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Abstract

We will discus a method for determining location shifts in nor-
mally distributed matrices for use with apsorption matrices. A testing
methodology will be produced and argued for.

1 Determining chemical rank

In spectrometrical investigations the absorption of light of different wave-
lengths are measured. The laws of chemistry gives that the rank of the
matrix of absorption is equal to the number of photocromatic species in the
sample. If we where analysing a pure sample of the chemical of interest and
the measurement apparatus would be without measurment errors this would
be a true. In reallity no solutions are pure and no apparatus is without
errors and hence the rank of the matrix will differ from the chemical rank.
This problem is closely relatad to the problem of determining the number of
components to use in Principal Component Regression (PCR). The law that
controls the absorption i.e. Beer’s law, makes it natrual to use factorisation
methods.

When using sub-space methods, i.e. methods solving the problem on a
smaller space than the original space, one needs a method to estimate the
size of the sub-space. In many applications the predictive properties are
the propperties that is wished to be optimal. In many methods to asses
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a stop criteria different estimates of the Mean Squared Error of Prediction
(MSEP) is used. The most common way of of estimating MSEP is through
cross validation, see Denham (2000) for an overview. It is known that cross
validation might give incorrect estimates of the minimum of the MSEP, see
Adolfsson (1999) or Faber (2001).

In the case of PCR there is a stepdown test that can be used. This
test uses the fact that the eigenvalues and eigenvectors used is given by
a deterministic matrix which used in a correct way will produce a t-test.
The same method has been used for PLS but here the basevectors for the
regressionspace is not deterministicly choosen so the theory does not hold,
see Faber (2001). It must be recognised that when testing in such situations
as this, the concept of multiple inference must play a central role. In many
investigations a large number of hypothesis are tested and it is plausible
that many rejections might occur only by chance if the inference is based on
individual tests.

One should also be aware (as a statistician) that the research communities
that use these method are more result than theory oriented. Statisticians
rather want to test in a fashion that can be understod while reasearchers
tend to want a good answer. In deciding for a method to asses the regression
space one must remember that in solving a collinear regression problem the
main idea is not to include all theoretical effects but rather to include all
the effects that are big enough to stabilise the problem. Including to small
effects will give such increase in variance that the solution becomes useless in
a practical sense. A test should hence be constructed to be powerfull against
alternatives where the effect is as large as the level of variance. The lack of
such method is due to the complexness of the distributions arising in these
problems. An approach that becomes more and more tractable with the
growing speed of computers is to use a statistic with the correct theoretical
properties and that can be simulated. It is my belief that this is the necessary
way of moving this field forward.

One should be aware of the problem of estimating the chemical rank of
the matrix and that of estimating the rules that governs the concentrations
in a spectrometrical trial. The chemical rank gives the number of photocro-
matically active species in the trial. This is not necessarily the same as the
number of photocromatilly active interesting species.



2 Intuitive background of the test procedure

We start with some well known facts from elemetary linear algebra. Let
A be a n x n real matrix s.t. A" = A > 0. We consider the function
f(x) : R**™ — R where f(x) = x’Ax. If wee set n = 2 and plot the function
for |x| = 1 we get an ellipsoid of the type shown in figure 1. Since A > 0
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Figure 1: A plot of f(x)

we know that the eigenvalues \; > Ay of A are positive. The length of the
largest of the principal axis of the ellipsoid is given by A; and the shortest
principal axis by As. The direction of the axis correspond to the eigenvectors
of the matrix. A measure of “the stretch” of the ellipsoid is given by A;/As
which, in numerical literature, is reffered to as the condition number of the
matrix A. The same thing obviously hold for n > 2 but plotting becomes
impossble (at least for n > 3). In the case n > 2 welet Ay > ... >\, >0
be the eigenvalues of A and the condition number is now given by A\;/\,. A
good thing with the condition number and similar measures is that of the
matrix is stretched out by a scalar, i.e. A = aB, the condition number of A
and B are the same.

The time has now come to start with stochastic matrixes. Let us assume
that W ~ W,(0, I,o% n), n > p. A matrix with this Wishart distribution
will a.s. be positively definite and its eigenvalues are a.s. distinct. The
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distribution of the eigenvalues is known but rather complicated to use for
direct calculations. We will try to avoid going into detail of the distribution
but rather se what we can do in general. One well known fact of the Wishart
distribution is that if W; ~ W,(0, I,,n) then o*W; Z W. This gives that if
\; is a (stochastic) eigenvalue of W, then o2); is a (stochastic) eigenvalue of
W. We now know that any statistic on the form ’)\\—1 does not depend on o.
To make the qoutient more stable we study l
A1
R=—"— 1

Dieny A ®
which also is independent of o. This is also a measure of the skewness of the
ellipsoid but more stabilised than using just \,, in the denominator. The only
thing that we know about this statistic is that it is independent of o but we
also now how to generate a sample of stocastic variable with this distribution
in a computer.

3 Theoretical properties of the test procedure

We will construct our test procedur using the statistic defined in (1). As
mentioned before this statistica gives a measure of how skew the level curves
of the quadratic form given by the matrix is. The statistic gives a bound for
the maximal natrual variation and the idea is to see what directions exceeds
this natrual variation bound. This problem is in chemometrics known as the
problem of determining the chemical rank of a matrix. The test procedure
will not be proven to work with the correct multipel level of significans but
will be made likely to work. The problem with stating a formal proof of the
level of significans is due to the problem of making statements about the
singular values of the sum of two matrices. I will however give a intuitive
explanation of why this should work. The first assumptions that is made
is that the matrix of measurements is actually a sum of two matrices. Let
Y be a n X p matrix where each row comes from independent N, (0, c?%I,)
distributions. Let M be a deterministric matrix of size n x p. Let the rank of
M be r. Let the matrix of measurements X = M +Y . The problem is to find
r given X. For computional convenience I choose to work with the singular
values of X. There is no theoretical difference since the singular values of X
is mearly the square root of the eigenvalues of X'X but practically we save
a matrix multiplication in computing.
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As mentioned earlier the correctness of the testing procedure is hard to
make rigorous. However, there are some reasons why the method should
work. There is a version of the Courant-Fisher theorem for singular values
that will come in handy to understand how the method works.

Theorem 1 Let A be a nxm matriz, let 01(A) > 02(A) > ... be the ordered
singular values of A, and let k be a given integer with 1 < k < min{m,n}.
Then

A) = i A 2
R T @)
Zll2=

Tlwy,..,Wr_1

= ,max o omin o [|Az], 3
[|lzll2=1

Tlwy ey Wy

=  min max | Az||2 (4)
dim{S}=k [z]l2=1

= max min | Az]|2 (5)
dim{S}=k |lzlla=1

From this we see that, if 0;(A) is the biggest singular value, (2) above re-
duces to 01(A) = max| ;) ,=1 ||Az||o. If we to the matrix A add a “dominant
direction”, which corresponds to a true (large) effect then o;(A) will increase.
If this dominant direction is unequal to the direction x used for calculating
01(A) any succeeding 1(A), k # 1 will be larger than the original o4 (A)!
This is a key element in the reasoning for multipel inference. We will now
study this phenomena in greater detail. Let us assume that Y is defined as
earlier. The product YY’/n is a estimation of oI,. The rows of Y will not
show any systematic variations since they estimate zero i.e. %Z?:l Y, —0
a.s.. If we now add a matrix M = (m},mb,...,m.) to Y where the rows
in M have the structure m; = am;, a > 0 for some 7 # j the column sums
no longer estimate zero (or at least need not). This assumption might seem
strange but is a higly relevant assumption when dealing with spectroscopic
data. The assumption is meerly stating that Beer’s law is walid which is a as-
sumption that is made in most (not to say all) spectroscopic investigations.
If the rank of M is r < min(n,p) this will tend to make a r-dimensional
space have a larger spread than the other directions. This will happen since,



if we once again look at X'X, the other dimensions meerly estimates a ball
with radius ¢2. This means that the matrix M only affects a r dimensional
space and leaves the rest of the dimensions unchanged. This will change
the directions of the largest singular values if the size of the m;:s is large
enough compared with o2. Since the directions for the large singular values
are changed the optimisation in theorem 1 for the smaller singular values
that does not contain any true effects will be in other directions which now
might include the larger directions in Y and hence the singular values will
be larger.

Theorem 2 (Multipel test procedure) Let Y ~ N, (0,02l,) withn < p
and M € R™P? be such that the assumptions above are fulfilled. Let o1(X) >
... > 0p(X) > 0 be the singular values of X =Y + M. Then testing the
hypothesis Hy; : 0;(X) = 04(Y) against Hy; : 0;(X) = 0;(Y) + u(M) by the
procedure reject Hy; if 0;(X)/Qx > eq, where Qx = 3.7 *0:(X) and eq is

chosen such that ) o
01
PS———= >e,p =0,
{ Qy }

maintains the multipel level of significans a.

Proof: By the definition of e,, the overall conjunction trivially has the correct
level of significans. So let us now assume that some H;; is true. From the
assumptions above we have that Qy < Qx. Let Y be a s.v. such that
0i(X) = 04(Y) + 0;(M). Let us now study the artificial test based on Y.
This test satisfy

P{"g? §ea‘v’z} - 1—]?{32':025? >ea}

QRy
> 1—P{%>ea}=l—a.

By construction we have that 0;(X)/Qx < 0:(Y)/Qy if Hy; is true and hence
the real testing procedur will give no more rejections than the artificial one.
Q.E.D.




4 Simulations results

Simulations where used to examine the performance of the testing procedure.
The following algorithm was used:

1. Generate By, ...B; ~ N,(0,1) (base vectors) and Uy, ...U, ~ U,(0,1).
Set M = U'B.

2. FOR I=1 TO number of samples DO
(a) SET F = N,(0,0%I,) AND X =M + E.
(b) CALCULATE data=SVD(X).
SET S =37, ,.1 A AND STAT= 4.
DO TEST.

SAVE number of rejections.

(c
(d
(e

3. calculate statistics.

~— N e’

This means that we will have a different deterministic matrix each time we
run the program. In the simulations n = 47, p = 28 and k£ = 14 where used.
When r was set to zero the rejection rate was « (in the simulations set to
10%). With r = 1 the false rejection rate was meerly 1% and when r = 2 the
false rejection rate was 0.1%. For r > 3 no false rejections where made. The
power is good when the true rank of the matrix M is small compared to the
total number of singular values. This can be explained with use of theorem 1.
The true effects move the space for the minimisation of the smallest singular
values and hence the smallest singular values will be to large, thus making
the testing procedure conservative.

We now set n = 50, p = 40, £ = 25, r = 10, and o = 0.5. The mean
number of the estimated rank is now 8.65. A plot of the 28 largest normed
singular values and the rejection boundary for & = 0.10 of one test realisation
can be found in figur 2. Note that the plotted normed singular values have
no distinct bend even thou it contains skifts. In this case it would difficult
to estimate the dimension by inspection.

5 An example

The following example is taken from Hjorth (1994) and consern paper in-
dustri. A complete description of the dataset can be found on pages 74-76
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Figure 2: Plot of statistic and boundary for simulated data

in Hjorth (1994). The data is 48 observations on a 28-dimensional vector
of variates. The testing procedure using o = 0.10 and r = 14 gives that
the estimated true rank of the data is 8. A plot of the statistics and the
boundary can be found in figur 3
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Figure 3: Plot of statistic and boundary for paper data
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