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ESTIMATES FOR SOME FIRST-ORDER RIESZ OPERATORS
ON THE COMPLEX AFFINE GROUP

ANDERS OHGREN

ABSTRACT. On the affine group of the complex plane, which is a Lie group
of exponential growth, we consider a right-invariant Laplacian A. For certain
right-invariant fields Z, we prove that the first-order Riesz operators ZA~1/2
and A~1/2Z are of weak type (1,1) with respect to the left Haar measure. It
follows that these operators are bounded on L?, 1 < p < oo.

The convolution kernels of these operators behave locally like standard
Calderén-Zygmund kernels. The main difficulty concerns the behaviour at
infinity, where the standard technique does not apply because of the exponen-
tial growth. Instead, we derive explicit expressions for the kernels and use more
direct methods. The approaches are quite different for different operators, but
in most cases the estimate involves cancellation between positive and negative
parts of the kernel.

1. INTRODUCTION

Consider the complex affine group G = C x C*, where C* denotes C\ {0} with
multiplication. The group product in G is given by

(z,w)(Z,w'") = (24 wz,ww).

This operation corresponds to the composition of affine mappings ¢ — w({ + z in
the complex plane.

The left and right Haar measures on GG are given by

dzd dzd
(1) dulew) = Torand d(zw) = T

respectively, where dz and dw denote Lebesgue measure on C. Note that the lack
of unimodularity implies that G is of exponential growth. We will usually use
the left-invariant measure. In particular, the LP-spaces we consider on GG will be
taken with respect to ;.

1991 Mathematics Subject Classification. Primary 43A32, 42B20; Secondary 43A80, 22E30.
Key words and phrases. Riesz operator, complex affine group, exponential growth, singular
integral.
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2 ANDERS OHGREN

The Lie algebra g of G' can be naturally identified with C & C. As base elements
in g, we take X = (1,0), Y = (¢,0), U = (0,1) and V = (0,%). We will regard
the elements in g as right-invariant vector fields on G.

The right-invariant Laplacian corresponding to our choice of basis is the operator
A=—(X>+Y*+U*+V?)
defined on C§°(G), i. e. the space of infinitely differentiable functions on G with

compact support. It has a positive and self-adjoint closure on L?(y;), which we
also denote by A.

The operator A is positive, self-adjoint and one-to-one. It is therefore possible
to define negative powers of A, using functional calculus. We will consider first-
order Riesz operators on G. These consist of the left or right product of A=1/2
with a vector field Z € g. The main result is the following theorem.

Theorem 1. For Z = X,Y,V, the Riesz operators ZA~Y? and A~Y2Z are
bounded on LP(u,), for all p € (1,00), and of weak type (1,1).

It seems to us that no results have yet been established about the corresponding
boundedness properties for the operators UA~'/? and A~Y2U, except for p = 2.

For any first-order Riesz operator on G, the boundedness on L? is elementary.
Thus, it is enough to establish that the operators in the theorem are of weak type
(1,1). The boundedness on LP follows by interpolation for 1 < p < 2, and then
by duality for p > 2.

A Riesz operator on G is given by convolution with some kernel K, which in the
general case is singular at the identity element e and at infinity. By introducing
a smooth cut-off function ¢ € C§°(G), which equals 1 on a neighbourhood of e,
we can separate these singularities according to K = ¢ K + (1 — ¢)K, and treat
them separately.

Convolution with ¥ K will be called the local part of the the operator. Since
this kernel has compact support and any Lie group is locally Euclidean, the local
part can be treated with classical methods, such as Calderén-Zygmund theory
for singular integral operators. For completeness, we have nevertheless included
a quite detailed study also of the local parts of the operators. This is found in
Section 3.

The singularity at infinity is carried by the kernel (1 —1)K. This corresponds to
long range interactions and we will call this the global part of the operator. Since
G has exponential volume growth, classical Calderén-Zygmund theory does not
apply to this part!. Instead, we rely on more direct methods.

'However, Hebisch and Steger have recently presented a method to adjust the classical
Calder6n-Zygmund theory to groups with exponential growth; see [12].
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First, we find explicit expressions for the kernels of the global parts of the op-
erators in Theorem 1. We use the heat kernels associated with the Laplacian
A, to find the convolution kernel of A='/2. By applying an appropriate vector
field and neglecting integrable terms, we get suitable expressions for the kernels
of the Riesz operators. This is the content of Section 4. The operators VA~1/2
and A~Y2V turn out to have kernels which are integrable at infinity, which im-
mediately implies the required boundedness. Furthermore, there is a complete
symmetry between the fields X and Y, so it is enough to study the operators
XA~Y% and ATV2X.

In Section 5, we prove that the global part of X A™'/2 is of weak type (1,1). The
proof is based on that in [18], where a corresponding operator for the real affine
group is treated, and it involves cancellation between positive and negative parts
of the kernel. Indeed, we give a counterexample showing that the kernel cannot
be replaced by its absolute value.

The proof that the global part of A™*/2.X is of weak type (1, 1) is given in section 6,
and is also largely based on a proof for a corresponding result on the real affine
group, given in [11]. The approach is quite different from the case XA~'/2,
but again, cancellation between different parts of the kernel is what saves the
estimate. The main technique is to expand the kernel into Haar-like functions.
The calculations are then reduced to convolving such a Haar-like function with a
sum of point measures.

1.1. Background. Riesz operators have been intensely studied in many different
contexts during the past two decades. We shall here only give a few references,
and for a more detailed background, we refer to [18] or [24].

Lohoué and Varopoulos [16] proved L? boundedness for first-order Riesz operators
on nilpotent groups. This was extended to all Lie groups of polynomial growth
by Saloff-Coste [17] and Alexopoulos [1]. Nonamenable groups were treated by
Lohoué in [15], and results by Burns, ter Elst and Robinson [6] imply boundedness
for Riesz operators on compact Lie groups.

Anker [2] studied LP properties for Riesz operators in the setting of symmetric
spaces, where it is natural to consider Riesz operators related to the Laplace-
Beltrami operator. For some other Riemannian manifolds, results have been
presented by Lohoué [14], Bakry [3] and Coulhon and Duong [7].

Second-order Riesz operators on the real affine group were studied by Gaudry,
Qian and Sjégren in [8], where they proved that? the operator Z; A~1Z, is bounded
on I, 1 < p < oo, and of weak type (1,1). They also showed that Z; Zo,A~! and

’Here, Zy,Z> # 0 denote right-invariant fields on the real affine group and A is the distin-
guished Laplacian.
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A~'Z,7, has none of these boundedness properties. These results were extended
in [9] by Gaudry and Sjdgren to any solvable N A group coming from the Iwasawa
decomposition of a rank 1 semisimple group?®.

First-order Riesz operators on the real affine group have been studied in [18], [11]
and [12]. In [18], Sjogren proved that ZA~'/2? is bounded on LP, 1 < p < 2, and
of weak type (1,1), for Z € n, where n is the Lie algebra of the nilpotent group
N in the NA decomposition of the real affine group. The corresponding result
for A7/2Z 7 € n, was given by Gaudry and Sjégren in [11]. The proofs in [18]
and [11] are based on rather explicit estimates and use of the kernels. In [12],
Hebisch and Steger have given a more abstract approach to the case ZA~'/2,
which also applies to Z € a.

In [23], Wingefors generalized the results in [18] to any N A group arising from
the Iwasawa decomposition of a rank 1 semisimple group.

On the complex affine group G, second-order Riesz operators were treated by
Gaudry and Sjogren in [10], and have essentially the same boundedness properties
as for the real affine group, the exception being when Z; or Z; equals V. In
this case, all the second order Riesz operators are bounded on L” and of weak

type (1,1).

2. PRELIMINARIES

2.1. Notations. We will use a few different parametrisations of G. For (z,w) €
G, we will on different occasions write

z=x+iy =re’ and w=u-+iv=pe?® =e’e =2,

for z € C and w € C*. Note that the identity element is e = (0,1) and that

the inverse element of g = (z,w) € G is g7' = (—%,1). For a function f on

w’ w

G, we will denote the composition of f with the inverse map ¢ — ¢ * by f,

i.e. flg)=flg ).

We will often identify C with R? in the natural way, and when f is a function on
C, we write e. g. f(z) = f(z,y), when there can be no confusion.

The left- and right-invariant Haar measures on G will be denoted by p; and pu,.,
respectively, and are given by (1). The modular function is the Radon-Nikodym
derivative dy;/dp, and will be denoted by 4. Thus, we have §(z, w) = |w|™2.

Lebesgue measure will generally be denoted by m, although the domain of m will
vary at different occurrences. We usually specify on which set m is considered,
although it is often clear from the context.

3Recall that the real affine group is the simplest nontrivial example of such an N A group.
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There is a natural Riemannian structure on G, induced by our choice of basis in
G. We will denote the associated left-invariant distance function by d, and an
open ball of radius 7 > 0 around an element g € G will be denoted by B(g,r). We
will mostly work with balls centered at the identity element e, which we denote
simply by B(r). Note that B(g,r) = gB(r), by the left-invariance of d.

We will make a lot of estimates where we are only interested in the order of
magnitude. Throughout the text, C' will denote a positive constant, but the
value of C' may vary from line to line. When it is necessary, we specify which
parameters C' may or may not depend on.

2.2. Invariant vector fields. The Lie algebra g of GG is the tangent space at
the identity element e, and can be identified with C @& C. The exponential map

is then given by
e —1
exp((,7) = < . C,€T> )

As a basis in g (over R) we take X = (1,0), Y = (4,0), U = (0,1) and V = (0, 7).
We will regard the elements in g as right-invariant vector fields on G, i. e. we
extend Z € g according to

d
Z2f9) = 2| f(exp(t2)g), g€G.
=0
The right-invariant fields corresponding to our choice of basis are then

0

X = —

oz’

S

dy

0 0
U = 2~ +yg tug vy
x Y u

vV =

0 0

X' = u— v
u8x+U8y’

0
Vi = —v— —
U8x+u8y’

9



6 ANDERS OHGREN

It will be convenient to express some of these fields in terms of polar coordinates
(r,0) and (p,0). We therefore put

0 0 0
0 0
T, = — = —y— -
a0 ~ Yo 5y
0 0 0
Rw pa_p = U,% U%
0 0 0
T — _ p— -y _
v = 96 = Vau "oy
With this notation, we get
U:Rz+Rw; Ul:R’(U7
V=T,+T,, Vi=T,.

The operators we study are convolution operators. For example, we shall see
that A~1/2 is given by left-convolution with a locally integrable kernel, which we
denote by M. That is, A"Y2f = M « f, where

M f(g) = /G M(B) £ (" g)dyu(h)
- /G M(gh™) F(R)dpss (h),

and f : G — C is some suitable function. For our purposes, it is enough to
consider f € C§°(G). Since M is locally integrable, the integral on the right
hand side is well defined.

If the kernel M were a smooth function, the operator ZA~'/2 would be given by

left convolution with Z M, as is easily verified. However, since M is not smooth,
and ZM is not even in L] ., we need to be a bit more careful to handle the
singularity at e.

Let us study the case Z = X. First, note that
a
dt
d 1
5| f((exp(=tX)h)™g)

t=0
= —Xuf(h'g9), hgeG, feC ),

Xof(h™'g) = f(h™ " exp(tX)g)

t=0
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so that
XA 2f(g) = X(Mxf)(g)

— /G M(h) X, f(h ™ g)du(h)
- - /G M(R) X, f(htg)du(h)

= —lim M(z,w)%f((z,w)_lg)|w|_4dzdw,

20 J 1224 jw—12>€2 9

where z = x + iy. Denoting hy = hy(y,w) = (:l:\/€2 — (¥? + |w — 1]2) + 4y, w)
for y? + |w — 1|> < €2, and integrating by parts with respect to x, we get

XA~/? = lim a—Mz,w z,w) g |w| " dzdw
s =t | (2 ) (2 0) 9

€—0 224 w—1[2>e2 ox

’ /| (0705 0) = 21081 (070) ) .

By Taylor expansion, it is easy to see that f(hi'g) = f(g) +O(e). The kernel M
is even in z and satisfies M (hs) = O(e3) (see Section 3). It follows that the last
integral above tends to 0 as € — 0. The first integral tends to pv(X M) x f(g)
and thus we have that

XAV = pu(XM)xf, feCP(G).

By similar calculations, it follows that ZA~'/2

the distribution pv(ZM) for any Z € g.

is given by left-convolution with

For the operators in the reverse order, we have A~'/2Zf = M % Zf. It would be
preferable to express also this operator as a convolution with some distribution.
For this purpose, we introduce the transposed vector field Z*, defined by

7' = Z'+ Zs(e)l,

where Z! is the left-invariant field corresponding to Z € g and I is the identity op-
erator. With this notation, the following lemma* gives the desired representation
of an operator A~1/2Z.

Lemma 1. For Z € g, we have

(2) ATVPZf = (Z'M)* f,

for all functions f € C§°(Q).

Note that the convolution on the right hand side of (2) is also to be interpreted
as a singular integral.

“Lemma 1 and the notion of transposed vector fields have been adopted from [9]. For
completeness, we reproduce the short proof.
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Proof. We first recall what it means to take the derivative of a distribution. If k
is a distribution on G, the right-invariant derivative Zk of k is defined by

(Zk,f) = (k,—Zf), fe€CXG).

If Z' is the left-invariant field corresponding to Z € g, we have for f, g € C°(G),
that

(Z'f,g) =

i . /G I (hexp(t2))g(h)d(R)dpur (h)
[ sgtnesn-e2)nespi-12))dn 0

The left-invariant derivative of a distribution k£ is defined accordingly, by
(Z'k,f) = (k,~Z'F) = Z5(e)(k, ), feCFR(a).
Using the facts that (k x f, g) = (k, g * f) and (Zf)= —Z'f, we get

(A2Zf,9) = (Mx(Zf),g)
= —(M,gxZ'f)
= —(M,Z'(g*f))
= (Z'M + Z5(e)M, g * f)
= ((Z'M+Z5(e)M) = f,g9),  f.9€CF(G).

For the base fields in g, the corresponding transposed versions are given by

0 0
Xt = X! = u— +ov=
“ax+”ay’
0 0
Vi = VI = —v— +u—
U@x+u8y’
0 0
t !
s — = — = —2
U U —2 R,—2 u8u+vav ,

Vvt = Vi =T, = —v=—+u=.
u
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2.3. Spectral resolution and boundedness on L%. By the following simple
observation, we see that the operators Z € g are skew-adjoint:

d

) /G f(exp(tZ)h)g(h)du(h)

4 [ sonutenazpmon
= <f: _Zg>a

where we made the change of variable b’ = exp(tZ)h and used the left-invariance
of ;. Tt follows immediately that the Laplacian A = —(X2+Y?4+U?+V?) is self-
adjoint and positive, i. e. (Af, f) > 0 for all f € C§°(G). Hence it has a closure
on L?(yy), which is also self-adjoint and positive. We will denote this closure
also by A. Generally, we do not bother to keep track of where the operators
we consider are defined. It is enough to think of them as acting on some dense
subspace of LP ().

As a positive and self-adjoint operator on L?(1;), the Laplacian A has a spectral

resolution
A= / sdF.
0

If we first verify that the spectral measure dE has no point mass at 0, which
amounts to that 0 is not an L? eigenvalue of A, negative powers of A can be
defined as

AP :/ s PdE,, B >0,
0

with a domain that is dense in LP(y;).

Note that the differential operator A is elliptic. Hence, there is a theory for
harmonic functions associated with A, including a maximum principle (see [4]
and [5]). By the following argument, which can be found in [9], we can use this
maximum principle to verify that 0 is not an eigenvalue of the Laplacian, i. e. that
the operator A is one-to-one.

Let f € L?(y;) be a harmonic function, i. e. Af = 0. We need to prove that
f=0. Let

1
fr(x) = m /;(T) f(gh)dul(h), r > 0.
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Note that f, is a harmonic function and that f, — f pointwise as r — 0. By the
Holder inequality, we have

101 = s ([ 1700 P (i ))1/2 (f XB<T>(h)dm<h>)l/2

- (m / Pt ))1/2.

Since f € L?(u;), the last integral tends to 0 as d(g,e) — oco. Hence f, vanishes
at infinity and thus everywhere by the maximum principle. We conclude that

f=0.
The L? boundedness of the first-order Riesz operators follows easily from the
skew-adjointness of Z € g.

Lemma 2. For any Z € g, the operators A~Y2Z and ZA~Y? are bounded on
L? ().

Proof. Since X, Y, U and V are skew-adjoint, we get
(XLEXH+YLEYH+ULUNH+VEVE) = (—(XP+Y*+ U+ V), f)
= (Af, /)
= (AV2f,A2F),

for any f € C§°(G). This shows that ZA~/2 is bounded on L?(y;). The bound-
edness of A=1/2Z follows by duality, since —A~Y2Z is the adjoint of ZA~/2. O

2.4. Left-invariant metric. We want to derive a natural left-invariant metric
d on the group G. To do this, we first consider the real affine group H = Rx R, ,
with group product given by

(b,a)(t),a') = (b+ ab',ad), beR,a>0.

This is the group of composition of affine mappings on R and is sometimes called
the “azx + b” group.

It is natural to identify H with the complex upper half-plane, via the map (b, a) —
b+ ia = z. With this identification, the action of H on itself (i. e. the group
product) is given by (b,a)z = az + b. Alternatively, H can be regarded as a

subgroup of GL(2,R) via the map (b,a) — 8 [{

the previous identification if GL(2,R) acts on the complex plane via Mobius
transformations, i. e.

_az+b
cz+d

>. This is consistent with

for g = ( i 2) € GL(2,R).
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We want to introduce a metric on H which is left-invariant. The hyperbolic
metric in the upper half plane is invariant under the action of GL(2,R) via
Mébius transformations (see e. g. [22]). Hence, the hyperbolic metric, given by

da® + db?
ds? = LT —z ,
a
is invariant with respect to left translations in H. This implies®
b2+ 1+ a?
dir ((b,a),(0,1)) = arcosh (%) :
a

This expression for a left-invariant distance extends to R* x R, for any n € N,
i. e. b € R*. We only need to change b* to |b|%.

Turning to the complex affine group G = C x C*, we first notice that it can be
regarded as a subgroup of GL(2,C), analogously to the real affine group. By the

representation
wz\ _ (1 2z p 0 e 0
0 1 - 01 01 0o 1)

where w = pe*, it follows that G can be viewed as a two-stage semidirect product
(C xR, ) x T, and we write (z,w) = (z, p,e'?). Denoting G' = C x R, , a left-
invariant metric on G’ is determined by

|z]2 + 1+ p?

o (2. 01) = arco (51

), (2,p) € G,

which is derived from

dx? + dy? + dp?
P '

Since the product in G = (C xR, ) x T is

ds? =

(z,p,€9) (2,0, %) = (z+ pe2, pp, i@+9)),

the action of T on G’ is given by
T(2,0) = (€°2,p),

e 0

0 1
Hence, dg is invariant under the action of T, and it follows that the metric
induced by

which in the matrix representation corresponds to conjugation with

ds® = ds?+ d¢?,

SWe can find dg (h,e) for an arbitrary h = (b,a) = b+ia € H by first taking b = 0 and then
act with a rotation around e = (0,1) =4,i.e. a g € SO(2,R) C GL(2,R).
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is left-invariant on G. Here, we assume that T = R/27Z is represented by [—m, 7),
so that ¢ € [—m, 7). Thus,

d((z,w), (0,1))* = A(z,w)? + ¢,
where we have introduced the notation

A(z,w) = da((2|wl), (0,1))
|22 4+ 1+ |w|?
2|w )

= arcosh (

The distance between any two elements (z,w) and (', w’) in G is now determined
by the left-invariance, and we have

d((#, "), (zw)" = d((z,w) (¢, ), (0,1))

2 —z w\?
()
wow

r)2 12 2
ot (LW ol o

2|w'|[w]

where ¢ = arg(w/w') € [—m,7) and we used that (z,w) ! = (—z/w, 1/w).

2.5. Exponential volume growth. In the introduction, we mentioned that the
lack of unimodularity implies that G' has exponential growth, i. e. that the volume
of the balls B(N), measured with g, grows exponentially with the radius N as
N — oo. This can be seen from the following nice argument. Since the modular
function ¢ is multiplicative and not identically 1, there must be some g € B(1)
with d(g) > 1. We then have

B(1)g" € B(n+1),
and it follows that
m(B(n+1)) > w(B(1)g")
= [, o
= /B o 6(hg")dpr(h)
= (8(9))"mu(B(1)),

where the right-hand side grows exponentially with n.
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2.6. Heat kernels. The semigroup {e~**};, is given by left convolution with
the heat kernels Ay, t > 0 (see e. g. Theorem 3.4 in [13]). From [10], we have the
following proposition for the heat kernels on G.

Proposition 1. The heat semigroup kernels on G are given by the functions

a2, w) = 1 lw|A Ze [ A%+ (¢ — 2km)? ’

16722 sinh(A 4t

in the sense that e "> f = hy x f, t > 0, for all f € C(G).

We will not go into the details of the proof, but merely state that the argument

is based on the decomposition G = G' x T. In fact, h; is the tensor product of
the heat kernels associated with a distinguished Laplacian on G’, given by

1 pA o~ A%/ (4t)

8m3/2¢3/2 sinh A ’

and the heat kernels on the circle group T, for the Laplacian -2

fort > 0,
v ¢2, given by

~2k)? /8 fort > 0.

kEZ

For details on the proof of Proposition 1, see [10] and further references.

3. THE LOCAL PARTS

Recall that we define the local part of a first-order Riesz operator on G as the
convolution with ¥ K, where K is the convolution kernel of the operator and
1 is a smooth function with compact support in G which equals 1 on some
neighbourhood of e.

Our treatment of the local parts of the first-order Riesz transforms on G is es-
sentially the same as in [8], where the local parts of second order Riesz operators
on the real affine group is treated in the same way. Another approach, based
on pseudodifferential operators, can be found in [9]. The result is the following
proposition.

Proposition 2. The local parts of the operators A=Y?Z and ZA=Y?, Z € g, are
of weak type (1,1) with respect to .

The proof of Proposition 2 will be carried out through a series of lemmas. First,
we determine the convolution kernel for the local part of any first-order Riesz
operator A™Y2Z or ZA~Y?, Z € g, up to integrable terms. This is given in
Lemma 3 below.

The basic idea is then that since the kernels have compact support and the
Haar measure p; and Riemannian distance d are locally equivalent to Lebesgue
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measure m and Euclidean distance |- |, we can replace y; and d with m and |- |.
The whole computation is therefore essentially the same as on R* and classical
Calderén-Zygmund theory can be applied. This is the content of Lemma 6.

For the application of Calderén-Zygmund theory, we first need to prove that the
L?-boundedness in Lemma 2 holds for the local and global parts separately. This
is taken care of in Lemma 5.

Before we go into the details of these lemmas, we derive the convolution kernel
M of A~'/2. For any s > 0, we have

o
12— 7T—1/2/ 12015 gy
0

Since the Laplacian A is a self-adjoint, positive and one-to-one operator, there is
no problem in exchanging s for A, to get

A_1/2 — W_l/Q/OOt_l/Qe_tAdt.
0

Here, the integral on the right hand side should be interpreted using spectral
theory, which means that

(A2 F g) =7T1/2/ t 2 0 f, g)dt,
0

for f in the domain of A=/ and g € C§°(G). Here, e ™2 f = hyxf. If [ t7/2hydt
is in Li _, we can change the order of integration to conclude that A~%/2 is given
by left-convolution with the kernel

(3) M(zw) = 72 / V20, (2, ) dt
0

1 A > A? — 2km)?
_ w| Z/ £75/2 exp [_ + (¢ — 2km) dt
kez Y0

1675/ sinh(A) 4t

2 o 3/2°
Am? sinh(A) £ (A2 + (¢ — 2km)2)*
where we used, in the last step, the fact that [°¢5/2e"tdt = 3\/mc™*/?. From
the last expression, it is easy to see that M is locally integrable. First of all, the
factor si|1111})1‘(1j14) is a smooth function. Also, if the term with £ = 0 is left out, the
remaining sum is nicely convergent to a smooth function. Hence, the only need
for concern is the term k = 0, i. e. (A2 4+ $?)73/2, which has a singularity at the

identity element e = (0, 1). Recall that

2 1 2
A(z,w) = arcosh<|z| 14w )

2|w]
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By Taylor expansion, we have

arcosh(l1+2z) = v2z+O0(x),

and
22 + 1+ [w|? |2* + € 2, .2\3
=1 O /2
o] t ((|2* + €)*?),
where we have written |w| = 1 + €. If B denotes some small neighbourhood

around e, we get

duy(z, w) / dzdw
— < .
fsame = ¢, e <=

Hence, M is locally integrable.

Lemma 3. The local part of a first-order Riesz operator on G is given by left
convolution with some kernel K, which, up to integrable terms, is given by

K(z, w)
(A2 + 42)2’

for some smooth function k with compact support.

K(z,w) =

Proof. Similarly to the above, we only need to consider the behaviour close to
A =0, ¢ =0 of the term with £ = 0 in the right hand side of (3). Also, the
w|A
sinh(A)
with studying the kernel

has no relevance for the current estimates. We are left

smooth function

1
(A2 + ¢2)3/2°
Applying the vector field X to N, i. e. differentiating with respect to z, and
multiplying with the cut-off function 1, we now get that the local part of X A~1/2

is given by left convolution with a kernel, which, up to integrable terms, is given
by

N(z,w)

K(z,w) = ¢(z,w)XN(z,w)
= e w) (4 + )

or
—3A 0A
= 1[1(2,1,0) (A2+ ¢2)5/2 %
Since
% B T
Or  |w|sinh(A)
is smooth, we can write
1
(4) K(z,w) = £(z,w)
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where k is a smooth and bounded function with compact support. By similar
calculations, we get that the local part of any of the kernels 1»ZN and ¥ Z'N
can be obtained as left convolution with a kernel written in this form, for any Z
among the basis fields in g. O

Before we proceed, we state and prove a neat covering lemma, which holds for
any Lie group G.

Lemma 4. Given anye,6 > 0, there exists a sequence {g; }ien in G and ann > 0,
such that G = U;B(g;,€) and no point g € G belongs to more than n of the sets

B(gi, 5)-

Proof. Since any second countable metric space is separable, there is a countable
dense subset of G, say {g; : j € N}. Then, UjenB(g;,€/3) is an open covering
of G. Let I C N be a set of indices which is maximal in the sense that the
balls B(g;,€/3), i € I, are pairwise disjoint and this disjointness is broken if any
j € N\ I is added to I.

For any h € G, we now have, by the maximality of I, that
d(h, B(gi,€/3)) < ¢/3,
for some i € I. Hence, d(h, g;) < € and we conclude that
G = Uier B(gs, €).

To prove that the balls B(g;,6), ¢ € I, have finite overlap, suppose that some
h € G belongs to k of the balls B(g;,d), i € I. We can assume without loss of
generality that these have indices i = 1,..., k. Then, g,...,gx € B(h,¢), which
implies

U1 B(gi,€/3) € B(h, 6 +¢/3).

Taking the left-invariant Haar measure and using the fact that the balls B(g;, €/3),
1 € I, are pairwise disjoint, we get

km(B(e/3)) < w(B(d+¢€/3)),

and k is therefore bounded above by a constant only depending on € and §. [

The next lemma implies that the L?-boundedness in Lemma, 2 holds for the local
and global parts separately.

Lemma 5. Let K be a convolution kernel on G which is bounded outside any
neighbourhood of e, and let ¢ € C§(G) be equal to 1 on some neighbourhood of
e. If left convolution with pv K defines an operator which is bounded on L?(u;),
then left convolution with pv(¢YK) is also bounded on L*(p)-
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Proof. Fix an € > 0 small enough so that ¢y = 1 on B(3¢). According to the
previous covering lemma, we can pick a sequence {g;}ien in G such that G =
U;B(gi, €) and no point belongs to more than n of the sets B(g;, 2¢), i € N. By
defining

U = B(glae)a
Uk+1 = B(gk+1,e)\Uf:1Uj k:1,2,...,

we get a sequence of pairwise disjoint sets {U; }ien with U; C B(g;,€) and G =
U;U;. Note that Ut C B(gs, ¢)! and G = ;U .

For f € C§°(G), we put Tf = pv(¢K) * f. To separate the singularity of the
kernel, we also define

Tif(g) = pv / o VKRS du(h)  for g € U7
B(g;,2¢
We then hayve

TH6) =TSl = [ SRRSO ) tor g €U

Here, the singularity has been cut away from the integral, since ¢=!' € U; C
B(gi,¢) and h ¢ B(g;,2¢) implies d(gh,e) = d(h,g™") > e. Hence, the kernel K
is bounded by some constant, and we get

159)~Tif (@) < C [ wlah)r)dmh
.
= Cy*|[fl(g)
Hence, by Young’s inequality, 7" — 7} is bounded on L2(y;).

It remains to see that 7 is bounded on L?(y;). Since ¢! € U; C B(g;,¢) and
h € B(g;, 2¢) implies d(gh, e) < 3¢, we have

Tif(g) = pv / K (gh) f(h™Y)dp(h)
B(gi,2¢)
= pvK * (fxpg20-1)g) forgeU7".
Denoting f; = fXxB(g,2¢-1, We get
| mf@Pdue) = [ 15K« () dito)
U; Ui_
| pv K * fi||%2(p,)

< C £ (9)Pdu(g)

B(gl 726) -1

IN
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and

| ms@ldnte) = X [ mis@)Fdut)

IN

o[ wldut)

i

IN

o /G (@) Pdpu(s).
1

The following lemma is the main part in the proof of Proposition 2. To state it,
we first introduce some notation. Let p : R® x T — G be the diffeomorphism
given by

(2,y,5,0) = (z+7iy,et?).

Lemma 6. Let T be an operator given by T f = pv K x f, which is bounded on
L?(w;) and whose kernel K € L. (G \ {e}) has compact support in G. If there is

loc
a constant C > 0 such that
K (o)) < Clwl™,

VoK (o)) £ Clwl™,
for allw # 0 in R® x T, then T is of weak type (1,1) with respect to ju; on G.

Proof. For a function f on G, we write f = f o o. We have

Tfa+ine ™) = [ K (@ +ine ) ()

= K((z +iy,e ™) (@' + i/, e ) ) f(o, ', o', ¢ )da' dy ds'def
R3xT

=Tf(z,y,s,9),

where the last equality defines the operator T. Since K is compactly supported
and Lebesgue measure m on R?® x T is (via g) locally equivalent with y; on G, it
follows from the L2-boundedness of T that

(5) ||Tf||L2(R3><']I‘,m) < C||f||L2(R3><1r,m)-

for all f € L?*(y;) supported in some fixed compact set.

Let k € C§°(G) with 0 < k <1 and k = 1 on the unit ball B(1) in G. We put
T.f=T(kf) and  T.f =T(&f).

By (5), we have that 7}, is bounded on L%*(R3® x T,m), since  is compactly
supported. We will prove that T, is of weak type (1,1) with respect to m,
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by showing that its integration kernel satisfies the standard Calderén-Zygmund
estimates.

The integration kernel of T, is

L{w;w') = K(e(w)o(w)")r(ew)).
By the assumed estimate of K, we have
—4

IL(w,w')| < C‘Ql(g(w)g(w')l)

for all w,w’ € R® x T with w # w'. Since K and & are compactly supported, there
is a constant ¢ > 0 such that

o H(o(w)o(w")™)

< cw—d

for all w,w’ € R® x T such that o(w)o(w') ! € supp K and p(w) € supp . Hence,
we have found that

|Lw,w')] € Clw—w|™

for w # w'. Similarly, it follows from the assumed estimate of VK (o(w)) that L
satisfies

\VoL(w,w)| + |V L(w,w)| < Clw—u'™°.

By Calder6n-Zygmund theory, we now have that Tn is of weak type (1, 1), i. e. that

. s+i C 7
m({(e9,5.0) €B X T [Tuf @+ i e > ) < Slflusgeonrmy

Note that T, f = T'f if supp f C B(1). We can once again use the local equiva-
lence of y; and m and the fact that the kernel of T is compactly supported, to
get

©) u(to € G ITF@1> M) < Sl

for all functions f € L'(p) with supp f € B(1). To complete the proof, it
remains to extend this result to all functions f € L'(y). For this, we will use
Lemma 4, with € = 1.

First, fix an N > 1 such that
supp K - B(1) € B(N),

so that supp f C B(1) implies suppT'f C B(N). Let 73, denote right translation
with h € G, i. e. 7,f(g9) = f(gh). Since T is a left-convolution operator, we have
T = 7, T1,-1 for any h € G. Tt follows that

supp f € B(1)h = suppTf C B(N)h, heaq.
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Let {g;}ien be a sequence in G such that G = U; B(g;, 1) and no g € G belongs to
more than n of the sets B(g;, N). Let {¢z}zeN be a sequence of L* functions on
G with 0 < ¢; < 1, ¢; = 0 outside B(g;,1)~" and >, ¢; = 1 everywhere®. Since
B(gi,1)™t = B(1)g; " and B(g;, N)™! = B(N)g; ", we get

supp T (¢if) € B(gi, N)™'
and we conclude that the sets supp 7'(¢;f), i € N, have finite overlap bounded
by n. Thus

m({geG:Tf(g)>N}) < m({geq: ZIT bif)(9)] > A})
< D m({g € G:ITWif)(9)l > A/n})
= im {99:" € G+ [Tr1(%if)(9)] > A/n})
_ §:agz w0 € G 1 [Tr, 6 )a) > M),

where we used, in the third step, the identity 7" = 75,77 -1. Noting that
supp 7,1 (¢if) € B(1),

we can now use (6) to conclude that

w(lg e G:ITi(g) > ) < /rr1¢z 9)\du(g)

Cn
= i f Il 2t )

Cn
= THf”LI(“’)’
which finishes the proof. U

To see that the local parts of the first-order Riesz operators are of weak type (1,1),
it remains only to check that the corresponding kernels satisfy the estimates in
Lemma 6.

By Taylor expansion, we find that

A=+ +2+0(@+y°+5)7), 22+y*+5 =0,
where z = z+iy and w = *T. Inserting this in the expression given in Lemma 3
for the kernel of an operator of the form ZA~Y2 or A~Y2Z, 7 € g, it is easy

to see that the kernels satify the required estimates in Lemma 6. This concludes
the proof of Proposition 2.

6For example, we can take 1); = XB(gi1)-1/ 225 XB(g;,1)~1-
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4. THE KERNELS

We need to find the convolution kernels for the global parts of the operators in
Theorem 1. The outline will be to rewrite the expression (3) for the kernel M
of A='/2, and then apply an appropriate vector field. We then try to simplify
the result as much as possible, keeping only the parts essential to our purposes.
We can therefore neglect any terms of the kernels, which are integrable at infin-
ity, since these correspond to strong type (1,1) operators, according to Young’s
inequality.

Let
T

(1+1z2)*

and define R, (z) = |w|?R(w™'z), for w € C\ {0}. The results in this section
are the following three propositions.

R(z) = z € C,

Proposition 3. The global parts of the operators VA~Y? and A='2V are given
by left convolution with integrable kernels.

Proposition 4. The global part of the operator X A~? is given by left convolu-
tion with a kernel which, up to integrable terms and a constant factor, is given

by
P(z,w) = R(z)——

where € > 0 can be chosen arbitrarily small.

Proposition 5. The global part of A=Y?X is given by left convolution with a
kernel which, up to integrable terms and a constant factor, is given by

1
Q(z,w) = R(g) WX(N,OO)('UJD’

where N > 0 can be chosen arbitrarily large.

Recall that the operator A~'/2 is given by left convolution with the kernel

_ 3 |wA 1
M(Z; ’LU) - 47T2 smh(A) kEZZ (A2 + (¢ . 2]{371')2)3/2'

We need to find a more suitable expression for M. First, we will use the Poisson

summation formula ), ., f(k) = >, ., f(2nk), where f(£) = Je f(@)e %7dz.
We take f(z) = (1 + 22)%2 and we need to find f. Since

1 /°°
aT=—— e~ ¥ s, a,y >0,
I'(v) Jo
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we can write

_ 1 s s g
f(:v)—SF(S/z)/O e de” 1 s /%ds.

Taking the Fourier transform and interchanging the order of integration now
yields

~ 1 [ . 2
f(é) = —/ eie= 5 ds.
0
With the proper translation and dilation adjustments, we now see that
3w 27 o
M(zw) = 47?2 A? sinh(A Zf ( ( a 27r>>

_ 3 w| —z'lc¢A 3
= @7Azsinh(A)Ze o (4F)

keZ

_ ‘w| —zk¢/oo _s A%
B 167r3As1nh ZZ cten v ds

3 |w| 3wl / .
= =27, 2 (ko) = d

473 Asinh(A) * 813 Asinh(A ZCOS 2 ¢ y
= My(z w)-l—ZMk(z,w)

k=1

Next, we will prove that it is only necessary to keep the part M, since the
remaining sum is integrable over the region {A > 1}, after a vector field has been
applied. We state this as a lemma.

Lemma 7. For any Z € g, we have

/ |Z(M — My)|dw < oo and / | Z" (M — My)|dy; < oo.
{A>1} {A>1}

Proof. Before we go into the details, we state some elementary integral estimates,
which we will use. It is easy to see that for @ > 1,

00 2
(7) L(a) = / exp (—Z — %) ds < Cae™?,
0
o0 2
(8) L(a) = / s lexp (—i — oz_) ds < Ce “.
0 4 s
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We will also repeatedly use that, since arcosh(t) > log(t) and therefore e=4 <
2|w|
EEEsEmLy

2w 2 dzdw
o mw“wl</Ww(2 "2) :
o |A+1HM w]

2
< C’/ / ( ) rdr@
p=0 Jr=0 T2+1+p p3

We start with Z = V. Recall that V* = and note that A depends on neither
¢ nor #. We have

we have

o0

VA - M) M@

IA

k=
le
A sinh(A Z kl1(Ak).

By using (7), we get

o

t M — M, |w| 2 _—Ak
[V( o) < Csinh(A)Zke
k=1
_ |w| oA 2_—A(k—1)
o smh Zk

< C’\w|e‘2A.

Hence, we conclude by (9) that
/ V(M = Mo)|dp < oo.
{A>1}

Since M}, does not depend on # and V = 6 7+ o

360 e have immediately also that

/ V(M — Mo)|dpw, < oo.
{A>1}

Before we proceed with the other base vector fields, we want to estimate Y oo | | M|
and > 77, ‘M‘ We have

3 |l

M S L -
(2 w) 813 Asinh(A)

cos(ko) I, (Ak),
so that

S Wl N, 924
< _— < .
E |My| < Csinh(A) E ke < Clwle
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Furthermore,
oM, 3 |w|cos(ko) 2y
e 2 PITPRY) A
0A 473 sinh(A) K1 (Ak)
3 |w|cos(k¢) Acosh(A) + sinh(A)
: I (Ak)v
873 Asinh(A) Asinh(A)
so by the estimates (7) and (8), we get
OM; w5 an [w] Ak
——k —— Ak
‘ oA smh(A)" ¢ T Asinngay ke
|w k2o~ Ak
sinh(A)
and therefore
= |OM
8 k < Clwle 4
k=
Now, studying Z = X = +-, we have X M}, = 6;\/41’“ g’;, where
o4 _ 2arcosh Ay 1wl
or  Ox 2|w|
_ 1 =z
~ sinh(A) |w|’
and since A > 1, we can estimate
0A || 12l -4
oz |~ |w]

Putting our estimates together, we conclude that

(10) X (M — My)| < Z\XMk\

o0
=1
A

8Mk

< C|z|e

Since %e““ is bounded, it follows from (9) that

[ xn - Moy < .
{A>1}
By symmetry, the same estimates hold for Z =Y i. e.

/ Y (M — Mo)|dp < oco.
{A>1}
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For the transposed operator X, recall that X* = uX + vY. Hence, almost the
same estimate as (10) holds also for X*. We only need to multiply with an extra
|w| on the right-hand side, i. e.

X' (M = My)| < Clz|wle™,

and, since |z|e™* is bounded, it follows again by (9) that
/ XU (M = M) dyus < oo,
{A>1}

The case V' = —vX + uY is completely analogous.

It remains to study Z = U. Recall that U = rZ + pa% and U* = pa% - 2. We
first note that

(e IR
Or  sinh(A) or 2p sinh(A) p
and
204 1 2(7‘2+1+p2> 1 et
dp  sinh(A) 0 2p sinh(A)  2p2
Furthermore, we have
aa—]\z’“ = %(% (mcos(kqs)flmk)) = p My + a(,ﬁ’“ 2‘2
and
oM, _ oMy 04
or 0A Or
Collecting terms, we get
UMe = M+ sin}i(A) : +2rp2 — 68]\144]6’
and we see that
i |UM;| < i (\Mk ‘6£k ) < Clwle 4.

k=1 k=1

Hence, we can once again use (9) to conclude that

/ UM — My)|dp < oo.
{A>1}
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Finally,
- = OA M,
M| = M, ——— —2M
k=1 k=1
- OM;
< M, C
< > (mi+c|5y)
< Clwle4,
so that
[t = Mo <,
{A>1}
and the proof is finished. O

Proposition 3 follows immediately from Lemma 7, since M, only depends on the
moduli of z and w, and not on their arguments. Hence, VM, = V' M, = 0.

Proof of Proposition 4. We will start from X M, = % and prove that | X My—P)|

has finite integral over the region where A > 1. We have X M, = a;‘j" %, where

OMy _  3|w|sinh(A) + Acosh(4) _ 3|w|[1+ Acoth(A)

0A 43 A2sinh?(A) ~ 473 A?sinh(A)
and
oA___z
0r  |w|sinh(A)
Thus,

3z 1+ Acoth(A)

XMy=—— "2
°7 473 A2sinh?(A)
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By adding and subtracting the same expressions, we get

(11) 4’ 51X M, — 4P| < L‘Q
A? sinh*(A)
+m coth(4) 1 ‘
A |sinh®(4)  cosh?(A)
|z| 1 1
cosh?(A) ‘Z ~ log (2 cosh(A))‘
||

log (2 cosh(A)) cosh?(A) Xieoo) (1)
Ed

1 < 2|w )2
log(\zwzﬁﬁww) cosh?(A) 1+ |z

|z| 1 1
(141222 |, (|z|2+1+|w|2)
& ]

+

X(O,e)(|w|)

-|—4|w|2

or (Wl|> X0 (|wl)

and we will prove that each term on the right hand side has a finite integral over
the region {A > 1}. First, note that for any sufficiently small § > 0, we have

(12)
|z| / / r ( 2p )2 dp
—————dy < C - —F dr=-X
/{A>1} A? COShZ(A) o= {pr>0:A>1} A2 \1+r2+ p2 r Tpg

00 00
o[ [t
p(51‘01+p2+7‘2p

+C’/ / dr___dp
p=0 Jr=0 arcosh +r22+ ))21+,02+7’2 P
1 d
sa;+0/ 1
o= (log(2p))* p
< 00,

where, in the third step, we used that arcosh > log(L -t p+” ) > —log(2p).
Now, starting with the first term in (11), we have for A > 1 that

(1-1-7" p—H’ )

] kd
A2sinh®(A) —  A2cosh?’(A)’



28 ANDERS OHGREN

Furthermore, for the second term,

|z| | coth(A) 1 3 |z |
A sinh?(A) B cosh?(A) Acoth™(4) ~1| A2 cosh?(A)
kd
A2 cosh®(A)
To estimate the third term in (11), consider
1 1
log(2 cosh(A)) T A+ log(1 + e=24)
1 1
T AL+ O(A*le*“)
1
- Z+A2O( _ZA) A—)OO,
and thus
| |1 1 ]
cosh?(A) A~ log(2cosh(A)) ‘ A2 cosh?(A)

It now follows from (12) that the integrals of the first three terms in the right
hand side of (11) are finite. For the fourth term, we have

|
/{A>1} log (2 cosh(A)) cosh?(A)

Xfe,o0) (W) dp (2, w)

> d
<C/ / ( 2) rdr—g
p=€c Jr=0 1+p +T Y

To estimate the fifth term, we note that

1 _( 2|wl )2 4|w|?
cosh?(4)  \1+ [z (1+2[?)?
8|wl*

T (4P

1 ( 2wl )2
cosh?(A) 14|22

<C/ / 5 T'drdp
p=0 Jr=0 1+7"

( 1+ |2[2 )2_1
1+ |22 + |w|?

so that

X(0.0)([w])dpu(z, w)

kd
/{A>1} log(2 cosh(A))
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Finally, we have for |w| < 1 that

1 1 _log(1+ |27 + |w]?) 1
log <w> log (ﬁ) (log [w])? 1+ —1°g(1_+1‘§£|$||w‘2)
log(2 +[2[*)
(log [w])*

and therefore

1 1
w4 |x| - X(0,e) \|W d,U, Z, W
/{A>1} (1+ [2[*)? 1og(M) log(l) 0 ([w])du(z, w)

] ]

N log(2+71%)  dp
< J— rdr—
= / / P2 (log(p)? P
< 0

Hence, we have found that f{A>1} | X My—4P|dy, < oo. This and Lemma 7 proves

the proposition. O

Proof of Proposition 5. By the observations (f, g) = (f,0), (f x gy = g * f and

v

(kxf,g) = (k,gx* f) for any f, g,k € C§°(Q), we get
(k=*f,9) (

=

=

= ([, (0k) * g).

Since (A7'12X f,g) = —(f, XA~1/2g) for suitable functions f,g on G, we get,
with P as in Proposition 4,

Q(z,w) = —6(z,w)P(z,w)

5. THE OPERATOR X A~1/2

1/2

Proposition 6. The global part of the operator X A~? is of weak type (1,1).
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Proof. We want to split the kernel into a sum of terms, where log |w| for each
term can be approximated by a constant, and the total error is integrable. For
this, we first introduce the notation

I = Jexp (—(j +1)*) ,exp (—4%)] ,
for j € N. Now, note that we have, for |w| € I;,

1 1

-4

+ log |w
11 J” +logw]
log|w|

j*log [w|

|7* + log w]|
j8

Cj—°

C|log |w|‘75/4.

IA

IN A

By putting
Pi(z,w) = —j 7" R(2)lwxs, (Jw]),

we therefore get (by choosing ¢ = ™)

> Xp,a(w)) = xi, (Jwl])
P-SNp| = 2 | X QW) i
Sp| = |REf | Xl 37X
Jj=1 j=1
< BEMES |+ ]y (u)
= 2 |iogfu] 77| X
2 —5/4
< OIR()|lwl?| log ]| X ([w]).
Thus
W) [|P-3pldn < ¢ [ rGdr [ plogp s
j=1 T p=0

=0
[ee] 7“2 € d,O
0/ 7617«/ | log p|~*/4=L
r=0 (1 + T2)2 p=0 p
< o0,

so that ) P; gives the desired splitting of the kernel.

The next step will be to fix j € N and a function f € L'(y;), and estimate
| Pj * fllp1.00()- First, we will need some more notation. For each j € N, which
is now fixed, we make a partition of the positive real axis, by putting

Ji =]exp(ij?),exp((i + 1)5°)], i€ Z,
and we also define

fi(zaw) Zf(Z,w)XJi(|w_1|)’ 1 € 2.
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Note that fi(z,w) = f(z,w)xs(|w|). We now get

Py # fi(zw) = / Py((zw) (2, w)) fi((2s ') dpu (2 )
= / / R(z + 02w P, (rww ) F (2 0, (! ' | duw'd

= _j—4// Rw—l(z'—|—w_lz)f(z','w')|w'|_2dw'dz'.
{@w):lw' e Jin(lw|~11;)}

The estimates can now be divided into three cases, depending on the set of
integration on the right-hand side. For each w, exactly one of the following
occurs,

1. Jz N (\w|7llj) JZ’,
2. Jin(lwl™'L) =0,
3. Jin(Jw| ') is a proper subset of J;.

The second case obviously gives no contribution, so writing x(! for the charac-
teristic function of the set where the first case appears, and similarly writing x*
for the third case, we have

Note that x( and x©® do not depend on z. Thus we write in the following

X (z,w) = xB(w), k =1,3.

We begin by studying the first case. We introduce
F(?) = /fi(—z',w')|w'|2dw', i €Z,
and note that || F;| 1) < || fil|1(u), since

[ < [ R0 s
C G

= [ |l d
= [ \s1dn.
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In particular, F; € L'(C) for each i € Z. We now have
(15)

(P * f;)xV = _j4X(1)(w)// Ry-1(2' +w '2) f (', w')|w'| 2dw'd2’
{(="w"):w'| €1}

— —j_4X(1)(w)/Rw—1(z'+w_lz) (/ﬂ(z',w')|w'|_2dw') dz'
= —j W (w) / Ry-1(2 +w 12)F(—2")d?

= —j’4x(1)(w)Rw_1 * Fy(w '2),

where the last convolution is in C. Our aim is to estimate p;(E)) in terms of
| Fill 1 (), where

E, = {(z,w) LN (w|™'L) = J;, ]_4 ‘Rw—l * Fz-(w_lz)‘ > )\}
= {(z,w) : log|w| + log(J;) g ), |Ru-1 x Fy(w'z)| > j*A}
C {(z,w) :log|w| € log(I;) — ), |Ru-1 % F(w 2)| > A}

Changing variables according to ( = w 'z and n = w! yields du(z,w) =
du,(¢,m), and thus

w(Ey) < pe ({(¢n) < log|n| € log(J;) — log(I)), |Ry * Fy(C)] > 5*A}) .
Note that

log(Ij) —log(;) = ]=(j+1)*%—5" = ]ij% (i + 1)57]
will be contained in some interval with length bounded by Cj3. We can therefore
use Lemma 9 below, to get

C
wm(Ey) < \/7 1 Fillzr o)

C

Xj_5/2||fi||L1(ul)-

IN

Hence

||(Pj*fi)X(1)||L1,oo(m) < Cj_5/2||fi||L1(m)-

We now sum in ¢ € Z, while still keeping j fixed. Since log(/;) is an interval of
length bounded by C'j® and log(J;) is an interval of length j%, no point belongs
to more than Cj of the sets J; N (|w|™'I;), when i € Z varies.

We need the following simple result on the subadditivity of the L»* quasinorm.
If ¢, are functions in weak L', for which no point belongs to more than N of the
supports of the ¢, we have by trivial means that

(16) ISa . < N Ul

1,00
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Thus
(17) D (B fi) W <G 1@ ) XV e
i€Z L1o0 () i€Z
<G N fill ey
i€Z

= C5 72| fll 1 gy)-

To study Case 3, we first observe that by making the same calculations as in (15),
we get the estimate

[Pi# filx® < 5t Ry x Fi(w '2))|
and hence
/|Pj*fz-|x(3)dz < j_4/ |Ry—1 % Fy(w™'2)| dz
= JTHwP Ry % Fill 1 g
< 5w PRI e 1 fill gy -
So by Chebyshev’s inequality
m({z:1Px fX® > 01 < GGl 1AL A

where m denotes Lebesgue measure on C. Thus we get

C'_4’LU2 i _
(s 1B Sl > 21) < [ x0Ty g,

4 .
= M/X(3)(w)\w|_2dw

)
_ Cj_4||fi||1/ | ~2dw
A {wilog [w|€log(81;)—log(J:)}
Ci~*|Ifills

= = Nk dt,
A /bg(afj)logun

where, in the third step, we used the fact that .J; N (Jw| 'I;) is a proper subset of
J; exactly when log |w| € log(0I;) — log(J;), and the last equality followed from
introducing polar coordinates and changing variables according to t = log|w|.
Now, m (log(8I;) — log(J;)) = 242, so we conclude that

H(Pj*fi)x(g)”Ll,oo(ul) < Ci7?|\ fill L -
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We shall now sum in ¢ € Z. For a fixed 7, no point belongs to more than 2 of the
sets log(01;) — log(J;), when i varies. Hence, by (16), we conclude that

Z(Pg * fi)X(3)

1EZ

(18) <05 S il

L1250 () i€Z
< 53| fllpr -

Since Pj * f =", Pj = f;, we now get from (14), (17) and (18) that

||Pj * f||L1,°°(M) < Cj73/2||f||L1(uz)'

To finish the proof, we sum in j. Note that the sequence j=%/2, j € N, is in £log /.
We can therefore use a summation theorem for weak L' in [21] (Lemma 2.3), to
get

ZPj*f

jEN

< COllAller uy-

L1-oo ()
Because of (13), we therefore have
||P*f||L1,oo(u,) < Cllfller)-

and the proof is finished. Il

Lemma 8. The g-function

o0 = ([ 1R 1P a0 "

where f € L'(C), defines an operator of weak type (1,1) with respect to Lebesque
measure on C.

Proof. Let 3 be the Hilbert space L?(C, |w| 2dw) and consider the operator B
which takes a function f € C§°(C) to an H-valued function on C, by the map

Bf(z) = (R *[)(2)

Note that g(f)(2) = ||Bf(2)]|3c. The operator B can be seen as a convolution of f
with an H-valued kernel K, given by (K (z))(w) = R,(z) for z € C, w € C\ {0},
i.e. Bf(z) = K x f(2).

We will prove that K is a vector-valued singular integral kernel of Calderdén-
Zygmund type (see [19], I1.5). Writing (K (2))(w) = (K(z,y))(w), we need to
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prove

(1) / K(z)dz =0, 0<r <ry< o0,
r1<|z|<ra

_¢

z? +y?’

e C
(it7)  ||IVK(z,y)|ls < W

(@) K (z,y)lls <

Here, (i) follows directly from the fact that R(—z) = —R(z) for any z € C. For
(1), we have

_ _ 2 dw
K@ = / ol R )
/ lw™z[?  dw
< w|
1+\w‘1z| )4 jw]?
r\2
= 27‘(/ L[lp_5dp
o (1+6p)

= 9mr* /00 Ldt =Cr .
o (1+1t2)4

To prove (iii), note that

_ _ + yv TU + Yyv
% _ 5 1y TU _
(K(z,y))(w) = |lw|™ R (w Z) W2+ +22+9y22  (wl+ [2)2)2

where w = u + . We get

(8[( )(w) _ ul(lwP +|2?) - 2a(zu+ yv)

a9z ®Y) (w + 2

Thus, we have the estimate

‘@_f(x’y)) (“’)‘ < Olums TP

and, by symmetry, the same holds for aK . We now have

VK@ )2 = / (VK (2, 1) (@) [w] ?dw

2
< / p i dp
o (P+7r)tp
= Cr ¢t

Hence, K is a singular integral of Calderén-Zygmund type, and the operator B
can be continuously extended to an operator of weak type (1,1), i. e., there is a
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constant C such that for all f € L'(C) and A > 0, we have

C
m({z € C:[[Bf()llsc > A}) < Ll flleo»
but here ||Bf(2)||lsc = g(f)(2), which finishes the proof. O

Lemma 9. Let a > 0, N € N and the measure p be given by du(z,w) =
\w|"2dwdz. For each f € L'(C), the function

(z,w) — Ry * f(2)

is in weak L* with respect to the measure p in the set Cx {w € C : |w| € [a, ae"]},
with quasinorm bounded by C\/N||f]|:.

Proof. We begin by defining

Jr(z) = lw| 2dw

Aw:w|€[a7aeN]a|Rw*f(z)|>)‘}

and noting that

I(z) < / lw| 2dw
{w:|w|€[a,aeN]}

N

ae
= / p~? 2npdp = 2m(log(ae™) —log(a)) = 27N.
a
Using the notation from the previous lemma, we also have the estimate

(z) = lw| 2dw

/{w:|w€[a,aeN],()\_1Rw*f(z))2>1}

/ (AR * £(2)))2 ] duw
{w:|w|€[a,aeN],(A~1|Ry*f(z)])2>1}

32 [ Rus 5 Plul o
C

_ (g(f;(@)?_

IN
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Hence, we get

1 ({(z,w) € Cx C: |w| € [a,ae™],|Ry * f(2)| > A})

= / |w|~?dwdz
{(z:w):lw|€[a,aeN ]| Ruwx f(2)|>A}

= [|AllLio

:/0” m({z: Jr(2) > a}) da

(o (10) 5 )

:/Ow m ({z: g(f)(2) > VaA)) da

- 2nN C

~Jo Ve
CvVN

= —||f||L1<c

11l

In the proof of Lemma 8, we used the cancellation between positive and negative
parts of the kernel P. That this cancellation is crucial is shown by the following
example, which proves that left convolution with |P| defines an operator which
is not of weak type (p,p) for any p € [1,00). Hence, it is not possible to prove
the LP estimates for X A~'/2 without taking into account the sign of P.

We fix p € [1,00) and a large N € N. We will construct a function f € LP()
with implicit dependence on N and see that the weak type (p,p) inequality is
violated for N large enough. Let the functions x1, x2 : C — R be given by

L, [z] <N,
xle) = {0, 2 > N,
and

()_{1, lw| € [N7!, N],
=00, Jwl ¢ [N N
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We define f: G — R by f(z,w) = x1(2)x2(w), which yields

Iy = 11y

/ dz/ 5
|z|<N w\EN 1N |w|

=7N?. 27T/ —
p:N*1 P

= 47°N?log N.

Convolving f with |P|, we get

[Pl f(z,w) = / IP((z,w)(Z’,w'))lf(Z’,w’)duz(Z',w')

(2! w')e@

1 dw'
:/ |w|2‘R(z+wz')‘dz'/ , LIUQ.
|<N ' €[N ~1,N]n(0, 1w ~1¢) | 1og [wuw|| [w'|

We will estimate these two integrals from below. In the first one, we change
integration variable to ( = w2z’ and for 1 < |z| < |w|N, we get

/ \w|2‘R(z+wz’)‘dz':/ |R(z + ¢)|d¢
|2'|[<N [¢I<|w|N

> R(z+()|d
/ICISzI‘ ¢ C)|C

2,

for some constant ¢ > 0. For the second integral, we note that if |w| € (N7!, 1),
we have [N~1 N]N (0, |w|™te) = [N7!, |w|~te) and

1 duw’ [wl ™" -1 d,o
p 5= 2m
e [N-1,jw|-1¢) | 10g [wuw!|| [w'] y—n-1 log(Jw|p) o

w|~le
:2%[ log | log(|w|p) }

> 2mlog(log N),

where we chose € = e~!. Putting
Exy={(z,w) € G:1< |z| <|w|N,N! < |w| < 1},
we conclude that

|P| * f(z,w) > 2nclog(log N) for (z,w) € Ey.
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It follows that
111 % £ 1y > 2mclog(log N) (u(Ex)) "

and
dw
N-1l<w|<1 1<|z|< w|N w|*
1 d,O
= 272 N2p? — 1)~
o[-
= 212N%log N + O(N?)
1 _
= 5 (1+0((0g N) ™)) 112
Thus

1/
11P1 £ iy > 2melog(log N)277 (14 O((10g N)) ) Il o

and by taking NV large enough we would violate any weak type (p,p) estimate.

6. THE OPERATOR A 1/2X

Proposition 7. The global part of the operator A='/2X s of weak type (1,1).

We need some preparations before we proceed with the proof.

Definition 1. A scale of partitions is a sequence {P;};cz, such that every P;
is a partition of C = R? into rectangles {If X I;}p,qez, which have side lengths
a2/ x 277 for some fixed o, 3 > 0.

By I J’?_ and I J’?“L we denote the left and right half of the interval IF, respectively.

Definition 2. A sequence {A;}cz of step functions on C = R?, is called a scale
of Haar-like functions if there exists a scale of partitions such that for every
Jj € Z, we have

where 77 is of one of the following forms;

(19)  #(@,y) = (xp-@) =X+ @) (- 0) =X+ ) D0 €L,
(20) #(2,) = a2 (xp- (0) = xp (@) xieW),  Pa €L

(21) Ky (@) = a5 X (2) (x,;— (y) — XI;+(y)) , D,QEL,
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where a?q are scalars.

In the proof of Proposition 7, we will expand the function R into Haar-like func-

tions, which are supported in rectangles with dyadic side lengths. For m,n,p,q €
Z, we define

o= [(o+ =) 2 (o 02 o)

Ji=1g—1)27"¢27").

Note that for each m and n, {J? },cz and {J¢},ez are partitions of R, which are
dyadic in m and n respectively, in the sense that e. g. each J? is the union of
two Jb ;.

and

The intervals J? are translates of J¢. The reason for introducing these translated
intervals is that 0 is an interior point of J?, for each m, and that J?, increases to
R as m — —oo.

We now define our Haar-like functions. For m,p,q € Z and n > 1, we put
(22)  BE(m) = 27 (X (0) — X () (Xge-, () = Xt (8))
and

(23) B, ) = 2" (X, (@) = Xz () ) g ().

For a suitably nice function I with fw ERF(z,y)dz = 0 for every y € R, we can

expand I' with respect to the functions h?? | with the coefficients

bl = 2_m_"/ [(z,y)hP? (z,y)dzdy.
R2

This is the content of the following lemma, which also gives an estimate for the
coefficients. This estimate would not hold unless the intervals J? were translated
away from the ordinary Haar intervals JZ.

Lemma 10. Let T € C?*(R?) satisfy
Tz, )| < CA+lal+y]) 7

or
el < 1 —4
‘ay(w,y)‘ < C+ ||+ [y
0°T
< 1 -5
8xay($,y) < O+ ||+ [y,

for some constant C' > 0, and assume that we also have fzeRF(ac,y)dac =0 for
every y € R. Then for every m,p,q € Z and n > 0, we have

(24) | < C2MR(L 4 2™ + [pl) (2" + [g) P,
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and

(25) I'= Z CranPn

minipiq

with uniform convergence in R?.

Proof. By applying the mean value theorem twice, we find that for (z,y) € JP, x
Ja,

0°T
0x0y

L(z,y) = (z — 20)(y — %) &),

for some (&,7) € j,’;l x Ji. Here, xy and 7y denote the left end points of jﬁl and
JI, respectively. Hence, we conclude that

| < / T (2, y)|dzdy
JB xJ2
2
S 2727}12*271 Sup a F ‘
Jr g 1020y

< 272m27(1 4 dist((0,0), J2 x J2)) 7.

Now, 1+ dist((0,0), J2 x JI) < C(1 4 |p|2~™ + [¢|2~"), and thus

| C272m27 (1 + [p|27™)5/2(1 + |g[27) 75/
C2MRPI 4 |p]) 5 (2 + [g])
C2m2(2™ + |p|) 522" + |q|) 2

C2™2(1+2™ + [p|)~*/*(2" + |q|) 7%,

IA A

if [p| >1orm > 0.

It remains only to study the case p = 0 and m < 0. We first consider n > 1,

/ _/ (/ —/ F(x,y)dy) dx
€Ty zedit \Jyesi~ yeIi*
0

r, . or,
z€Jm T

ejor 0y
for some § € J¢~ and g € Jit. Since [, _I'(z,y)dz = 0, we have

or or
—(z,y d;];:—/ —\Z,y d.’L‘,
zel 89( ) TER\T 8y( )

1
| c?r(tzn 5

< 2—2n + 2—2n

bl
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for any interval I C R. Therefore, since either ngi or R\ j,oni is contained in the
set {x € R: |z| > 27™/6}, we obtain
or

@ < czmax [ 2ay)
v=00 J|g>2-m /6 | OY

o
< o™ m@X/ .
=04 ) yo-m 5 (L + 2] + [y])

—2n ]'
N A =y
1
(1 +[q[27m)5/2
< C2mP(2n + q|) P

dz

IN

0272n2m/2

IN

Finally, for p =0, m < 0 and n = 0, we get

/ — / / [(z,y)dy | dz
zeJY e \JyeJd

| T@ids+|[ T
zejo zept

for some ¢ € J!. Hence, similarly to the case n > 1, we get

< o / T (2, §)|de
|z|>2—™ /6

* dx
0/ _

s=2-m e (1+ |z +[g])3

1
C
(I +27m/6 + [g])?

C2m2(1 4 [g]) %
C2™2(1 4 |q]) 72,

|C?;;10 <

< +

Y

IN

VAN

ININA

and we have proved the inequality (24).

It remains to prove the uniform convergence and the equality (25). First, note
that for fixed (z,y) € R%, m € Z and n € N there is only one pair (p,q) with
hPd (z,y) # 0. So by (24) and the definition of AP? . we get

mn?

S C Z 2m/2(1 + 2m)73/227n/2
meEZ,neN

S C Z 27|m|/227n/2'

meEZ,neEN

> e he,

m’n7p7q
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Hence, the series converges uniformly. We denote the limit by S, and we put
EFE=T-G.

It remains to prove that £ = 0. To do this, we fix mg, gy € Z and we let J2 be
those hP? which are supported in ano x J§. Note that

r
SXRngo = Z <||JZ-||f2>f+Da

FSUN
where the term D is a sum of functions ALY, with m < mg. We can extend I

to an orthogonal basis g% for L2(j310 x J&), by including functions of the type
(26) 2 () (e @) = xge, @), m>1,
supported in J,?lo x JI and the constant function 1. Putting
(T, f)
Imo,q0 = Z MmeNe

2
restges, 1M1

we get

(T, f)
(B + D)Xy xato = Imoso = DXyt = D i
: I 2 |
mo

Here, the right-hand side equals zero almost everywhere in jfno x J§°, since the

functions in J¥ constitute an orthogonal L?-basis. Furthermore, since each f €
dio  is right-continuous in both x and y, the same holds for the sum in the right-
hand side. It follows that

E+D = gmyg  everywhere in JJ x JE.

Integrating with respect to x yields

/~ F(:r,y)d:r—/ i (S(x,y)—D(:r,y))dx = / ~ Gmo.q0 (%, y)d,
z€JY, z€JY, z€JY,,

for any fixed y € J§°. Here, S — D is a sum of functions in J% and hence its
integral vanishes. As my — —oo, the set jﬁm increases to R, and the integral of
I' tends to 0. For the right-hand side, note that g,,, 4, is constant with respect to
x in ng, since it is a sum of functions of the type (26). Hence, the integral on
the right-hand side equals 27™0g,,, 4, (2, y) for some arbitrary = € ng. It follows
that gm,.q — 0 uniformly as my — —oo.

Finally, we conclude that

EXRngo = lim (E+ D)Xf,%ongo = lim  gmg,qg =0,

mo—>—00 mo——o0

and since qo € Z is arbitrary, we have E = 0. O
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Proof of Theorem 7. We wish to prove that for any A > 0, we have
_ C s
@) w({Ew e 1@ fau)>2}) < 5 [ [Few)dntzw)
G

for every f € L'(u;). The first part of the proof will consist of step by step
simplifications of this statement. We will first change variables and then see that
we can leave out some integrable terms, which correspond to strong type (1,1)
operators.

In the second and main part of the proof, we use Lemma 10 to expand the function
R with respect to the functions h?? given in (22) and (23), and we approximate f
by a sum of point measures. Thus, the problem is essentially reduced to analysing
a sum of convolutions of functions AP? with point measures. We use Lemma 11
to estimate each term in this sum. The proof is then concluded by collecting all
details.

First, we will change coordinates in (27) according to
w = 2%, z = (2%,
witht € R, ¢ € [-m,7) and ¢ € C. Note that this yields
dp(z,w) = Cdn(¢ 1, ),

where 7 denotes Lebesgue measure” on C x R x [—7, 7). Hence, (27) takes the
form

. . . C _ . .
n({(ct0) @ e fcren 2en) > a}) < § [17c2res, 2e) i, t,0)

We define f(¢,t,¢) = f(C2'€, 2¢*) and note that || f|| 1) = C||fll£i(y- Putting
(¢, t,¢) = Q x f(C2'€?,2€'?), we have

(¢, 1, 9) = /Q((C%M,2t6i¢)(2',w'))f((2',w')l)duz(Z’,w')

C+Z’ 1 ~ ZI 1 - I ,

//{th’|>N} ( w! t10g2+10g\w’\f ’U)',’w' ‘w‘ zZ aw
1 = Z 1

- Rwl / - — I—2d [d !

//{th'>N}“0g2+log\w'| (€+z)f( o w’) |w'|~*dz" dw

= C/// i (C+2) f (=22, 2°€e™) d'dvdsp
{t— v>1}t

=Cff TR s (G oy,
—v>

"Here, we avoid our convention of denoting Lebesgue measure by m, since we want to use
m to denote an integer index.
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where we made in the fourth step the change of variable w' = 27%e~%, v € R,
¢ € [—m,m), and we also chose N = 2. In the last expression, the convolution is
with respect to the first variable of f. Note that ®((, ¢, ¢) is actually independent
of ¢.

We can rewrite (27) as

1{(ct0): 0G0 > 2 < [ 17

What we need to prove is therefore that the map f — @ is of weak type (1,1)
with respect to the measure 7.

For the variable ¢, we wish to use the counting measure on Z, instead of the
Lebesgue measure on R, when we take the L"* quasinorm of the map f — ®.
Therefore, we need to pass to a discrete dependence on t. Next, we see that this
can be done with an error corresponding to a strong type (1, 1) operator. Hence,
this error is negligible for our purposes.

We denote k& = [t] and j = [v], with square brackets denoting the integer part.
Note that t —v > 1 implies k —j > 1. Changing t —v to k — j in the denominator
inside the integral in the last expression for ® yields an error bounded by

//{t—v>1}

1
t—w

%‘ L |

1
(t—v>1} (=)
and since

Jacfafasf[ Gl 6o 0w

< / dv / d¢ / dip / ¢ |Ry-vo-is % f(C,0,0)] T iﬁv)Q

< C/dv/d¢/d¢”R2%W”Ll((c)||f('ava¢)||L1((C)
< O fllzrm)

—iyp * f(Ca v, ¢) dvdy,

this error corresponds to a strong type (1,1) operator. We also need to change
the limit of the integral. Changing {t —v > 1} to {k — v > 1} gives the error

/ _W/vt 1 lkfRQ ve—iv * f(C,v, ¢)dvdip,
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and since

/dg/dt/dqb‘/ _ﬂ/: 1 1kfRQ veiv * f(C,, ¢dvdw‘
< /dv/d¢/d¢/dC|R2—ve—iw *f(C,v,aﬁ)I/t:dt

< Cllfllzrw),
this error also corresponds to an operator of strong type (1,1).

Hence, we have found that it remains to prove that the operator which maps
f € L'(n) to the function

T k
(z,t,0) — /w— /_ k%jRQveizﬁ x f(z,v,¢) dvdy,

where k = [t] and j = [v], is of weak type (1,1) with respect to 1. (Here, we have
also changed the notation ( to z, merely for convenience.) Since the dependence
of ¢ here is only via k, we can take the counting measure in k instead of Lebesgue
measure in ¢, when we take the L' (n) quasinorm.

We have Rg—ue—w = (Re—iqb)gfv and

Re(ez)  cos(ip)x —sin(¢)y
L+[2)? Q42 +y?)?
= cos(¢)R(z,y) — sin(y) R(y, z).

By symmetry, it is therefore enough to study the function

R,w(z) = R(e™2) =

(28) (z,t,0) |—>/ / — cos(w)Rz—v * f (z,v,) dvdip.

Now write f(z,v,9) = f*%(2). We will approximate each f*¥ with a se-
quence of point measures. Let ’yl”’w be the measure consisting of point masses
at (p2777,q2777!) € R?2 = C equal to

(p+1)277-t  p(g+1)2701
/ / Y (z,y)dydz,  p,q€Z,
x y

—p2—i-l —q2-i-1

where j = [v] and we have, as usual, written f"%(z2) = f*%(z +1y) = fo%(x,v).
Then

o0
(29) Y=Y+ (Y -,

=1

with the sum converging in the weak-* topology.
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We will treat each of the terms in the right-hand side of (29) separately, and we
start with 72", For each 0 < £ < 1, we expand

RQ*"S = Z cfr‘b]n(g)h%n

m,n,p,q

according to Lemma 10, and we get
(30) | (€)] < C2™2(1+ 2™ 4 |p|) /2 (2" + [q) 72,
Writing v = j + £, we get

k T
/ / i ; cos (1)) Ry—v % 0¥ (2)dipdv

= [ o (ot v

m,n,p,q

DI N ( Jas //cos )Wﬁwdwds)()

m,n,p,q j<k

= Z mnpq

m,n,p,q

where the last step defines the functions Fr?mpq We now fix m, n, p and ¢ and
write

(31) / / cos(P)L (E)R T Vdpde,  j ez,
so that

1 .

0 _ J

anpq = Z A (hP1. ) P * Uy

i<k
We need to estimate the L quasinorm of Fgmpq
We consider first the case m,n > 0. The measure I/g is supported in the set

2797, x 2797 and the supports of the functions (h?? ),-; are rectangles with side
lengths 277-™ x 277", It follows that

{(hpq )2 i* VO}JeZ

is a scale of Haar-like functions, with respect to a scale of partitions with o = 2™™
and § =27". Lemma 11 below implies that

[l <€ [ 10100 41| dz =€ 3 1]

JEL JEZL

We next consider the case m < 0, n > 0. In the z-direction, the support of a
function (k2% ),-; is now wider than the distance between two point masses of /]
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with a factor 2™/, We therefore split Vg into a sum of measures ng ,

2|m|
J _ § : J
VO_ 77¢>
i=1

where each 7 is supported in 2777 x 277 (i42/™)Z and ||1/3|| =Y |I77]|. In words,
this means that each 7 consists of a sum of y-rows of v}, 277%™l apart in the
z-direction (cf. Fig. 1). Then for each i,

—
—
>
—

—_—
—

—
—_—
—

—

FIGURE 1. For the case m <0, n > 0, the measure 1/3 is split into
a sum Y_77. In this illustration m = —2.

{ (h;fgn)z,j * nzj}jez;’

is a scale of Haar-like functions. We get from Lemma 11 that

1 ; . .
D CAANEL Ete) Y N I(EAREYCIEEEY e S

j<k J Ll JEZ jJEL

To get the corresponding result for 1/8, we wish to sum in 7. However, since LY®
is not a normed space, we must introduce a factor on the right hand side which
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is proportional to the logarithm of the number of terms (see [20], Proposition 3).
Thus, we conclude that

[Fopall 1o < ClmI D 14l m<0,n>0.

JEL

The cases m > 0, n < 0 and m,n < 0 can be handled analoguously, by splitting
the measure 1/} instead along the y-direction and in both directions, respectively.
It is then evident that we, for any m and n, have the estimate

[ Fmmpall 1o < C QL [m]+ Inl) Y Il
JEZL

Next, we turn to the terms with [ > 1 in the decomposition (29). By making the
refinement [ — 1 — [ in two steps, we can write

W =W =0 =) + 0 =),

where 0" is the measure consisting of point masses at (p2~7~, ¢27771) equal

to
(p+1)273=1  p(g1)2-9—1+1
/ / o (x,y)dydz,  p,q€ L.
x ]

:pQ_j_l :qQ_j_l+1

Note that for any p, ¢ € Z, the point masses of 7/"¥ —6" located at (p2~7~*, 22777
and (p2777%, (2¢ + 1)2 7 Yhave the same magnitude but opposite signs. Letting
7, denote the translation operator in R?, we can therefore write

U,

,.)/Z]’w _ 9;1,1# — O-Z]a"p _ T(O,Z_l_j)o-l ,

for some measure o} supported in 27977 x 2797+17, Similarly, we can write

0;}’1’[) — ’}/Z)il/i = 6';1’¢ —_ T(Q—l—j,o)a'zj’w,
where 5% is supported in 27971+1Z x 277717, Note that

oI < [ and 15271 < I

We now get
Ro-v % (%w — fyl”fﬁ) = (Ry—v — T(o2 15y Rg-v) * Ulw/}
+(Ry—v — T(o-1-7 gy Ra-—v) * Fﬁw
= (Rp-¢ — 10 2-1yRo-¢)a-i * UZ’“”
+(Rye — To-1,0)Ro-¢)o5 * &Y.
By using Lemma 10 and the mean value theorem, we can expand
Ry — 7'(0,2—1)R2—§ = Z CIT)T(L]n(fi l)hl;rgn

m!”’p’q
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and

Ry-¢ —7'(24,0)R2*€ = z Efrgn(f: )h%m

m,n,p,q
with the estimate
(32) |t (€ 1)] < C272™2(1 4 2™ + [p[)~52(2" + [q]) /2
and the same for ¢?? (£,1). In analogy with our previous notation, we put
(33) - / | eosto) (st + e o) avde,

and we get

L]

5 cos(t) Ry-o + (7 = %) (2)dvpdv

= Z Z (hP2) *Z/l](Z)

m,n,p,q j<k

- Z mnpq

m,n,p,q

To estimate the L'* quasinorms of the functions F},, .., we again consider dif-

ferent cases. Note that the support of / is contained in 2797 x 2797, Thus,
for m,n >,

{hpq * U} } iez
is a scale of Haar-like functions. Hence, Lemma 11 yields

||F'rlnnpq||L1’°° < CZ ”VZJ”
jJEL
For the other cases, i. e. if m < [ or n < [, we once again split I/l] into a sum of

measures with sparser point masses. The calculations will be completely similar
to the case with 7”’1/’. We can summarize the resulting estimates in

[ras SO+t =ml+[t=n]) Y lIK7

JET

nP(IHIOO

which also includes the case [ = 0.

Next, we need to estimate ||v/||. For I = 0, we get, from the defining expression
(31) and the estimate (30) of the coefficients 29 (&), that

Al < / / 2 (&) [ | dupde

1 T )
< CMP(1 427 1 [p)) P22 + 1g) / / I e due.
0 —7
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For | > 1, we get, from (33) and (32), that
W< [ [ (e o+ e Dl 1) v

1 T
< €L 427 4 )2 + Jg) / / I 6 dupde.
0 —T

Since ||7)?|| < [i. [f*¥(2)|dz, we therefore get
2712m/2

C
(T + 27+ P22+ [a])*”

11l <

/ (20 + €, )|dzdiide,
{0<e<1}

for [ > 0. Summing in j now yields

(14l —m|+ |l —nl|)2 9—lom/2 1l
(1+ 27 + [p[)372(2n + [g[)22 '

To finish the proof, we need to estimate the level sets of the integral in (28).
Because of the decomposition (29) and the expansion of R into Haar functions,
this integral equals y-,  F..... By (34) and the addition theorem for L'
(Lemma 2.3 in [21]), it is therefore enough to prove that the five-fold sequence

{O+N—nﬂ+ﬂ—mp4ww}
(1+2m + [p)*2(2" + 1) S g

(34) gl 1. < ©

is in [logl. Note here that p,q,m € Z, while [ and n only range over N. It is
easily seen that this sequence is even in 7 for any v > 2/3, by summing in the
order ¢, p, n, m and [. Thus, the proof of Theorem 7 is finished. O

Lemma 11. For any scale of Haar-like functions {A;};ez, and any A > 0, we

have
ZA]%”’;’)F }) < AZ/ A |dzdy,

i<k JEZ

mxc({(m,y,k) ER*XZ:

where m denotes Lebesgque measure on R? and c is the counting measure on Z.
The constant C' does not depend on the parameters o and B from Definition 1.

Proof. Fix A > 0. For j < k, we denote by X? the characteristic function of the
set

{(x,y) cR?: %ij)l >)\}

We will divide the sum ) i< k 73 29 into two parts, one with large terms and one

with small. We then estimate the level sets of each of these two parts separately.
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We have

RG>

Smxc({w,y,k): z%@xﬁ(xﬂm\”ﬂ})

+m><c({xy, Z kxy Xf(%y))‘>)‘/2}>

i<k
=1+1IL

We first study I, which is easier to estimate. If ‘ZK]C Ak(w,Jy) X5z, y)‘ > \/2, there

must be some j < k such that X?(aj, y) # 0, and hence

{(x, Y, k

| Z D s > 2

i<k

C {(z,y,k) : 3j < k with x¥(z,y) #0} = ] 4;,

JEL

where A; = {(z,y,k) : k> j and Xf(x, y) # 0}. It now follows that

I < Zm x c(A;)

IA
T
b
>R
=
K
j=
<

where we used Fubini’s theorem for the final step.

We now turn to estimating II. For every fixed k, we have that (1 — Xf)Aj is of
the form

(1_X9 ZK

P,9EL

with all /ﬁ?q in one of the forms in Definition 2.
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With the Chebyshev inequality, we get

(35) I < ()

_ ()ZZ — <(1—x§)Aj,(1—x§:)Aj')

kEZ j,j' <k

)(

2
1—x5(x,y))| dody

so we need to estimate the scalar product

(=28 (=358 = >0 (k).

p,q,p',q' €7

The crucial point for the estimate of this scalar product is that the products on the
right hand side equal zero, except for a very sparse set J of indices (p, q,p',q’) €
Z*. For example, if the functions /c] 5 j p,q € Z, are of the form (19), then

pg '
(K29, KD,

i K ) = 0 unless the support of x ], " contains one of the corners the middle
point or one of the middle points of the sides of the support of /{ 7 or vice versa

(cf. Figure 2). We now proceed with the details of this argument

) Y

g

+ i
]
g

+ | — BB + | =

]
1L

FIGURE 2. The supports of %’ and mgfq’ are illustrated as rect-
angles in the zy-plane, with plus and minus signs indicating areas
where the functions have opposite signs, according to (19). In this
illustration 7 < j'. On the left are shown four different positions
of the support of /4;?,"1’ relative to the support of %, which all give

(/{] ,n], } = 0 by Cancellation On the right, three positions are
shown, which give (k7 £%, 4y £ 0.

For the moment, we assume that ;7 < j'. When taking the scalar product
(K57, 65,7), we can obviously multiply x7? with the characteristic function of the

support of k57, which reduces its L2 norm by a factor 207, Hence, we get by
J
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the Cauchy-Schwarz inequality that
(1= xDA;, = xE)An | < 277771 3= 168|657 [l
(p,a:0':q') €I

Now, if the functions 2%, j,p, ¢ € Z, are of the form (19), we have for each pair
(p,q) that there are at most C pairs (p/,¢') such that (p,q,p’,q¢') € J, and vice

versa. Hence,

(1= x5, (1= xE)am| < 27071 ST (13 + 6 1)

(p,q,p',q")€T
|44 71
< c2 b (Z IR+ 3 e ||3>
D,qE€EZL p',q' €L

= C27 7T = x5l + NI = x5 Apll) -

For the cases with x2?, j,p,q € Z, of the form (20) or (21), we need to be a
bit more careful. For every (p,q), there are at most C27'~7 pairs (p/,¢') such

that (p,q,p',q") € J, and for every (p',¢’) there are only C pairs (p,q) such that
(p,q,p',q") € 3. (Note that we still assume j < j'.) We therefore get

T Ly 1!
(EEP VNPT AL ESD S Cl oAl PR Rl A

(pa:p',q') €T
< > (zfgljfj’ln,ﬁ?q“g+2*%|jfj’l||,£§:q’”§)
(p.a.p',q')€I
. _3s_ Clyi ;
< ¢2li7'l Z 2-3l J\”,f?q”g_,_ Z 2-3l J\”,f?,q 12
PgeZ p'.q' €L

= C2 T2 (11 = x)aslls + 11— x5 Axll3) -
Thus, we can conclude that in all cases, we have
(1= x0)A, (L= x)Ag)| < Co 72 (1A (1 = xh)IB + 1185 (1 = X5)IB)

which by symmetry holds also for j > j'. We now find that

1 1
Z k‘fk — .,<(1 - X?)Aja (1 - X?’)Aj’>
ja<k J J

9—li=J'l/2 X ) . 0
<C Y = 10 XA + 10 - XA 18)

33" <k

<OY Gl - Al

j<k
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Inserting this into (35), we finally get

o< c(%) >3 el - xhal

kEZ j<k

- C G)?;/Rz 1A (z,9) ) ﬁ(l — X (@, y))dady

k>j
C
< XZ/ |Aj(z, y)|dzdy,
RZ

JEL

where the last step followed from the observation

1 A B 1 A
2t = X G SO Gy

k>j 14,
J kZH%
which ends the proof. O
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