and they also discussed
other similar constructions.

We now consider the calculation of the coverage probability of a left one-
sided coverage bound. The calculation can be made for the U(0, 1) distribu-
tion by first making the transformation U; = F(X;) fori = 1,2,...,n giving
the ordered statistics UM, U® ..., U™. Then U*) has a Beta distribution
with parameters £ and n + 1 — k. Now let aq,as,...,a, be any constants
with the ordering a; < as < ... < a, for which we want to calculate the
probability P {U® > q; for k =1,2,...,n}.

For each individual order statistic U®*) the probability P {U (k) < ak} is
obtained by the Beta distribution. We introduce events A, = {U®™ < a,}
and Ay = {U® < ay and UKD > g1} for k =1,2,...,n — 1, which can
be interpreted as a passage over the bound. Further we introduce the events

B, = A, and By = Ay N (U;-‘:kHA;) for k =1,2,...,n — 1, which can be
interpreted as the first passage over the bound when going from above in

index. Thus now

P{U® >ayfork=1,2,...,n} =1-) P{By}.
k=1

The probabilities P{ By} may be calculated successively with a simple
equation system by using conditioning.
Since Ay = U7_ {Ax N B;} we get

P{B,} = P{A}, P{B, \}=P{A, 1}
and
P{Ax} = P{AxN By} + z": P{Ax N B;}

j=k+1
n

= P{B}+ > P{B;}P{AB;} fork=12,...,n—2.

j=k+1
Here
n k n
P{A;} = f a;(1 — agy1)™ " and
N k(. j—k
P{A|B;} = (2)%(% j’c“) for j > k
a’



which is proved in Lemma 1 in the appendix. Thus the equation system for
determining P { By} is

P{B,} = a"
P{Bu-1} = ( . )aﬁ:i(l—an)1
P{Br} = (k)aﬁ(l—ak+1)n—k

n . k L j*k
— Z]P’{Bﬁ(‘;)ak(% %H) fork=n-2,n-3,...,1

J
j=k+1 @;

By doing the calculation successively in the indicated order we do not
even need to solve an equation system. From this result we can easily get the

same type of result for random variables X, Xs, ..., X,, with any continu-
ous cumulative distribution function F'(x) by considering the transformation

If XM X@ . X® are the order statistics the coverage probability
P {X(’“) >apfork=1,2,..., n} of a left one-sided coverage band with con-

*

stants af, a3, ..., a;, is obtained by using ay = F'(aj) in the above calculation
for the U(0,1) distribution.

For the statistical problems to be treated later we want a reversed cal-
culation. That is, for a given internal relation between the individual cov-
erage probabilities for the different order statistics, we want to determine
the absolute size of these probabilities in order to get a given total coverage
probability. For instance if we want a balanced coverage bound we use the
same individual coverage probability, which should be determined so that
the total coverage probability is equal to some given value. In our statistical
problems there are reasons for having individual coverage, which increases
with the order of the statistic. Using a linear increase the individual probabil-
ity P{U® < a4} is proportional to k. In order to get a given total coverage
probability we need to determine this proportionality constant.

The problem of getting a given total coverage probability for a given
structure of individual coverage probabilities is easily solved by iteration.
From some starting values of the individual coverage probabilities, with the
given internal structure, we calculate the constants a; by the Beta distribu-
tion and then calculate the total coverage probability be the equation system
for P{By}. If this total coverage probability is smaller than intended the in-
dividual coverage probabilities are increased with the relative sizes preserved
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and if the total coverage probability is to big they are decreased. When there
are results on both sides of the required total coverage the calculation is it-
erated in new points estimated linearly from the previous cases most close to
the required result. The procedure converges to acceptable approximation in
a few steps.

3 Estimation by use of coverage bound

A left coverage bound with a coverage probability of 0.5 is in a sense an
estimate of a "natural left tangent" of the empirical cumulative distribution
function. This coverage bound is situated in a median position to the left. In
particular in one-parameter problems this may be used to get good parameter
estimates.

When using the common method by Daniel (1959) one selects intuitively
a lower part of the ordered values of the effect estimates to fit a straight
line on the half normal plot and then declare as significant those factors
whose absolute values of effect estimates deviate much from this line. We
will now here use an objective and adaptive method with the same intention.
In our method the estimate of the standard deviation is obtained by a scale
factor required for aligning the ordered sample to the right of a left coverage
bound with coverage probability 50%. In order to get good estimates we
will use a coverage bound which has a linearly increasing individual coverage
probability. This means that there is greater probability that a great ordered
absolute value will be used for the estimate.

We describe the details of the construction in order to be precise. Let
ai,as,...,a, be the boundary constants for a left bound with linearly in-
creasing individual coverage probability and total coverage probability 50%
for the case of U(0,1) distribution. Then calculate the boundary constants
a; = @' ((ax + 1)/2) for the distribution of ordered absolute values
XM X@ . X™ of observations which are normally distributed with pa-
rameters (0, o). Then o may be estimated by 6 = min;<<,(X® /a}) .
When using the estimate in a situation with non-replicated factorial design,
we have sample sizes of the type n = 2™ — 1 and the random variables are
the absolute values of the estimates. If there are no true effects the estimate
is median unbiased. If there are true effects, there is a tendency that the
biggest absolute values deviate more or less to the right and o is estimated
by absolute values of lower order. Then the estimate is no more median un-



k 1 2 3 4 3 6 7
Bound | 0.00062 | 0.0142 | 0.0452 | 0.0881 | 0.1390 | 0.1950 | 0.2575
8 9 10 11 12 13 14 15
0.3228 | 0.3915 | 0.4632 | 0.5379 | 0.6155 | 0.6966 | 0.7825 | 0.8771

Table 1: Bounds for a 50% left coverage bound for order statistics in a series
of 15 ordered statistics from a uniform |0;1] distribution.

biased. We will use this type of estimate in the effect testing method in the
next section.

In practice one needs to make a minor correction to the method. Since we
always work with some rounding off of the observed quantities we might by
coincidence get some estimates, which are 0. This numerical problem would
completely destroy the estimate and give . It can in practice be avoided by
adjusting the fitting with the size of the smallest observable unit. If this
is d it means that we use the estimate & = minj<r<,((X® + d)/aj). This
adjustment gives a minor median bias of the estimate.

4 Testing for effects in nonreplicated factorial
designs

A full or fractional two-level experiment has n = 2* trials for some natural
number k. We exemplify the discussion here with & = 4 which means 16
trials. In such a trial there is one estimate of the general mean and 15 effect
estimates. Our aim is to get a reasonable test for effects which has a required
small multiple level of significance o« = 0.05 , i.e. a probability of at most
0.05 for declaring as significantly non-zero any effect which is in fact zero.
This should be true for all possible combinations of zero and non-zero effects.

We need the 50% coverage bound constants for 15 ordered observations
of absolute values from a N(0,1) distribution and we can get those for the
corresponding constants for the case of U(0, 1) distribution. In the calculation
we use linearly increasing individual coverage probabilities. The individual
probabilities, which give total coverage 50% are 0.1398 xi/15. The result of
the points a; are given in Table 1.

By the simple transformation we get the corresponding constants for the



k 1 2 3 4 3 6 7
Bound | 0.00078 | 0.0178 | 0.0567 | 0.1106 | 0.1751 | 0.2481 | 0.3285
8 9 10 11 12 13 14 15
0.4163 | 0.5123 | 0.6177 | 0.7353 | 0.8696 | 1.029 | 1.233 | 1.543

Table 2: Constants for a 50% left coverage bound for ordered absolute values
of 15 normal (0;1) random variables.

case of absolute values of normal (0,1) random variables. The result is given
in Table 2.

Using the constants in Table 2 and the estimate & obtained by aligning
the sample of absolute values of estimates to them we may now also make a
test for effects. In the subjective method by Daniel (1959) one looks for much
deviation among the biggest absolute values of the estimates. We follow the
same line of thought in an objective method with prescribed risk of making
any false statements on nonzero true effects. This is done by calculating a
bound which will act as a rejection boundary, and for all effects with a greater
absolute value of the estimate we will declare that there is a true effect.

The test we propose is a step down multiple test with a prescribed mul-
tiple level of significance a, which we will now describe in more detail.

Consider first a test of the hypothesis that all random variables are nor-
mally distributed with expectation 0 and the same (unknown) variance o?.
First the absolute values of the estimates are ordered and then the scale is
changed to align the cumulative distribution function with the 50 coverage
bound. Next we consider the maximal value of this scale changed series,
i.e. the scale changed maximal order statistic, which is used as a test statis-
tic. The distribution of this test statistic under the null hypothesis is rather
complicated but a simulation easily gives e.g. the 95% quantile in the distri-
bution, which then serves as a rejection limit.

In order to get a step down test we also study the distribution of the
maximal ordered statistic in smaller samples of different sizes m after scale
changes to alignment to the m smallest boundary values of the 50% left
coverage bound defined above for the full sample. The 95% quantiles in
these distributions are used as rejection limits.

In the closed test we may go from above successively and declare effects
significant as long as the ordered statistics (absolute values) are above the



k 1 2 3 4 ) 6 7
Bound | - 0.021 { 0.133 | 0.30 | 0.49 | 0.69 | 0.94
8 9 10 11 12 13 14 15
1.18 1.43 | 1.71 | 2.00 | 2.27 | 2.60 | 2.93 | 3.32

Table 3: Upper bounds for step down test with alignment to a 50% left
coverage bound for ordered absolute values of 15 normal random variables.
Multiple level of significance is 5%.

corresponding limits. Observe that the procedure has to stop the first time an
order statistic is below the corresponding limit. In Theorem 1 in the appendix
is proved that this test procedure has a multiple level of significance .

This type of procedure can easily be constructed for other sample sizes.
In two-level factorial designs the cases of 31 and 63 effects are particularily
interesting. The very construction with a left coverage band, scale alignment
and step down test limits can be used also for other scale families than the
normal distribution.

When performing the test in practice we need to consider the rounding off
results. Due to rounding there may be a considerable relativ variation in the
small estimates in practical applications. This extra variation may destroy
the estimate of the standard deviation if some estimate just happens to be
extremely small. Occationally an estimate may even get the rounded value
0, which completely destroys the esimate, since it makes it formally equal to
0. A simple way to get rid of the problem in practice is to add the maximal
rounding error to the absolute values of the estimates. It is easily seen that
this makes the test procedure just slightly more conservative, and it means
that the rounding can never decrease the estimate of o.

5 An application example

As an illustration we use an example from Box et al. (1978). The estimates
are given in their table 10.9 on page 331. In this case the measurement
values are rounded to 0.25 units and the definition of the effects means that
the maximal error in an estimate is 0.125. Thus after taking the absolute
values of estimates we add 0.125 before we estimate the standard deviation
and normalize the estimates. The estimated standard deviation in this case



1.80, which occurs in the alignment of the ordered absolute value 0.75 number
8 with the alignment value 0.4163.

Comparing the normalized absolute values of estimates with the rejection
bound shows that in a multiple test with multiple level of significance 5%
we may reject three hypothesis. In notations of Box et al. (1978) we can
demonstrate existance of the main effects 2 (with estimate 24.0),1 (with
estimate -8.0) and 4 (with estimate -5.5). The next effect is not significant
for the multiple level of significans 0.05.

It may be illustrative to use a half normal plot for the test bounds as well
as the normalised estimates. In figure 1 a plot of the data and the rejection
bounds are presented.
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Figure 1: The top plot contains the raw data from Box et al. (1978) page
331land the 50% coverage bounds. The bottom plot contains the normed
data, the coverage bounds, and the rejection bounds



6 Discussion

The statistical problem of determining significant effects in a reduced factorial
design without replicates needs some method to obtain an error estimate from
the very set of effect estimates we are investigating. The method we used
here is based on a kind of tangent estimates, which is rather much related to
a subjective technique of looking for a bend in a cumulative absolute normal
probability plot.

Of course the technique means using order statistics to get the estimates.
Usually order statistics are not the most efficient ones. On the other hand we
have here the “sample size adaption” problem which can be suitably handled
for order statistics. Further our method is well suited for illustration. The
effect estimates can be seen together with the lower fitting boundary and the
upper rejection boundary.

As already mentioned the method can be used for other sample sizes after
preparation of a table. It can not only be used for reduced factorial designs
but also for other problems with independent test statisics and these need
not be normally distributed. An example may be some type of life time
distributions with scale parameter, where it could be used after preparation
of a suitable table. It is to be noted that for the table preparation there is
the possibility of simulation beside the analytical calculation.

A Proofs

Lemma 1

n

Plad = (] - au
(

7\ af(a; — ap)’ "
k a;

P{Ax|B;} =

forj >k

using the notation in section 2.

Proof: In the first equation we have that

]P{Ak} = ]P{U(k) < a and U(k+1) > ak+1}
P {k of the U;:s < ay and (n — k) of the U;:s > a1}

n
= (k) allz(l - ak+1)n_k
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since the U;:s are independent U(0,1). For the second part we notice that
P{ABj} = P{A[UY < a;}

so that the U®), k =1,...,j conditioned on B; are an ordered sample from
U(0,a;). Hence we have

rn - ()2 (%)
<

Q.E.D.

Theorem 1 The multiple test procedure described in section 4 has a multiple
level of significance .

Proof: Denote the set of indices for the true hypotheses by I and the num-
ber of true hypotheses by m. Consider the ordered absolute values of the
estimates x; to these hypoteses and denote their maximal absolute value by
Z.

The proof is to a great extent based on conditioning on this z. Next
consider the estimates x; belonging to the false hypoteses, thus characterized
by p; # 0. Given Z, there is a random number N of the z;-variables getting
outcomes of their absolute values below z. These variables can in principle
correspond to any of the u; # 0.

The test procedure is based on ratios between ordered absolute variables.
For the test actually made to reject the hypotheses corresponding to z, the
ratio of absolute values of smaller index in the ordered series and z are used.
A rejective error can only occur if there is rejection in this step.

Now condition on N as well as z. Decreasing values of the ordered abso-
lute values of z; with index less then m 4+ N increase the risk of making an
error.

There is a stochastic order between the conditional distributions given
an upper boundary z for the with ;4 = 0 and any case with |u| # 0. Cases
with || # 0 have stochastically greater conditional distributions. See lemma
2. Thus in a conditional calculation the risk is increased if, in the cases of
false hypotheses, the distributions are substituted by the distribution of the
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true cases. Neither m nor N are known, but the sum m + N appears as the
number of remaining variables in the test really done.

Thus we now get an upper estimate of the risk of error by integrating
over z in the conditional error obtained for m + NN variables with the same
distribution. Observe however that the distribution of z is that of a max-
imal variable among m variables, where m is not known. The final trick
is now to make the integration of the distribution of the maximum of the
known number of m + N variables (of the type in true hypotheses), which is
stochastically larger than that of the unknown number of m variables. This
gives again an overestimation of the risk since the conditional distributions
are monotonically decreasing in the conditioning value z. See lemma 3.

The table used is based on calculations for this distribution. In order
for a rejective error to occur, the procedure must reject in earlier steps and
reject in the step corresponding to z. Since the risk in that step is bounded
by «, the multiple risk is bounded by «. Q.E.D.

Note. There exists cases for which the values of the table are not conser-
vative. If all false hypothesis have expectations p; with |;| approaching oo,
the risk approaches a.

Lemma 2 Suppose that U; is N(0,1) distributed and Us is N(u,1) dis-
tributed where p # 0. Then the distribution of |Ui| given |Ui| < z is stochas-
tically smaller than the distribution of |Us| given |Us| < z.

Proof: We make the proof for p > 0, since the result depends only on the
absolute value of p. The cumulative distribution function of |Us| is equal to

®(z —p) — ®(—z — p)

for any p and all x > 0. The cumulative distribution function of |U;| is
obtained as the special case u = 0. The probability density function in the
general case is then

o (z—p)+ (-2 — p) = 2¢ (z) e /2 cosh(pax)
and for the special case p = 0, the distribution of U/, it is
2¢ (x) -

In order to prove the lemma we now consider the probabilities of the two
intervals (0, z) and (z, z) for the general case. We have for any 2z and any z,
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O0<z<z and p>0

P, {0< |t <z} — / 20 () e*/2 cosh () du
0

< e cosh(,ux)/ 2¢ (v) dv
0
and

P {z < |Us] < 2z} = / 20 (v) e/ cosh (uv)dv

> ¢ M/ Cosh(ux)/ 2¢ (v) dv.
0

Thus we have

P, {0< |Us] <z} Po{0<|Ui| <z}

P, {z < |Us] <2z} Po{z<|Ui| <z}
which gives the stochastic ordering requirement

P, {0 < |Us] <z} Po{0<|Ui| <z}

P, {0< |Us| <2} Po{0<|Ui| <z}

Q.E.D.

Lemma 3 Conditional distributions of the modulus V = |U|/v of random
N(0,1) variables U, given |U| < v is stochastically decreasing in v.

Proof: Let ® denote the cumulative distribution function for the N(0,1)
distribution. We have to show that if v; < vy then

O (v1z) —0.5 D (vex) — 0.5

d (’Ul) —0.5 0] (’1)2) —0.5

for all z,0 < z < 1. The left and right member coincide at x = 0 and =z = 1.
For any v > 0 and any z,0 < x < 1, we have, however,

0 ®(vr) —05 _ zp(vz) (P (v) —0.5) —p(v) (P (vz) — 0.5)

ov ®(v)—05 (® (v) — 0.5)2
zp (vz) (P (v) — 0.5) — ¢ (v) (P (v) — 0.5)
> (@ (v) — 0.5)2 >0

since ® (v) is concave for v > 0 and ¢ (v) is decreasing for v > 0. This proves
the statement. Q.E.D.
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