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Abstract

There exists a number of methods for regression in the case when
we have a poorly conditioned design matrix. Most of these methods
use various regularisations on the design matrix. We will construct
a regression method that uses information in the response as well as
the design matrix. The method allows the design matrix to be ill con-
ditioned. The method presented is shown to be theoretically simple
compared with other methods using response information. Procedures
for dimensionality testing are derived and predictive properties are
thoroughly examined. Variance estimation in the case of effect spar-
sity is asymptotically examined and the asymptotics are studied by
simulations.

1 Introduction

Many new and interesting regression methods have been born from the field
of chemometrics. These methods are often subspace regression methods, i.e
instead of solving the complete problem they solve an easier problem with
lower dimension that approximates the original problem. These methods are
used since

a the dimension is often very large and

b there is a wish to reduce the noise.



The underlying models and theory are quite easy to understand but to check
its correctness is a rather difficult problem. Since one is working with sub-
space regression it is of crucial importance to get the correct dimension of
the subspace. If a wrong decision is made one can make two basic mistakes:
too small dimension or too large dimension. In the former case the regres-
sion function will be inadequate in the sense that information is lost. If the
dimension is too large the variance of the estimates will be too large. As
always there is a trade off between variance and unbiasedness. By increasing
the bias one could reduce the variance and hence increase the precision of the
estimates. If, on the other hand, the bias is too big the answer will be use-
less. The methods mainly used for assessing the dimension is cross validation,
Aikake’s Cp, various bootstrap methods etc, see Denham (2000) for a view of
the methods used in PLS. One of the problems of estimating the dimension is
that the methods are often constructed in such a way that there is no natural
method to choose dimension. Our regression method is constructed to use
the information gained in the experiment in an efficient way as well as being
able to draw conclusions about the dimensionality of the subspaces. The
idea is to let the size of the regression function on the normed explanatory
variables decide the subspaces. When this space is drained of information,
using a method based on the Singular Value Decomposition (SVD), we can
construct a test for that the derived subspace really includes the effects we
want. For more information on SVD and related topics see Horn and Johnson
(1985, 1991). The rational of this method can be viewed from a perspective
that might not be the usual in statistics. When solving a regression problem
in statistics we usually write it as finding 8 that minimises ||Y — X ||o, this
is however equivalent to minimising ||e||s. The drawback with this method
is that we force a minimisation on the hole of ¢, this might not be necessary
or even correct. It might well be the case that we should rather minimise ¢
projected onto another space, i.e. ||Pe|| would be the correct quantity to
minimise. If this is the case we would actually allow the error to become large
in the directions where we cannot control it, then simply ignore it and make
it small in the directions that we can control, and finally include these into
our model. The principal idea in this article is to let the regression function
tell us where it does make a difference and in this way help us to minimise
the error where we actually can do this. This keeps us faithful to the old
ideas of least squares but on a space where the regression function helps us
to understand that it is meaningful. We will show that the criteria for which
directions to include will be very simple.



There is a method based on a testing procedure for Principal Components
Regression (PCR) called Significance Regression (SR) which will yeild similar
estimations, see Faber (2001). SR does not control the multiple level of
significance as our method will. The method of derivation is also different. I
am not aware of any multivariate eqvivalent of SR whereas our method can
be directly transfered to the multivariate case.

2 The model and basic methods

Let us begin with the usual univariate regression model
Y=XB+¢ (1)

where ¢ ~ N(0,0%I,), X € R 3 € RP*! and obviously ¥ € R**!.
We consider the design matrix X as fixed but not controlled i.e. we have
not really designed X but rather it contains far more columns than needed.
The last note about not controlled is not necessary but if X contains highly
structured data we can use better methods for analysis than the one we are
going to construct.

When an experiment has been performed we know X and Y. Any analysis
that we perform can only be based on this matrix and vector. As X is
thought of as containing the means of which we control the outcomes in Y
(disregarding random errors) we see that every meaningful estimate of 5 must
lie in the column space of X. This of course extends to the usual definition
of estimability. We hence believe that we from X can get Y apart from a
random error. The Ordinary Least Squares (OLS) solution is obtained by
finding 8 € RP*! such that ||Y" — X ||, is minimised. In some applications X
might not have full rank or at least X has a very poor condition number. If
this is the case it is well known that OLS will, at least on average, give poor
estimates. There are different methods for getting around this problem. One
way is to regularize X as in, for instance ridge regression, and hence create a
new problem which is easier to solve. We could also use a smaller part of X,
i.e. a subspace of the column space of X, as an approximation of X and solve
this smaller problem. In both these approaches we make regularizations or
put restrictions on X while the problem is about Y or 5 depending on what
we want as end result. In Principal Component Regression (PCR) we use the
singular value decomposition (SVD) to give us the dominate space in which
we solve our problem. Using a rank k£ truncated SVD to estimate a matrix



gives the best approximation in Euclidean norm but once again I stress that
we are not trying to solve any problem for X! It might well be that not all
of X:s column space is needed to solve the problem but should we not let
Y help decide what parts of X to use? There are methods that incorporate
Y into the subspace selection process. One such example is Partial Least
Squares (PLS) which stepwise chooses the maximum covariance between X
and Y when looking for the correct subspace. But PLS has proven to be
rather complicated when it comes to assessing properties as bias or variance
of the estimates. See Helland (1988, 1990); Helland and Almgy (1994), von
Rosen (1994), Frank and Friedman (1993) and Adolfsson (1999) for more
information on PLS. Some effort has lately been put into testing procedure
to determine the number of factors in PLS see Aziz and Cléroux (2001) and
Denham (2000).

3 A new way of choosing the subspace for
regression
The idea is once again choose to a subspace on which we solve the problem.

This time however we use the regression function to help us pick out the
right space. Using the model (1) we make a SVD of X, that is

X=UAV', UU=1, V'V=I,

where
(D O nXp s
A_<O O)ER , D =diag(\,..., \),
r < min(n,p) and A\; > ... > A\, > 0. For notational convenience we adopt
the the notation -1
- 0
-1 _ PXN
A= < 0 0o ) e RP*™,

The matrix U, U], where U, is the matrix formed by the r first columns, is the
orthogonal projection onto the column space of X which is the space where
the estimate of 8 must lie. The OLS estimate of 8 is f = (X'X)™'X'Y.
We now want to study the behaviour of this estimate on the level curves of
X'X or rather the normalised level curves. From the SVD of X we have that
X'X = VA?V'. We now introduce an artificial variable Z = XVA~! and
solve the equation
Y=Ivy+¢
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instead. This equation has the solution
4=7'Y = ATWV'X'Y = ATTAU'Y =U'Y.

This vector describes the direction in the column space of X on which the
estimated regression function is maximal. This however only gives us one
direction which in general is far to small a space for solving the problem. We
will however use this general idea to get the space on which we will solve
the problem. Instead of choosing only the maximal direction in S = col(X)
we will choose the K-dimensional orthogonal base of a subspace R of S that

best approximates the maximum normed regression function in a ||- ||, sense.
We set U, = [uy,...,u,] and project Y onto these vectors one at a time,
hence r; = w;u;Y, i =1,...,r. Breaking this down into parts we examine

the scalar u}Y more carefully. According to (1) we have

wY = ui(XB+e¢e)=u(UANV'B+¢)=€eAV'B+ue =NelV'B+ uie
= \viB+ue = fi(B) + uie. (2)

We see that \;vf is a scalar describing how great effect the regression func-
tion has along the vector u; and that uje ~ N(0,0%>" . ui;) = N(0,0?) since
u; has length 1. Further more, letting &; = uje, we have that &; and £, are
uncorrelated (and hence independent) for ¢ # j since u; L u; for i # j.
The vectors r1,...,r. now span S but they also carry information about the
validness of the space in the sense that there length is proportional to the
size of the estimated regression function in the space. We form a new matrix
by R = [r1,...,7r,] and do a SVD on this matrix. In matrix analysis one
normally says that a square matrix 7T is orthogonal if 7T = I, T person-
ally think this is a orthonormal matrix rather than an orthogonal. In this
nonstandard notation we see that R is an orthogonal matrix, this makes the
SVD simple since we can do it by inspection:

The matrix Ur has the same columns as U but not necessarily in the same
order and the d;:s are the absolute values of f;(3) + &; ordered according to
their size and the matrix P, is a permutation matrix. This representation
is useful since this tells us that if we use the TSVD with dimension k of R
we can not do better in || - [|o-sense when estimating the space containing
the biggest estimated regression function. Another big advantage of this



approach is that the distributional properties are easy to handle since we
have independence. In a setting where n is moderately large and we from
prior knowledge know that large portions of X does not effect Y we can easily
derive a testing procedure, for choosing the correct k, which maintains the
correct multiple level of significance (see Adolfsson (2002b)). Assuming that
we have now fixed a subspace R on which to solve the problem we now just
project the equation onto this subspace and solve the problem there.

4 Multivariate regression

With some minor modification the same method and arguments goes through
for multivariate regression. We now assume that we have a model

Y =XB+E, E~ N,,(0,0%I,1,)
where Y = (Y3,...,Y;) e R™", B=(f,...,5;) € R**" and

E = (e1,...,&;). Using the same notation as in the previous section we have
T T T
2 ~\2
D @) =) (i +uigy)” = ) (A + &) (3)
j=t j=1 j=1

if we once more set X = UAV'. Let us now assume that there are no true
regression effects. We will then have that each of the Y 7_(u;Y;)*t is x; and
independent. If we now use the & (say) smallest of these variables to estimate
the standard deviation ¢ we will have the following likelihood function

n - 1 Z; Tk n—~k
The log-likelihood function, disregarding constants, will then be
k k
l(c) = —2kln(o) +Z <§ — 1) In (%) _ Z 23:;'2
i=1 —
+ (n—k)n (1 — F (xk)) _

o2

Setting g—fj =0 we get

k
o' =———(ro* - 53)



where
1t
2 — .
Sp = - ;:1 Z;.

Using lemma 1 and lemma 2 in Adolfsson (2002b) and noting that the failure
rate of the gamma distribution is non decreasing for the parameter values of
interest we can construct a test for true regression effects that maintains the
correct multiple level of significance.

4.1 Efficiency of the variance estimate for multiple
testing

If we have a regression experiment where we know that a large portion of X
is non informative the estimate of o above will probably be rather good, but
how large portion do we need? One way of answering this question would be
to examine the asymptotic variance of the estimate. It is well known that,
under certain regularity conditions, we asymptotically achieve the Cramér-
Rao limit for ml-estimates. We will now calculate this for the estimation
method given above. We have that

a
do? o2 02 02 o021—F,. (ﬂ
i=1 X7 2

821 32’“:xi ko 2 %fe (B)

We now assume that k/n =p € (0,1) and let k,n — co. By the law of large
numbers we will then have that x;/0? — 2z, = FX_%I(p), %Zle X;/o? —
E[Z|Z < 2x), (Z ~ x?) and hence, F\2(zx/0®) — p. We now have the
following asymptotic expression

1 0% 1
Zoo 2 (%00)
1
= 52 (p)-
It is easy to see tha —%g%é — 0 as p — 0 but the limit p — 1 might not be
as obvious. We have however that
fr2(Zo0) _ ¢(200)® L™
1 - F(20) f;: cu®le"2du
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1
00 a—1 "
fo (1 + i) e 2dv
1
=2

< - -
- foooe’fdv

since @ > 1 and 2o > 0 and hence it is clear that —%% — Zasp — 1.

Since the ordinary estimate of the variance using all observations has the
same variance as our estimate when p = 1 we do not seem too aim to much
off target. A plot of the variance factor f(p) for different degrees of freedom
can be found in figure 1.

f

8

p

0.2 0.4 0.6 0.8 1

Figure 1: Asymptotic variance factor for 2, 3 and 4 degrees of freedom.

5 Prediction properties

In applications such as, for instance calibration, the predictive ability and
properties are of great importance. We will now examine the Mean Square
Error of Prediction (MSEP). The MSEP is defined as

MSEP = E [|Y; - Yol3]
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Let us assume that the new observations that we want to predict are new
observations in the same sample points as used for the estimation. In the
case of calibration this would make sense since we would calibrate where we
want to measure. Let Bz = E BI where BI is the estimate using u; : ¢ € Z,

|Z| = k where Z is a (fixed) set of indexes 1 < |Z| < n. We then get
MSEP o E | (B — 8 X'X (B — 1)| +E[(8 - BrY X'X(8— B2)].  (4)

We now rewrite the estimate [z using the following observation: If X =
UAV' we get the OLS solution as § = XY where X T is the Moore-Penrose
generalised inverse. This inverse is given by X+ = VAU’ (see Horn and
Johnson (1985) p.421) and hence we have that

n " oul
F=d

i=1

V;.

We then have that

Br = Z ué\sz = Z 7&'”2?“‘ o v = ngﬁvi + Z

1€L 1€ 1€l 1€l

€
— ;.
Ai

One can now immediately see that

E[f] = v and B[ 5 - Bz| = 3 vjfui

i€ i¢T

Noting that X'X = VA2V’ we have that
~ I ~
€ 21,1 €
1€ 1€L

= Y E[&] = [1/0?, (5)

€T

K [(BI - 5I)IXIX(BI - 51)} = E

and

(BB X'X(B~pr) = (Z v;ﬁvz) VARV (Z vgﬁv,-)

i¢T i¢T

= > (wip)? (6)

i¢T
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Recalling that u;Y = A\jv;5 +&; the relationship between effect and variance,
with respect to prediction, is now clear. If we include a new direction u; we
will decrease the squared bias with a factor (\v]3)?, according to (6), but
at the same time we will increase the variance with a factor o2 due to (5).
These observations together with (4) gives our decision rule for prediction:
if the absolute value of an effect is less then the standard deviation it should
be excluded, and if the effect exceeds the standard deviation it should be
included! This is obvious since if we include a direction that includes an
effect less then o the increase in variance is o2 but the decrease in bias is less
then o2 and vice versa. This also gives the implication that when the testing
procedure is used the power should be great for alternatives where the effect
exceeds the standard deviation for other alternatives we should not include
the effect.

6 With a stochastic X

Let X be a stochastic matrix with a distribution that is independent of ¢.
There exists a SVD of X = UAV' where U, A and V are independent of .
In the case when X3 =0 eq. (2) gives

1

o2

! !
1 wee'y; 2
~ Xl

(Y ) = — (ule) () =

o? ulu;
since e’ has a Pseudo-Wishart distribution see, for instance, Kshirsagar
(1972) for a proof. Note that this result is valid for any stochastic orthogonal
set of vectors u;, ..., u, which is independent of ¢.

Thus the null case is clear. When there are true regression effects present
it is not clear what happens. Since the w;:s are stochastic the resulting
distribution will be of the type x2(§) but d is stochastic. In simulations this
has show to have small effect on the method. The result in section 5 are
however no longer valid.

7 A spectroscopic example

The data set used in this example consists of 440 measurements of organic
solvent residue in penicillium samples. The concentration of four different
solvents where measured in each sample. The different samples where then
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analysed in a NIR-spectrometer and the absorbation at 1050 wavelengths
where recorded for each sample. Since the the absorbation follows Beer’s law
we have the setup

Y = Xﬁ, Y e R440X4,X c R440X1050.

The goal is to estimate (3, i.e. the to calibrate the spectrometer. The con-
dition number of a matrix is the quotient of the largest and the smallest
singular values of the matrix. The larger the condition number the more
ill-condition is the matrix. The condition number of X is 6.0 - 10° which
means that X is rather ill-conditioned. The singular values s, ..., Agq9 of X
is displayed in figure 2. Using eq. (3) in section 4 to form the information

Size of singular value
P
|

. . L L L L L L
o 50 100 150 200 250 300 350 400
Singular value number

Figure 2: The singular values of X.

in each of the singular vectors u; we can study the size of the singular values
when they are reordered by the information. In figure 3 we see the singular
values ordered by the information criteria and vice versa. The figure should
be viewed column vise. The top right plot displays As,..., Ay and the bot-
tom right plot shows the u;Y:s ordered according to the A:s. The top left
plot shows the A:s ordered according to the size of the u;Y plotted in the
bottom leftmost plot. The two largest effects are excluded in all plots since
the coincide and are so large that they make smaller observations difficult to
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plot. In these plots one for instance see that one of the largest singular values
occurs, when sorted by the u;Y:s, on 23:th place. Large singular values is no
guarantee that there is information present.

Re—ordered Singular Values (s.v) Original s.v
14 2
12
10 1.5
8
1
6
4 0.5
2
o o
o 10 20 30 40 o 20 40 60
Regression function size Regression function ordered by s.v
140 140
120 1 120
100 1 100
80 1 80
60 1 60
40 1 40
20 1 20
o o
o 10 20 30 40 o 20 40 60

Figure 3: Reordering of the singular values.

Comparing this regression method to that of PCR we see that the residual
sum of squares is smaller for the same number of base vectors (components).
Using the step-down test procedure with the smallest 250 observations of the
statistics for variance estimation we get that we can declare the first 71 base
vectors as significant. Using the test procedure in Adolfsson (2002a) which
is used for determining the number of components to use in PCR we get 27.

& Conclusions

The regression method purposed in this paper shows great potential both
theoretically and practically. In the case of a non-stochastic X matrix the
predictive properties is easy to asses. The method uses information from
both the dependent and independent variables but in a way that is easy to
understand. It should be noted that any orthogonalisation of X can be used
as long as it is independent of Y. If we are fitting a linear model where we
have particular interest in quadratic terms of the x;:s we could choose an
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orthogonalisation where we the quadratic terms are one of the orthogonal
base vectors. This might be fruitful when we have prior knowledge of the
problem. From a computational point of view it is max(n,p), X € R**? that
determines the complexity of the problem. In, for instance, spectroscopical
problems the limiting factor is normally the number of samples in the cal-
ibration set. if the sample size is moderate (< 500) the method is fast to
calculate. If we have prior knowledge of the number of the rank of similar
problems we could use the step-down method described in the paper. The
step-down method does not disturb the structure of either X or Y which
might be the case in cross validation, see Adolfsson (1999). On a reasonable
fast computer the simulations for the step-down method is done rather fast.
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