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1 Introduction

The classical notion of spectral synthesis is related to the Galois correspondence between
ideals J of a commutative regular Banach algebra A and closed subsets E of its character
space X(A): kerJ = {t € X(A) : t(a) =0, foranya € J}, hull E = {a € A : t(a) =
0, for any t € E}. Namely, a set E is called synthetic (or a set of spectral synthesis) if
ker J = E implies J = hull E. Note, that the converse implication holds for any closed
ECX(A).

In the invariant subspace theory the central object is a Galois correspondence be-
tween operator algebras M and strongly closed subspace lattices £: lat M = {L : TL C
L for any T € M},alg L ={T : TL C L,for any L € L}. A lattice £ can be called operator
synthetic if lat M = L implies M = alg L.

W.Arveson [A] proved that if one restricts the map lat to the variety of algebras, con-
taining a fixed maximal abelian selfadjoint algebra (masa), then the above formal anal-
ogy becomes very rich and fruitful. In particular, answering a question of H.Radjavi and
P.Rosenthal, he proved the failure of operator synthesis in the class of o-weakly closed al-
gebras, containing masa (Arveson algebras, in terminology of [ErKS]), by using the famous
L.Schwartz’s example of a non-synthetic set for the group algebra L (R?®). Note, that among
other brilliant results, [A] contains the implication M = alg £ = £ = lat M, for an Arveson
algebra M (in full analogy with the classical situation).

The results in [A] indicate, in fact, that the problematics of the operator synthesis
obtains a more natural setting if instead of algebras and lattices one considers bimodules
over masas and their bilattices (see the definitions below). We choose this point of view
aiming at the investigation of various faces of operator synthesis, that reflect its connections
with measure theory, approximation theory, linear operator equations and spectral theory
of multiplication operators, synthesis in modules, Haagerup tensor products and Varopoulos
tensor algebras.

Let us list some results, proved in this first part of our work. We show the equivalence
of several different definitions of operator synthesis. Answering a question of W.Arveson
[A][Problem, p.469] we prove the existence of a minimal Arveson algebra (bimodule) with



a given invariant subspace lattice (bilattice), without the assumption of separability of the
underlying Hilbert space. For separable case our coordinate approach does not need a
choice of a topology, replacing it by the pseudo-topology, naturally related to the mea-
sure spaces. This allows to consider simultaneously the synthesis for a more wide class
of subsets and to avoid the use of pseudo-integral operators and the complicated theory
of integral decompositions of measures (see [A] and [Da]). This approach admits also the
use of measurable sections which leads to an ”inverse image theorem” (Theorem 4.7) for
operator synthesis, implying in particular Arveson’s theorem on synthesis for finite width
lattices. We prove that a closed subset in a product of two compact sets is a set of spectral
synthesis for the Varopoulos algebra if it is operator synthetic for any choice of measures
(Theorem 6.1)(Proposition 6.1 shows that the converse implication fails). This, together
with the above mentioned inverse image theorem, gives some sufficient conditions for spec-
tral synthesis, implying, for example, the well known Drury’s theorem on non-triangular
sets (Corollary 6.1).

In the second part of the work we are going to consider the individual operator synthesis
and its connections with linear operator equations.

We are indebted to S.Drury, A.Katavolos, S.Kaijser, J.Magajna, I.Todorov, N.Varopou-
los, for helpful discussions and valuable information. The work was partially written when
the first author was visiting Chalmers University of Technology in G&teborg, Sweden. The
research was partially supported by a grant form the Swedish Royal Academy of Sciences
as a part of the program of cooperation with former Soviet Union.

2 Synthetic sets (measure-theoretic approach)

Let (X, u), (Y, v) denote o-finite separable spaces with standard measures. We use standard
measure-theoretic terminology. A subset of the Cartesian product X x Y is said to be a
measurable rectangle if it has the form A x B with measurable A C X, B C Y. A set
E C X xY is called marginally null setif E C (X1 xY)U(X xY7), where u(X1) = v(Y7) =0.
If subsets a, 8 of X x Y are marginally equivalent (i.e. their symmetric difference is
marginally null) we write @ = 3. Following [ErKS] we define w-topology on X x Y such
that the w-open (pseudo-open) sets are, modulo marginally null sets, countable union of
measurable rectangles. The complements of w-open sets are called w-closed (pseudo-closed).
The complement to a set A will be denoted by A°.

Let T'(X,Y) = La(X, u)®La (Y, v) be the projective tensor product, i.e. the space of all
functions f : X x Y — C which admit a representation

F(z,y) = fal@)gn(y) (1)

where f, € Lo(X,p), gn € La(Y,v) and 307 ||fnllz, - ||gnllz, < co. Such a function
F is defined marginally almost everywhere (m.a.e.) in that, if f,, g, are changed on null
sets then F' will change on a marginally null set. Then Lo (X, #)®L(Y,v)-norm of such a
function F' is

oo
IFlle = inf Y || fallza - 1gnllLas
n=1

where the infinum is taken over all sequences f,, g, for which (1) holds m.a.e. In what
follows we identify two functions in I'(X,Y) which coincides m.a.e.



By [ErKS][Theorem 6.5], any function F' € I'(X,Y) is pseudo-continuous (continuous
with respect to the w-topology defined above). We say that F' € I'(X,Y") vanishes on a set
K CXxYif Fxg =0 (m.a.e), where xx is the characteristic function of K. For arbitrary
K C X xY denote by ®(K) the set of all functions F' € T'(X,Y") vanishing on K. Clearly
®(K) is a subspace of I'(X,Y).

Lemma 2.1. Any convergent in norm sequence {F,} € T'(X,Y) has a subsequence which
converges marginally almost everywhere.

Proof. We may assume that {F,} converges to zero in norm. Then there exist functions
fk") € Ly(X, ), g,(sn) € Ly(Y,v) such that

Fu(z,y) =Y 1P @a” @), SIATIZ, =0, and Y [lgl™13, — 0.
k=1 k=1 k=1

By the Riesz theorem applied to the functions f™(z) = S°° | (2)|? and g™ (y) =
e |g,(c") (y)|? there exists a subsequence {F,,} such that f(")(z) and g™ (y) converge
to zero almost everywhere. Therefore, there exist M ¢ X, N C Y, u(M) =0, v(N) =0,
such that () (x) — 0and g(™)(y) — 0for any z € X\ M,y € Y\ N, and since | Fn; (z,9)] <
fi)(z)g") (y), this implies F,, (z,y) — 0 for any (z,y) € (X \ M) x (Y \ N). O

Proposition 2.1. ®(K) is closed.

Proof. Let F € ®(K). By Lemma 2.1 there exists a sequence F,, € ®(K) which converges
to F' marginally almost everywhere. Taking away a countable union of marginally null sets
we can assume that all F, vanish on the rest of the set K and therefore Fxx = 0 m.a.e. [

If F € T'(X,Y) vanishes on K then by pseudo-continuity it vanishes on the pseudo-
closure of K so that without loss of generality we can restrict ourselves to pseudo-closed
sets K.

Given arbitrary subset F C I'(X,Y), we define the null set of 7, null F, to be the largest,
up to marginally null sets, pseudo-closed set such that each function F' € F vanishes on
it. To see the existence of such a set take a countable dense subset A C F and consider
K = NpeaF~1(0). Clearly, K is pseudo-closed, A C ®(K) and, by Proposition 2.1, F =
A C ®(K). The maximality of K is obvious.

Let ®o(K) be the closure in I'(X,Y") of the set of all functions which vanish on neigh-
bourhoods of K (pseudo-open sets containing K). ®4(K) is a closed subspace of ®(K).

Proposition 2.2. null ®(K) = K = null ®(K).

Proof. We work modulo marginally null sets. Let « C X, 8 C Y be measurable sets such
that (o x ) N K = . Then the function x,(z)xg(y) belongs to ®o(K) and therefore
null ®4(K) C (a x 3)¢. Since K is pseudo-closed, K = (U2, ax x (Bx)°¢ for some measurable
ay, B so that (ag x B;)NK = () and thus null &,(K) C K. We have also that null &5(K) D
null ®(K) D K which implies our result. O

Clearly, the subspaces ®o(K) and ®(K) are invariant with respect to the multiplication
by functions f € Lo (X, ) and g € Lo (Y, v) (we simply say invariant).

Theorem 2.1. If A CT(X,Y) is an invariant closed subspace then
Pp(null A) C AC $(null A). (2)



The second inclusion is obvious. The proof of the first one is postponed till Section 4.
This theorem justifies the following definition.

Definition 2.1. We say that a pseudo-closed set K C X xY is synthetic (or pXv-synthetic)

if
Bo(K) = ®(K).

We shall also refer to synthetic sets as sets of operator synthesis or sets of y x v-synthesis
when the measures need to be specified.

We shall see that the sets of operator synthesis can be defined in several different ways.
The relation to operator theory is based on the fact that elements of I'(X,Y) are the kernels
of the nuclear (trace class) operators from Hy = Lo(Y,v) to H;y = Ly(X, u) and the space
&' (H,, Hy) of all such operators is isometrically isomorphic to I'(X,Y) (see [A]). The space
of bounded operators, B(H;, Hy), from H; to H, is dual to &'(H,, H;) and therefore to
I(X,Y). The duality between I'(X,Y) and B(H;, H>) is given by

<Ta F) = Z(Tfmgn)a

n=1

with T € B(Hy, H,) and F € T'(X,Y) having a representation F(z,y) = > oo fa(2)gn(y),
where f,, € Lo(X, 1), gn € Lo(Y,v) and 307, || fullzs - [|9n||z, < co. This will allow us to
introduce the notion of “operator” synthesis for some sets of pairs of projections - bilattices -
which (for separable H;) bijectively correspond to w-closed subsets in the product of measure
spaces.

3 Bilattices, bimodules and operator synthesis

First, we introduce the concept of a bilattice and give some notations. Let Ry, R2 be von
Neumann algebras on Hilbert spaces H; and Hs. We write Pgr, for the set of all selfadjoint
projections in R;. By a bilattice, S, in R1 x R2, we mean a set of pairs, (P, Q) with P € Pg,,
Q € Pg,, which contains (0, 1), (1,0), is closed under the operations (\/, A) and (A, V) (i-e.
if (Plle) € S and (PQ,QQ) € S then (P1 VPQ,Ql /\Qg) € S and (P1 /\PQ,Ql VQQ) € S),
is decreasing (i.e. (P,Q) € S implies (P',Q’) € S for any P’ € Pgr,, Q' € Pgr, such that
P' < P,Q"<Q), and is closed in the strong operator topology.

The space B(Hi, H2) is a left B(Hz)-module and a right B(H;)-module and so we can
consider it as 2y x As-bimodule for any subalgebras 2; C B(H;). We shall also refer to
A4 x Ay-subbimodule of B(Hy, H) as 2 x As-bimodule or just bimodule when no confusion
can arise.

Given a subset U C B(H;, H,), we can define a bilattice

bilg, =, U = {(P,Q) € Pr, x Pr, | QTP =0, for any T € U}.
Conversely, each bilattice S C Ry x R determines an R} x Rb-bimodule by
EU((S) = {T (S B(Hl,Hz) | bﬂRh'R,zT D) S},

R} being the commutant of R;. Then bilg, =,(M(S)) D S and M(bilg, z,U) D U.
A bilattice S C R1 X R is called reflexive if

S = bll R17R29ﬁ(S),



or, equivalently, if S = bil g, %,U for some U C B(H;, Hy). Strictly speaking, we have to
use the term R; x Ra-reflexive. Dependence of the notion on R; X R is not very strong.
Indeed, let Bil U denote bil p(g,) B(m,)U- Then it is easy to see that

bil 7, 7aM(S) = Ry x Ry N Bil M(S)

for any bilattice S C R1 X Rz, and, conversely, Bil 9(S) consists of all pairs majorized by
elements of S.

In the remainder of the section S stands for commutative bilattice, i.e. S C Dy x Da,
where D; and D, are maximal commutative selfadjoint algebras on H; and Hj respectively.
In this case we shall write simply bil U instead of bilp, p,U for U C B(H;, Hy).

Theorem 3.1. Let S be a commutative bilattice in Dy x Dy. Then bil 9MM(S) = S. Moreover,
if M is an ultraweakly closed Dy x Ds-bimodule such that bil M = S then M C M(S).

Proof. The second statement follows directly from the definition of 9(S). The first one
can be reduced, by a 2 x 2-matrix trick, to Arveson’s theorem on reflexivity of commutative
subspace lattices, [A] (for a coordinate-free proof see [Da] or [Shl]). Indeed, consider the
p 0
0 1—¢
that £ is a commutative lattice and is closed in the strong operator topology. Therefore,
L is reflexive, i.e., lat alg £ = L. Since S contains all pairs (p,0), (0,q9), p € Pp,, ¢ € Pp,
and Dp, Dy are maximal commutative selfadjoint algebras, one can easily check that if
T = (Tij)%,jzl € B(H1 @HQ) belongs to alg L then T1o = 0,711 € Dy and Ty € Ds. Simple
arguments give us also T»; € M(S) and

set, £, of all projections € Pp(m,oH,), Where (p,q) € S. We see at once

alg L =A{T = (T;;)} j=1 € B(H1 & Hy) | Ti1 € D1, Tz € D3, To1 € M(S),T1» = 0}.

Therefore, if ¢2(S)p = 0 for some p € Dy, g € Dy then p® (1 —q) € lat alg £L = L, i.e.
(p,q) € S. This yields bil 9(S) C S. The reverse inclusion is obvious. O

The above theorem shows that 9t(S) is the largest ultraweakly closed bimodule such
that bil M(S) = S. Now we are going to define the smallest one.

Given a state ¢ on B(ly), consider a slice operator L, : B(lo® H1,lo® Ha) — B(Hq, Ha)}
defined by L,(A® B) = ¢(A)B. Let Conv S denote the weakly closed (or uniformly closed,
see Lemma, 3.1) convex hull of S and let R; = B(l2)®D1, Ry = B(l2)®D-, the von Neumann
algebras generated by elementary tensors A ® B, A € B(l,), B € D;. Set

Fs={(4,B) € Ry x Ry | (Ly(A), L,(B)) € Conv S}

S‘:{(P,Q) EPRI XPRz | (PaQ) EFS}
and define

Mo(S) = {X € B(H,,H,) | 1® X € M(S)},
where 1 is the identity operator on l5. Here and subsequently we mean bilg, z,1®U for the
chosen above von Neumann algebras R, and R» when we write bil 1®U for U C B(H;, H2).
Clearly, like U(S), the space My (S) is a Dy X D2-bimodule. Moreover, both bimodules are
ultraweakly closed.



Lemma 3.1. Let S be a commutative bilattice in D1 X Dy. Then

conv S =conv S ={(4,B)eD; xD, |0<A<1,0<B<1,
(Ea(lo, 1]), Es([8,1])) € S,a + 5 > 1}.

where “u” and “w” indicate the “uniform” and the “weak operator topology” closure of the
convez hull, conv S, of S and Ex () is the spectral projection measure of selfadjoint operator
X.

n

- 1 j
Proof. Let D denote the set to the right. To see that D C conv S, set A, = E EEA([%’ 1]),
i=1

n
1
= Z EEB [— 1]) for (A, B) € D. Clearly, A,, — A and B,, —» B uniformly as n — co.
i=1

Then, since (EA([E., 1]),EB(["_T”1, 1)) € S and
(v Bo) = 3 D (Bl 1, a5, 1)

we have (A,, B,) € conv S and therefore (A, B) € conv S .
Next claim is that D is convex. In fact, for (41, B1), (A2, B2) € D, we have

E(A1+A2)/2 Q, 1] \/EA1 [€n7 )EAz([ _Enal])a

E(Bl+B2 )/2 /Ba \/EB1 [6m7 )EBQ([QIG Ems ])a

where a, 8 € [0,1), {e,} is a countable dense subset of [0, 1]. Fix a, 8 such that a + 3 > 1.
Then for n, m € Z*, we have either ¢, + €, > 1 which gives (E4, ([en,1]), EB, ([em,1])) € S
and therefore (E4, ([en,1])Ea,([2a — €n,1]), EB, [em, 1])EB,([28 — €m,1,1])) € S, or (2a —
En) + (26 - Em) > 1 which implies (EA1([€TL7 1])EA2([201 —€n, 1]))7E31([5m7 1])EB2([25 -
Em,1])) € S. Since S is a bilattice,

(Biai+42)/2([0,1]), E(B,4-B2)2([8,1])) € S

Next step is to prove that D is weakly closed. Since it is convex it is enough to prove
that it is strongly closed. Let {(A,, Bn)} C D be a sequence strongly converging to (4, B) €
D1 x Dy. Then, for any € > 0 and «a, 8 < 1, we have

Ea([o,1]) < s. nh_)rréo E4, (Ja+¢,1]) and Eg([8,1)) < s. nh_)rréo Ep, ([8+¢,1))

(the strong limit). Since (Ea,([a+¢,1]),Ep, ([8+¢,1]) € Sif a+ > 1 and S is decreasing

and closed in the strong operator topology, we obtain (E4([a, 1]), Eg([8,1]) € S. If one of «,

B equals 1, then that (E4([a, 1]), Ep([8,1]) € S follows from E4({1}) = s. liII(l) Es([1—e,1]),
e—

Ep({1}) = s. 1in(1) Ep([1 —¢,1]). So we can conclude that (A, B) € D.
e—

We have therefore

ScDcCconvS"CconvS”,

. . u w
and, since D is convex and weakly closed, D = conv S =conv S . O



Definition 3.1. We say that o bilattice, S, is synthetic if there exists only one ultraweakly
closed bimodule whose bilattice is S.

Theorem 3.2. Let S C D1 x Dy be a commutative bilattice and~let M be an ultraweakly
closed Dy x Dy-bimodule such that bil M C S. Then bil 1M C S.

Proof. Let (P,Q) € bil1 ® M. Fix £ € ls, ||£|| = 1. Consider the corresponding state
e (A) = (AE,€) and denote the corresponding operator Ly, simply by Lg. It is sufficient
to show that (L¢(P), Le(Q)) € Conv S. By definition of L¢, we have (L¢(K)z,z) = (K({®
x),£®x) for any operator K on I, ® H and, in particular, if K = P (a selfadjoint projection)
then (L¢(P)z,z) = ||P(€ ® z)||?. Therefore, for A € 9 the following holds

(AL¢(P)A*z,z) = (L¢(P)A*z, A*z) = ||[P(¢§ ® A*7)|]* =
IPAL®A)Q-(E®a)|? < [JAIPIQH (¢ @ 2)|* = [|A|*(Le (@)=, ).

We obtain now the inequality AL¢(P)A* < ||A]|?L¢(Q*). Let L¢(P) = K2, Le(Q+) = L2,
where K, L > 0. Then ||KA*z|| < ||A]|||Lz|| for any A € 9 and z € H or, equivalently,
[|KA*L7!|| < ||A]|- Since M is a bimodule, K A*L~! € 9*. Writing now K A*L~! instead
of A* we get ||[K2A*L72|| < ||[KA*L7'|| < ||A||- Proceeding in this fashion we obtain
[|[K"A*L~"|| < ||A|| and hence

| A%]| < |[A[[[|L"2]|, =€ H. 3)

Fix z € E([0,¢]), where EL(-) is the spectral projection measure of L. Then ||L"z|| < Ce™
and, by (3), we obtain A*z € Ek([0,¢]). Thus M*EL([0,e]) C Ex([0,€]) or, equivalently,
Ex (e, 1))M*EL([0,e]) = 0 if &' > e. This implies Eg2([¢', 1))IM*Ei_12([1 — ¢,1]) = 0, as
e > e, ie.

Er@ (e, 1)MEL (P ([8,1]) =0, a+B>1.
Since (Er(q)([a,1]), EL.p)([8,1])) € bil M C S as a + B > 1, by Theorem 3.1, we obtain
(Le(Q), Le(P)) € Conv S for any & € H. O

Corollary 3.1. Let S C D1 x Dy be a commutative bilattice and let IR be an ultraweakly
closed D1 x Ds-bimodule such that bil MM C S. Then My (S) C M.

Proof. Let T € 9My(S). To see that T € M we choose an ultraweakly continuous linear
functional ¢ such that () = 0. Then there exist F € I ® H;, G € I, ® Hy such
that ¢(A) = (1 ® A)F,G), A € B(H;y, Hy), moreover, (1 ® M)F L G. Denoting by Pr
and Pg the projections on [(1® D1)F] and [(1 ® D3)G] we have Pg(1 @ M)Pr = 0, i.e.
(Pr,Pg) € bil 1 @ M. Tt follows now from the definition of 9My(S) and Theorem 3.2 that
(Pr,Pg) €bil 1@M € S C bil 1 ® T and therefore Pg(1® T)Pr = 0, i.e. o(T) = 0. From
the arbitrariness of ¢ we obtain T' € 1. O

Summarising we have the following statement.

Theorem 3.3. Let S C D1 X Dy be a commutative bilattice. If M is an ultraweakly closed
Dy x Dy-bimodule such that bil MM = S then MNM(S) C M C M(S).

Theorem 3.4. Given a bilattice S C D1 X D, bil My(S) = S.

Theorem 3.3 and 3.4 state that 9% (S) is the smallest ultraweakly closed D; x Ds-
bimodule whose bilattice is S and that a commutative bilattice S is synthetic if and only if
W(S) = Wi (5).

We shall prove Theorem 3.4 in Section 5 after treating the case of bilattices on separable
Hilbert spaces.



4  Separably acting bilattices

If Hilbert spaces H; and H, are separable then there exist finite separable measure spaces
(X, p) and (Y,v) with standard measures p, v, such that H; = L2(X, u), Hy = Lo(Y,v)
and the multiplication algebras D; and Ds are Lo (X, 1) and L (Y, v) respectively. Denote
by Py and Qv the multiplication operators by the characteristic functions of V' C X and
UcCY. Given EC X xY, we define Sg to be the set of all pairs of projections (Py, Qv ),
where VC X, UCY and (V xU)NE 0.

Theorem 4.1. Sg is a bilattice.

Proof. We shall prove only the closedness of Sg, because other conditions trivially hold.
Let (P,,Qn) € Sg, P, = P, @, — @ in the strong operator topology. Then there exist
A C X, B CY such that P = P4, Q = @p. Changing, if necessarily, P, to P,P, @, to
QnQ, we may assume that P, < P and @, < Q. We have therefore P, = Pa,, Qn = @B,
for some A, C X, B,, CY such that (4, x B,)NE = and p(A\ 4,)) = 0, v(B\ B,) — 0.
Given € > 0, k € N, choose ny such that p(A4\ Ay,) < ;—k and v(B\ By,) < ;—k Set

A =M Ay, Be=Upl By,

Then pu(A\ A;) <&, v(B\ B;) =0and (A. x B.) N E = (). Taking now Ag = U2, A1/,
and By = N2, By /,, we obtain u(A\ Ag) =0, v(B\ By) =0, (4g x Bo) N E = () so that
(P,Q) = (PAOJQBO) € Sg.

O

Theorem 4.2. Let S C D1 xDs be a bilattice. Then there exists a unique, up to a marginally
null set, pseudo-closed set E C X XY such that S = Sg.

Proof. Let {(P,,Qn)} be a strongly dense sequence in the bilattice S, and let 4, C X,
B,, CY be such that P, = P4, and Q, = Q@p,- Theset E= (X xY)\ (Us2; A, X By) is
clearly pseudo-closed. We will show that S = Sg.

Since Sg is closed in the strong operator topology, we have the inclusion S C Sg. For
the reverse inclusion, we first show that if a rectangular, A x B, lies in the union of a
finite number of rectangulars, say Cy x Dy, (1 < k < n), such that (P¢,,@p,) € S, then
(Pa,QB) € S. We use the induction by n (the case n = 1 being obvious from the decreasing
condition on S). If A x B C U_;C}y x Dy, then (A\ C1) x B C U}_,(Ck x Dy,) and so,
by the induction hypothesis, we have that (Pa\¢,,®@B) € S. Similarly, (Pa,Qp\p,) € S.
Therefore, (Panc,,@pB\p,) € S, which together with (Pc,, Pp,) € S gives us (Panc,, PB) €
S, S being closed under the operation (\/, \). Using now closeness under the operation
(A, V), we obtain (P4,QpB) € S.

Let now (P,Q) = (Pa,®@B) € Sg. Deleting null sets from A, B we may assume that
Ax B CUX, A, x By,. Then, by [ErKS]|[Lemma 3.4,d], given € > 0, there exist A, C A,
B. C B with u(A\ A;) <e, v(B\ B:) < € such that A x B is contained in the union of
a finite number of sets {4, x B,}. By the statement we have just proved, (P4,,@B.) € S,
and, since P4, = P, Qp, = Q strongly, as e = 0, we have (P, Q) € S. This proves S = Sg.

To see the uniqueness, let E; be a pseudo-closed set such that Sg, = Sg. Then
(Pa,QB) € Sg for any A x B € Ef and therefore A x B C E° up to a marginally null
set. As EY is pseudo-open, we have Ef C E€ up to a marginally null set. Similarly, we have
the reverse inclusion and therefore Ef = E€ and Ey = E. O



We say that T' € B(H;, H») is supportedin E C X xY if bil T D Sg, i.e., if PuTQy =0
for each sets U CY, V C X such that (U x V)N F 2 (. Clearly,

M(Sg) = {T € B(H1,H,) | T is supported in E}.

For any subset U C B(Hi, H») there exists the smallest (up to a marginally null set )
pseudo-closed set, supp U, which supports any operator T € U, namely, supp U is the
pseudo-closed set E such that bil U = Sg. The support of an operator T € B(H;, Hs)
will be denoted by supp 7. We will use also the notations M., (E) and M, (E) for the
bimodules M(Sg) and My(Sg). Theorem 3.3 says now that

Mmin(E) CIMC My (E)

if supp MM = E. Clearly, supp M4z (E) = E and therefore M, q, (E) is the largest ultra-
weakly closed bimodules whose support is E. By proving now that supp M,in(E) = E we
would also have that 90,,,;,,(E) is the smallest ultraweakly closed bimodules whose support
is E, justifying the notations.

Let ¥ be a subspace of I'(X,Y"). Using the duality of B(H1, Hs) and I'(X,Y") we denote
by ¥ the subspace of all operators T € B(Hy, H») such that (T, F) = 0 for any F € ¥.
Clearly, if ¥ is invariant then ¥~ is an (D;, Ds)-bimodule.

Theorem 4.3. Let E C X XY be a pseudo-closed set. Then
B (E)t = Mpnas(E).

Proof. We begin by showing the inclusion M4, (E) C ®0(E)*. Let A € Mypar(E), F €
®y(K). By [ErKS][Lemma 3.4], E is e-compact, so that, for any £ > 0, there exist X, C X,
Y. CY with p(X,) <e, v(¥:) < € such that

Fe(z,y) = F(x,y)xx: () xve(y)

vanishes on an open-closed neighbourhood of E (= the union of a finite number of rectan-
gulars). Clearly, F. — F as e — 0. It remains to show that (A, F.) = 0. Choose measurable
sets {X;};, {¥i}}L, in a way that

X=UL X;, Y=UlLY; and null F. DU esX; xY; D E

for some index set J. If (i,j) € J then (Py,AQx,, F.) = (A, Foxx;xv;) = 0. If (i,5) ¢ J
then Py, AQx; = 0 since supp A C E. Therefore, (Py, AQx;, F.) = 0 for any pair (i, j) and
hence (4, F.) = 0.

Let A be an operator in B(Hq, Hs) such that (4, F) = 0 for any F € ®,(FE). Consider
V CX,UCY such that (V xU)NE =0 (m.a.e.). Then F(z,y)xv(z)xv(y) € ®o(E) for
any F e T'(X,Y) and (PyAQv,F) = (A, F - xyxu) = 0, which implies Py AQv = 0. O

Let D denote the set of positive functions in D;. Operators A € B(l>)®D; and B €
B(l2)®Ds can be identified with operator-valued functions A(z) : X — B(ly) and B(y) :
Y — B(ly). If A, B are projections then A(z), B(y) are projection-valued functions. We
say that a pair of projections (P, Q) € (B(l2)®D1) x (B(l2)®D-) is an E-pair if P(z)Q(y)
vanishes on E. If, additionally, P and @ take only finitely many values then the pair (P, Q)
is said to be a simple E-pair.



Lemma 4.1. Let E be a pseudo-closed subset of X x Y. Then
conv Sg = {(a(x),b(y)) € D} x D :a(z) +b(y) <1, m.a.e on E},

Fs, = {(A,B) € (B(I2)®@D1)" x (B(l2)®D2)" | A(z) + B(y) < 1, m.a.e on E},

and
Sp={(P,Q) | (P,Q) is an E-pair}.

Proof. The first statement follows easily from Lemma 3.1. To see the second equality
take £ € Iy and (A4, B) € Fs,, identifying the operators with the corresponding operator-
valued functions. Set now a(x) = (A(z),€) and b(y) = (B(y)&,€). It is easy to see that
(Le(A) f)(x) = a(z) f(x) and (L¢(B)g)(y) = b(y)g(y)- By the definition of Fs, and the first
statement, we have (A(z) + B(y)€,£) = (A(2), ) + (B(y)€,§) = a(z) +b(y) <1 (m.ae.) on
E and therefore A(z) + B(y) <1 (m.a.e.) on E. If, additionally, A and B are projections,
the inequality gives A(z)B(y) = 0 (m.a.e.) on E, completing the proof. O

Theorem 4.4. Let E C X XY be a pseudo-closed set. Then
®(E)t = Mumin(E).

Proof. Let (P,Q) € Sg and let #(z) = P(2)¢ and §(y) = Q(y)n for some &, n € l,. By
Lemma 4.1, (P(z),Q(y)) is an E-pair which implies (Z(z),%(y)) = 0 m.a.e. on E. Clearly,
the function F': (z,y) — (£(x),7(y)) belongs to I'(X,Y") and therefore F' € ®(E). For any
T € B(H,, Hs) we have (T, F) = (1®T)Z,#) and if T € ®(E)* we obtain (127T)Z,7) =0
and Q(1QT)P =0,ie. T € Mpin(E).

To see the converse we observe that any function F' € ®(E) can be written as (Z(x), 7(v)),
where Z(z), §(y) € l2 and F(z) L §(y) if (z,y) € E m.a.e. Denoting by P(z) and Q(y) the
projections onto one-dimensional spaces generated by Z(z) and ¢(y) yields P(z)Q(y) =0
m.a.e. on E and (P,Q) € Sg. For any T € Mpnin(E) we have

(T, F) = (1@ T)Z(x),§(y)) = (Q(L ® T)PZ(z),§(y)) = 0.
This implies T' € ®(E). O

Corollary 4.1.
bil M,in (E) = Sg.

Proof. Tt suffices to show that QuIM,in(E)Py = 0 with measurable U C Y, V C X implies
that (V x U) N E is marginally null. In fact, this would imply Sg D bil M,,;,(E) which
together with Sg = bil M., (E) C bil M,,.; (E) gives us the statement, the last inclusion
being true since Min (E) C Mpae (E).

Assume that Eg = (V x U) N E is not marginally null. Then ®(Ey) does not contain
Xxv xu and therefore does not equal to I'(V, U). Since ®(Ey) is closed in I'(V, U), there exists
an operator Ag € B(Py H1,QuH>) such that 0 # Ag L ®(Fy). Extend Ag to an operator
Ae B(H17H2) so that QUAPV|L2(V) = A() and A = QUAPV- Then A L ‘I’(E) and, by
Theorem 4.4, A € Min(E). Since QuAPy # 0, we obtain a contradiction. O

Corollary 4.2. Let M C B(Hy, Hs) be an ultraweakly closed bimodule, E be a pseudo-closed
set. Then supp M = E iff
9Jtmzn(E) g m g 9Jtma.:c(-E)-
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Proof. Tt follows from Theorem 3.1, Corollory 3.1,4.1 and the fact that bil 9t = Sg if and
only if supp 9 = E. O

Proof of Theorem 2.1. Let E = supp A+. By Corollary 4.2
Minin (E) €AY C Minaa(E)
and therefore, by Theorem 4.3, 4.4,
$o(E) CACO(E)

which also implies null A = E. O
The next corollary is an analogue of Wiener’s Tauberian Theorem.

Corollary 4.3. If ¥ C T'(X,Y) and null ¥ = () then U is dense in T'(X,Y).
Proof. Follows from Theorem 2.1, since ®¢(f) =T'(X,Y). O
Corollary 4.4.

bil 1 ® Mmin(E) = Sp = {(P,Q) : (P,Q) is an E-pair },

Proof. By Corollary 4.1, bil M,,;»(E) = Sg which together with Theorem 3.2 imply bil 1®
M,in(E) C Sg. On the other hand, bil 1 ® M,,,;,(E) D Sk by the definition of M, (E).
The second equality is proved in Lemma 4.1. O

Remark 4.1. For sets that are graphs of preoders (that is for lattices) the result was, in
fact, proved in [A][Cor.1 of Theorem 2.1.5].

Theorem 4.5. Let E be a pseudo-closed set. Then

bil 1 ® Mpaz(E) = {(P,Q) : (P,Q) is a simple E pair } ,

Uy n
S

where indicates the strong operator topology closure.

Proof. Consider the commutative lattice, £, of all projections ( 0 1—gq ) € Pp(H,0H:)>
where (p,q) € Sg. By [Shl],

PB(IQ) ® L =lat (1 & alg ,C), (4)

where the tensor product on the left hand side denotes the smallest (strongly closed) lattice
containing the elementary tensors A® B, A € Pp(,), B € L. Moreover, it is shown in [Sh1]
that

lat (1®alg £) = lirrln PB(lz) ® Ly,

where {£,} is a sequence of finite sublattices of £. It is easy to check that for a finite
sublattice £, C £, Pp,) ® Ln C{P & (1 - Q) : (P,Q) is a simple E-pair}, whence

P,y @ L={P® (1-Q): (P,Q) is a simple E-pair} .

Since

alg L =A{T = (T;;); j=1 € B(H1 & Hy) | T11 € D1, Taz € D3, To1 € Mpnaa(E), Ti2 = 0}
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(see the proof of Theorem 3.1), one can easily check that ( 103 1 i) ) ) € PB(lo@H,@ls®Hs)»

where (P,Q) € bil (1 ® Maz(F)), belongs to lat (1 ® alg £). By (4) we have bil 1 ®
Momaz(E) C {(P,Q) : (P,Q) is a simple E pair } . The reverse inclusion is obvious. O

In the following theorem we list several possible definitions of a set of operator synthesis.

Theorem 4.6. Let E C X XY be a pseudo-closed set. Then the following are equivalent:

(i) E is a set of synthesis;

(11) Mimin(E) = Mmaz (EF);

(#91) (T, F) =0 for any T € B(Hy,Hs) and F € T'(X,Y), supp T C E C null F;

(1v) any E-pair can be s-approximated in the strong operator topology of B(lo ® Hy) X
B(l, ® Hs) by simple E-pairs;

(v) any E-pair can be approzimated by simple E-pairs almost everywhere in the strong
operator topology of B(ls).

Proof. (i) < (i1): obviously follows from the definition and Theorems 4.3,4.4.

(i4) = (44i): if T € Mymin(F) then, by Theorem 4.4, (T, F) = 0 for any F € TI'(X,Y),
such that E C null F, which shows the implication.

(1i1) = (i1): Let T € Muaz(E). Then supp T C E and, therefore, (T, F) = 0 for
any F' € ®(E). By Theorem 4.4, T € IM,,;n(E), which gives us the necessary inclusion
gjtmaw (E) C gﬁmzn(E)

(#7) = (iv): if Mpmin(E) = Mmaz (E) then bil 1 @ Myin(E) = bil 1 ® My (E) and by
Corollary 4.4 and Theorem 4.5 we obtain that any E-pair can be s-approximated by simple
E-pairs.

(iv) & (v). We prove that the approximation of operator-valued functions in the strong
operator topology in B(lo ® La(X, i) is equivalent to the approximation almost everywhere
in the strong operator topology in B(lz). In fact, let P,(z), P(x) € B(lo ® Ly(X, u)),
P,(xz) — P(z) almost everywhere on (X, ) in the strong operator topology in B(ls) and
take p = Z,Icvzl ex(z)Ek, where £4(-) is the characteristic function of a set of finite measure
and &, € ly. It easily follows from the Lebesgue theorem that || P, — Py|| = 0 as n — co.
Since the measure y is sigma-finite, the set of all such ¢ is dense in Iy ® Ly(X, u). Therefore
[|Pn — Pp|| = 0, n — oo, for any ¢ € Iy ® La(X, ).

If now a sequence, {P,}, of projection-valued functions converges to P in the strong
operator topology in B(ls ® Lo(X, u)), then there exists a subsequence converging almost
everywhere on (X, u) in the strong operator topology in B(l3). To see this choose a dense
set of vectors, {52}, in l3. Then

/A 1P ()6 — P(@)6]|dpu(z) = 0, 1 oo

for each k and each measurable set A of finite measure. Let 4; C A, C ... C A4, C ...
be a sequence of sets of finite measure such that X = Uj2;4;. By the Riesz theorem

there exists a subsequence { Py }52; such that limy_, o, Pkl(a:)g-{ = P(a:)f-{ a.e.on A;. Then

choose a subsequence {Pp2}32 , of {Pr1}72, such that limy_,o Pkg(x)é = P(m){{ a.e. on
As. Proceeding in this fashion we obtain a series of sequences

{Pn}zozl D {Pkl}l?;l D {sz}gozl D...D {ij}zozl D,

such that limy_,o Pyj(2)& = P(2)& almost everywhere on A;.
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Consider now the diagonal sequence {Pp;}52,. Clearly limy_, o Pkk(x)f_{ = P(:c)f_i a.e.
on each A; and therefore on X. Set P! = Py, 1 =1,2,.... Using the same arguments we

can find a subsequence, { P2}, of {P''}22, such that lim;_,., P'>(x)& = P(z)&; a.e. on
X and then {P*}%, of {P1}°, such that lim;_ e P ()&, = P(x)&, a.e. on X for any
m < k so that lim;_,o, P%(z)& = P(z)& a.e. on X for any k. Since {{;;} is dense in I, and
the sequence { P} is bounded,

lim P%(z)€ = P(z)€ a.e. on X for any £ € I,.

[—00

(iv) = (i4): if T € Mypqaq(E), we have bil 10T D {(P,Q) : (P, Q) is a simple E pair 1,
due to Theorem 4.5; (4v) implies now bil 1 ® T' O Sg and hence T € Mpin(E). O

Remark 4.2. The equivalence (i) < (4i7) was essentially proved in [A] and (i) < (i4) in
[Da] but using some other methods.

We use the equivalence (i) < (v) to obtain the following result.

Theorem 4.7 (Inverse Image Theorem). Let (X,pu), (Y,v), (X1,m) and (Y1,v1) be
standard Borel spaces with measures, p : X — X3, ¢ : Y — Y7 Borel mappings. Suppose
that the measures Q. i, Vv are absolutely continuous with respect to the measures p1 and
vy respectively. If a Borel set Ey C X1 x Y] is a set of py x vi-synthesis then (¢ x )71 (FEy)
is a set of X v synthesis.

Proof. To prove the theorem we will need to prove first an auxiliary lemma.

Lemma 4.2. Let (X,pu), (Y,v) be standard Borel spaces with measures and f : X — Y
be a Borel map. Then there exists a v-measurable set N C f(X), v(N) = 0, such that
F(X)\ N is Borel and if u : X — R is a bounded Borel function then for any ¢ > 0 there
exists a Borel map g : f(X)\ N — X such that f(g(y)) =y for everyy € f(X)\ N and
u(g(f(z))) > u(z) —€ a.e. on X.

Proof. Assume first that the map f: X — Y is surjective. For any such map there exists a
Borel section, i.e., a map g : Y — X which satisfies f(g(y)) =y, y € Y (see, for example,
[Ta]). Since u : X — R is bounded, u(X) C [a,b]. Let a = ag < a1 < ... < a, = b be a
partition of [a,b] such that a;4+1 —a; < e. Set

Xj =" (laj,a5+1)), ¥j = F(X), Y] = ¥j \ (Ur>;Ya)-

Then each Y] is the image of X} = X \ (Ugs; F71(Y%)). We have also that uY; =Y,
Y/ NY; =0,i# j, and since every Y; is an analytic space, we obtain that Y} must be
Borel (see, for example, [Ta, Theorem A.3]). Let g; : ¥/ — X} be a Borel section for
fl x;- Then the functions g; determine a Borel section, g, for f. Clearly, 9(Y;) C Ui>; X;
so that u(g(y)) > a; for each y € Y; and therefore u(g(f(x))) > a; for any z € X;. As
u(z) € [aj,a;41) for € X;, we obtain u(g(f(x))) > u(z) —¢ for each z; € X; and therefore
for each z € X.

For the general case consider the image f(X) which is an analytic subset of Y. By
[Ta, Theorem A.13] there exists a v-measurable set N C f(X) of zero measure such that
f(X)\ N is Borel. Set X = f~'(f(X)\ N). Then f is a Borel map from the Borel set X
onto f(X)\ N. Thus, given € > 0, there exists a Borel map g : f(X)\ N — X such that
f(g(y)) =y for every y € f(X)\ N and u(g(f(x))) > u(x) —e on X. Since X \ X C f~1(N),
we have that p(X \ X) = 0 and the inequality holds almost everywhere on X. O
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Set E = (¢ x 9)"1(E}). By Theorem 4.6, we shall have established the theorem if we
prove that any E-pair can be approximated a.e. in the strong operator topology of B(ly) by
simple E-pairs. Since, by Theorem 4.5, the approximated pairs form a bilattice it would be
enough to prove that any F-pair is majorized by an approximated pair.

Let (P,Q)) be an E-pair. Choose a dense sequence &, in Iy and a sequence g, > 0,
en — 0. Set uy(z) = (P(x)&,,&,). By Lemma 4.2, there are null sets N,, C Xy, M,, C X
and a Borel map g, : ¢(X) \ N, = X, such that ¢(gn(z1)) = 21, for z1 € ¢(X) \ N,, and
Un(gn(p(x))) > un(x) — &y, for € X \ M,

For z; € p(X)\ N, where N = US2 | N,,, set

P(z1) = \/ P(gn(21)).

Then for any z € X \ M, where M = U2, M,,, one has

(P(2)én,6n) = un(®) < un(gn(p(x))) +en =
= (P(gn(0(2)))én,&n)) +en < (p(ﬁo(w))frnfn) + €n.
It follows easily that
P(z) < P(p(z)), z€X\M. (5)

Similarly, we construct null sets M’ C' Y, N' C Y1, functions g;, : (V) \ N' — Y and set
Q1) =V, Qg,(y1)) with

Q) <QW(y), yeY\M' (6)

Thus (P, Q) is majorized by (f’ 0, Qo).
It follows easily that (P, Q) is an Ej-pair. Indeed, let (z1,y1) € E1, 21 ¢ N, y1 ¢ N',
then

P(gn(21)) L Qg (y1))

for any n, m. Hence

P(z1) L Q(w1).
It follows that there are simple Ei-pairs (P,,Qn) with P,(z1) — P(z1) ae. (z ¢ S),
@n(y1) = Qy1) ae. (y1 ¢ 5). Let

Po() = Palp(x)),  Qn(y) = Qu(¥(y))-
Then P, (z) = P(p(z)) ae., Qn(y) = Q(¢(y)) ae. Indeed, let 7 = {z : ¢(z) € S}, then

u(r) = p({z : p(x) € §}) = pup(S) =0,

because ¢, u is absolutely continuous with respect to u;. Similarly, v(7') = 0, where 7' =
{y : ¥(y) € S'}. This shows that the pair (P o ¢, () o) is approximable by simple pairs.
The proof is complete. O

Corollary 4.5. Let E C X XY be a set of synthesis with respect to a pair of measures
(1,v1), 1 € M(X), vy € M(Y). Then E is a set of (u,v)-synthesis for any p € M(X),
v e M) such that p < py, v < vy.

Proof. Follows from Theorem 4.7 applied to the identity mappings ¢ and . O
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Suppose that ¢; and 9, i = 1,...,n, are Borel maps of standard Borel spaces (X, u)
and (Y,v) into an ordered standard Borel space (Z, <). Then the set E = {(z,y) | pi(z) <
Yi(y),i =1,...,n} is called a set of width n.

Theorem 4.8. Any set of finite width is synthetic with respect to measures y, v.

Proof. Let E be a set of width n, i.e. E = {(z,y) € X xY | fi(z) < gi(z),i = 1,...,n},
where f; : X — Z, g; : Y — Z are Borel functions. We define mappings F' : X — Z"
and G : Y — Z" by setting F(z) = (f1(z),..., fa(2)), G(y) = (91(y),---,9n(y))- Put
= Fup, 1 = Guv. Let By = {(z,y) € Z" x Z" | z; < y;,0 = 1,...,n}. By [A], By
is a set of p1 x vp-synthesis if the measures p; and v; are equal. In general, consider the
measure A = p; + v, then we can conclude that F; is a set of A x A-synthesis and applying
now Corollary 11 we obtain that E; is a set of synthesis with respect to u;, v1. It follows
now from Theorem 4.7 that (F x G)™!(E;) = E is a set of yu x v-synthesis. O

Remark 4.3. Arveson, [A], introduced the class of finite width lattices as those which
are generated by a finite set of nests (linearly ordered lattices). He proved that all finite
width lattices are synthetic. Todorov, [T], defined a subspace map (see [Er]) of finite width
and proved that such subspace maps are synthetic. This result is in fact equivalent to our,
actually a subspace map is a counterpart of a bilattice. Synthesizeability of special sets of
width two (“nontriangular” sets) was proved in [KT, Sh2].

5 General bilattices

Let ho be the function on [0,1] such that hg(0) = 0 and ho(t) = 1 for t # 0, and let
h1(t) =1—ho(1 —¢). It is clear that for any positive contraction A, hg(A) is the projection
onto the range of A, hi(A) is the projection onto the subspace of invariant vectors. It is

easy to see (for example, approximating hq (t) by t*, @ — 0) that h; are operator monotone,
ie,if A, Be B(H),0< A< B <1, then h;(A) < h;(B).

Lemma 5.1. Let Dy, D> be commutative von Neumann algebras in Hilbert spaces Hy, Ho
and let S be a bilattice in D1 x Dy Then, for any (A,B) € Fs, (ho(A),h1(B)) € Fs and
(h1(A), ho(B)) € Fs.

Proof. If Dy, D> are masas in separable spaces Hy, H,, then the assertion follows from
Lemma 4.1. Indeed, if A(z) + B(y) <1, then

ho(A(z)) < ho(1 = B(y)) = 1 — h1(B(y))

and (ho(A), hy (B)) € Fs. Similarly, (h1 (A), ho (A)) € Fs.

Assume now that D, Dy are arbitrary commutative von Neumann algebras acting on
separable Hilbert spaces. Let x; and x5 be separating vectors for D; and D», and let
K; = [D;z;], i = 1,2. Then the restriction of B(l3)®D; to Iy ® K; is injective. Now, since
the restriction of D; to K; is a masa and the restriction of (A4, B) € Fs to (L@ K;) x (b @ K)
is in the restriction of Fg, the problem is reduced to the above.

Furthermore, the statement is true when D;, D2 are countably generated. To see this it
is enough to prove that if z1,...,z, and y1, ...,y are vectors in I ® H; and [y ® H», then
there exist a pair (C, D) € Fg such that ho(A)z; = Cx; and hy(B)y; = Dy;, i = 1,...,n.
If 2 = (zkj), Y = (Yrj), Th; € H1, yr; € Ho, we define K; and K, to be the closed
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linear spans of vector Xz, X € Dy, and Yy, Y € D,, respectively. Then K; and K, are
separable and we come to the previous.

Now, to prove the assertion in general situation, it is sufficient to show that each D;
contains countably generated von Neumann algebras, D;, such that (A, B) € Fg, where S is

the intersection of S with Dy x Ds. For this take a dense sequence of unit vectors, {&}, in
l. For each pair (Lg, (A), L¢, (B)) there exists a sequence, (A7, BYY), from the convex linear
span, conv S, of S, which converges to the pair uniformly. Let S’ be the set of all pairs of
projections (p,q) € S which participate in the linear combinations for (A}, B). Then Dy
and D, can be defined as von Neumann algebras generated by 71 (S’) and m5(S"), 7; being
the projection onto the i-th coordinate. O

Lemma 5.2. S is a billatice.

Proof. Let (P,Q) € S and Pi € Pp,ep,» @1 € Pryeps Pr < P, Q1 < Q. Then
L,(P) < Ly(P), Ly(Q1) < L,(Q) for each state ¢ on B(lz) so that

Ep, p)(la,1]) < Ep,p)([a,1]) and E_(q,)([b,1]) < EL, ) ([b;1])

for any 0 < a,b < 1. Applying now Lemma 3.1 we obtain (P1,Q1) € S.
That S is closed under the operations (\/, A), (A, V) follows from

(P P2, @1 \ Q2) = (ho((P1 + P2)/2), ha((Q1 + Q2)/2),
(PL A\ P2, @1\ Q2) = (1 ((Py + P2)/2), ho((Q1 + Q2)/2)

and the previous lemma. O

Our next goal is to show that S is reflexive. We will deduce this from a general criteria
of reflexivity. To formulate it we need some definitions and notations.

Let S be a bilattice in R x R, where R is a von Neumann algebra on a Hilbert space
H, and let M be a von Neumann algebra on H. Denote by I(M) the semigroup of all
isometries in M. We say that S is M-invariant if

e S contains all pairs (P,1 — P), P € Pp.

e If U € I(M) then a pair (P,Q) € R x R belongs to S if and only if (UPU*,UQU*)
belongs to S.

For any bilattice S we set
Qs ={(z,y) € Hx H|3(P,Q) € S with Pz =z,Qy =y}.

If S is clear we write 2 instead of Qg. A bilattice S is called stable if 2g is norm-closed in
HoH.

Theorem 5.1. Any bilattice in R xR which is stable and invariant with respect to a properly
infinite von Neumann algebra is reflezive.

Proof. Suppose that S is stable and M-invariant, where M is properly infinite. Note first
that 9M(S) € M'. Indeed, if T € Mg then (1 — P)TP = 0 for any P € Py, and similarly
PT(1—P), hence TP = PT and T € M’, because Ppq generates M. For (z,y) € H x H,
we denote by v, , the restriction of the vector state w , to M'.

16



Claim 1. Let U € I(M). If (U*z,y) € Q then (z,Uy) € Q.
Indeed, let (P,Q) € S such that PU*x = U*z, Qy = y. Consider P, = UPU*,
@1 =UQU*. Then Pix =UU*z, Q1Uy = Uy and thus Uy € Q1H NUU*H. Set

P, =P \/(1-UU"), Q=@ \UU".

Then P,H contains UU*z and (1 — UU*)z, hence P,H contains z, i.e. Poxz = z. On the
other hand Q2 H contains Uy. So Q2Uy = Uy. Clearly, (P2, Q2) € S and we get (z,Uy) € Q.

Now we prove the converse statement.

Claim 2. If (z,Uy) € Q, U € I(M) then (U*z,y) € Q.
Indeed, let (P,Q) € S, Px =z, QUy = Uy. Set

P =P\/(1-UU*),Q:=Q \UU".

Then Pix =z, Q1Uy = Uy, P, > 1—-UU*, Q; < UU*. It follows that P;, (J; commute
with UU*. Hence P> = U*P,U and Q2 = U*Q1U are projections. To see that (P, Q2) € S
note that (URU*,UQ.U*) = (UU*P,,UU*Q,) € S, since UU*P, < P, UU*Q1 < Q1. It
remains to show that P2U*z = U*z and 2y = y. Indeed,

PU*x = U*P,UU*z = U*UU*Pyz = U*UU*z = U*z,
Qu=U"QUy=U"Uy=y.

Our claim is proved.

Claim 3. If (z,y) € Q, vy y = vy, then (z,2) € Q.

To show this set ¢t = y — z. Then v, = 0, M'z L M'¢t. Defining R to be the projection
onto M'z we have R € M, Rz =z and (1 — R)t = t.

Let now (P,Q) € S, Px =z, Qy = y. Set P, = PAR, Q1 = Q\V(1 — R). Then
(P1,Q1) €S, Plz =2, Q12=Q1(y —t) =y —t = 2. We proved that (z,2) € Q.

Since M is properly infinite there are Uy, Uy € I(M) with U1 H 1 Uy H. We fix such a
pair of isometries.

Claim 4. If (z1,y1) € Q and vy, y, = Ugy,y, then (22,y2) € Q.
Indeed, set z = Uyzy + Usza. Then 21 = Ufz. Hence (Ufz,y1) € Q. By Claim 1,
(z,Ury1) € Q. Since

Vz,Ury1 = VUrz,y1 = V21,91 = Vza,y2 = Vz,Uzyzs
we obtain from Claim 3 that (x,Usy2) € Q. Now by Claim 2, (Usz,y2) € Q, that is
(z2,y2) € Q. The claim is proved.

Set now
W ={vzy | (z,y) € Q}.

Claim 5. W is a linear subspace in the space (M'), of all o-weakly continuous func-
tionals on M.
Indeed,

Uzy,y1 T Vzoyys = Uz, Ui y1 + Vg, Usys = Vz,y>
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where z = Uyx; + Uszo. We know from the preceding claim that (x,Usy:) and (z, Usy-2)
belong to Q. Let (P1,Q1) € S, (P2,Q2) € S such that
Pz =z, QiUiyr = Ulyr, Pz ==, Q2Usy2 = Uzya.

Then setting P = Py A P2, Q@ = Q1\/ Q2 we have Pz = z, Qy = y. Thus (z,y) € Q and
W+WcCW.

Claim 6. W is norm-closed.

Let ¢, = @, on € W. Since ¢ is o-weakly continuous and M’ has a separating vector,
@ = vg,y for some x € H, y € H. Since M’ has the properly infinite commutant, there
are Tn, Yo € H such that ¢, = vz, 4., ||Tn — || = 0, ||lyn — y|| = 0 ([Sh1]). By Claim 4,
(Zn,yn) € Q. Since S is stable, (z,y) € Q and ¢ € W. We proved that W is norm-closed.

Recall that M’ is the dual of (M'),. So for A C M', B C M we write
Al ={pe M| ACkerp}, Br={T e M|pT)=0,Yyc B}.

By the usual duality argument, (B1), coincides with the norm closure of B, for any linear
subspace B C (M')..

Claim 7. W = (9M(5)) ..
Indeed, suppose that T € W+. Then for any (P,Q) € S, QTP = 0, because
Thus W+ = 9Ms and, by duality, W = 9(S),, since W is closed.

Now we can finish the proof of the theorem.

If (Py,Qo) € bil M(S) then wpyz,Qoy(T) = 0 for any T € M(S). Hence wpyz,goy €
9M(S). = W. On the other hand, for any z € RyH, y € QoH there are (P, ,,Q.,,) € S
withz € Py yH,y € Qg yH. Set

Pz = /\ Pz,y: Qw = \/ Qw,y-
YEQoH yeEQoH
Then z € P,H, QoH C Q,H. Let
P= \/ Pa:: Q = /\ Qwa
z€EPyH zEPyH

then (P,Q) € S, Po < P, Qo < Q. We proved that (P, Qo) € S. O

Let S be a bilattice in Ry X Ro and let B(S) denote the bilattice in (R1 ®R2) X (R1 B R2)
generated by all pairs (p® (1 —¢q), (1 —p) @ q) € S. Tt is easy to see that B(S) consists of
all pairs (p1 @ q1,p2 ® g2), where (p1,¢2) € S and p» <1 —p1, 1 <1—¢o.

Proposition 5.1. A bilattice S in R1 X Ry is reflexive if and only if the bilattice B(S) in
(R1 ® R2) X (R1 @ Ra) is reflexive.

Proof. Since S is a bilattice, (p,0), (0,q) € S for any p € Ry, ¢ € Ro. This implies
MB(S)) = {(Ti)ij=i | 1 =p)Tup = qTea(l — q) = ¢Top =0,

(1-p)T12(1-¢q) =0,Y(p,q) € S} =

{(Tij)%,jzl | T;; € R;-,’I: =1,2,T5 € W(S),le = 0}
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and

bil M(B(S)) = {(p1 & p2, @1 & @2) | 4 Tsips = @2T12p1 = O,VT = (Ty;)7 ;=1 € M(B(S))}
={(p1 ®p2, 1 © @) | 1p1r = @2p2 = 0, (p1,¢2) € bil M(S)}

giving the statement. O

Let now S be again a commutative bilattice in D; x D, and let S be the bilattice defined
above.

Theorem 5.2. The bilattice S is reflexive.

Proof. By Proposition 5.1 and Theorem 5.1 it is sufficient to prove that the bilattice B(S)
is stable and B(l2) ® 1-invariant.

Let (2, © 23, Un © Yp) € D5y, Thy Yp € 2 ® Hyy i = 1,2, and @), = x4, yj, — y; as
n — co. Then pi,zi, = zi,, g}, = yi, for some (p}, ®p2, gl ®g2) € B(S). We have (p},q2) € S
and p2 <1-pl, g} <1—¢2. We can also assume that the sequences {pi,}, {¢,} are weakly
convergent:

P = ai, g = bi.

Clearly, a;x; = x;, biy; = y; and a2 < 1—ay, by <1 —by. Let P; = hy(a;) and Q; = hyi(b;)
be the projections onto invariant vectors of a; and b;, ¢ = 1,2. It is easy to check that
(a1,b3) € F5. By Lemma 3.1, (P,Q2) € S. Moreover, P, <1— P;, @ <1— Q. Thus
(PL® P5,Q1 ®Q2) € B(S), (31 ® 2,51 D y2) € Qg5 and B(S) is stable.

In order to prove B(ls) ® l-invariance we note first that for any unit vector & € o,
u € I(B(lg)) and P € B(lQ)@D,, 1=1,2,

L¢(P) = Lye((u®1)P(u®1)*) and Le((u @ 1) P(u ® 1)*) = Ly»¢(P)
implying that
(p,q) € Siff (@ Dplu®1)*, (L@ 1)gu®1)*) € S. (7)
Since u is an isometry, we have also that for any p € B(l2)®D;
p<l—g& (@welpuel) <l-(u®l)g(ue1l)"

From this and (7) it follows that (p1 ®pa2, q1 © g2) € B(S) if and only if (4 ®1)(p1 ® p2)(u®
1" (u®1)(q1 ® ¢2)(u®1)%) € B(S).
Since for a state ¢ on B(lz) and p € Pg(,),

(Lo(p®1),Lo((1—p)®1) = (0(p), 1 —@(p)) = ¢(p)(1,0) + (1 — ¢(p))(0,1) € Conv S,

we have also ~
pelepel,1-pla(l-p 1)e B(S).

We proved therefore that B(S) is B(ly) ® l-invariant. O

Proof of Theorem 3.4. Since bil My(S) DO S, we have only to prove the reverse

inclusion. TLet (p,q) € bil Mo(S). Then (1 ® p,1 ® q) € bil M(S). By Theorem 5.2,
(1®p,1®q) € S and therefore (p,q) € S. O
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6 Operator synthesis and spectral synthesis

We recall first a definition of a set of spectral synthesis. Let A be a unital semi-simple regular
commutative Banach algebra with spectrum X, which is thus a compact Hausdorff space.
We will identify A with a subalgebra of the algebra C'(X) of continuous complex-valued
functions on X in our notation. If £ C X is closed, let

IA(E)={a€ A:a(z)=0for z € E}
I%(E) ={a € A:a(z) =0 in anbhd of E}

and J4(E) = I4(E).

We say that E is a set of spectral synthesis for A if 14(E) = J4(E) (this definition is
equivalent to the one given in the introduction).

The Banach algebra we will be mainly deal with is the projective tensor product V(X,Y) =
C(X)®C(Y), where X and Y are compact Hausdorff spaces. Recall that V(X,Y) (the
Varopoulos algebra) consists of all functions ® € C(X x Y) which admit a representation

®(z,y) = 3 fil)gi(y), ®)
where f; € C(X), g; € C(Y) and

Z [fillecollgilley)y < oo

i=1

V(X,Y) is a Banach algebra with the norm

oo
@]y = inf Y _ || fillecollgilloq,

i=1

where inf is taken over all representations of ® in the form > f;(x)gi(y) (shortly, > f; ® ¢;)
satisfying the above conditions (see [V1]). We note that V(X,Y) is a semi-simple regular
Banach algebra with spectra X x Y.

For B € V(X,Y) and F € V(X,Y), define FB in V(X,Y)' by (FB,¥) = (B, F¥).
Define the support of B by

supp (B) = {(z,y) € X x Y | FB # 0 whenever F(z,y) # 0}.
Then it is known that for a closed set E C X x Y,
Jvx.y)(E)* ={BeV(X,Y)" |supp (B) C E}

and hence E is a set of spectral synthesis for V(X,Y) if Iy (x,y)(E)* = {B € V(X,Y)' |
supp (B) C E}, i.e, if

(B,F)=0
for any B € V(X,Y)', supp (B) C E, and any F € V(X,Y) vanishing on E. Any element of
V(X,Y)' can be identified with a bounded bilinear form (B, f®g) = B(f,g) on C(X)xC(Y)
which we also call a bimeasure.
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We will need also to consider the class of all functions ® on X x Y representable in the
form (8) (i.e. ®(X,Y) = .2, fi(z)gi(y), where f; € C(X), g; € C(Y)) with

sgpz |fi()]? < oo, sgpz |gi()” < o0

(with the pointwise convergence of the series). It is called the extended Haagerup tensor
product and denoted by C(X)®.,C(Y). Clearly V(X,Y) C C(X)®,C(Y). The inclu-
sion is strict, moreover C(X)®e,C(Y) contains some discontinuous functions. Indeed let
f(z) € C(R) such that |f(z)| <1, f(z) =0 for any = € (—00,1]U [3/2,400) and f(z) =1
on the interval [1 + €,3/2 — €], € being small enough. Setting fi(z) = f(2¥z) and u(z,y) =
3 fr(@) fr(y), we obtain sup 3 |fe(z)|?> = 1 and therefore u(z,y) € C(X)®,C(Y). How-
ever, u(z,z) = Y. | fr(x)|? does not converge to zero as z — 0 while u(z,0) = u(0,y) = 0,
i.e. u(z,y) is not continuous in (0,0).

The following theorem connects operator synthesis and synthesis with respect to the
Varopoulos algebra V(X,Y). Let M(X), M(Y) be the spaces of finite Borel measures on
X and Y respectively.

Theorem 6.1. If a closed set E C X XY is a set of synthesis with respect to any pair of
measures (u,v), u € M(X), v € M(Y), then E is synthetic with respect to V(X,Y).

Proof. Assume that E is not a set of spectral synthesis for the algebra V(X,Y). Then there
exists a bimeasure B, supp (B) C E and F € V(X,Y), Fxg = 0, such that (B, F) # 0. By
the Grothendick theorem, there exist measures p € M(X) and v € M(Y) and a constant C
such that

B, f®g)| =|B(f,9)| < Cllflleax, w9l Lay,m) 9)

Since V(X,Y) can be densely embedded into Lo (X, #)®Lo (Y, v), it follows from (9) that the
linear functional ® — (B, ®) defined on V(X,Y) can be extended to a continuous linear func-
tional on Ly (X, 4)®Ly(Y,v). Therefore, there exists an operator T € B(Lo (X, ), L2(Y, v))
such that

(B, ®) = (T, ®),

the left hand side being the pairing in the sense of duality between V(X,Y) and V(X,Y)’
and the right hand side is the pairing in the sense of duality between Lo(X, u)®L2(Y,v)
and B(L2 (X7 p’)a L2(Ya V))

We shall have established the theorem if we prove that T is supported in E. Since
E is closed, for every closed sets a, 8 such that (a x 8) N E = (), there exist open sets
ag D a, fo D B such that ag x By does not intersect E. For every functions f € C(X),
g € C(Y) which are equal to zero outside the set ag and [y respectively, we have (T'f, g) =
(T, f®g) =(B,f®g) =0. Since C(ap) and C(fy) are dense in Lo(ag, ) and L2 (B0, V),
we obtain Pg,T'Qy, = 0 and P3T'Q, = 0. By the regularity of measures p and v it follows
that this is true for any Borel sets a, 3. O

Corollary 6.1. Suppose that p; : X — Z and ¢; : Y — Z, i =1,...,n, are continuous
functions from compact metric spaces X andY to an ordered compact metric space Z. Then
the set E = {(z,y) | pi(z) < ¢¥i(y),i = 1,...,n} is a set of synthesis with respect to the
algebra V(X,Y).

Proof. Tt follows from Theorems 4.8,6.1. O
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This corollary yields the theorem of Drury on synthesizeability of “nontriangular” sets,
which are sets of width two (see [D]).
We will see that converse of Theorem 6.1 is false in general.

Lemma 6.1. If E C X XY is a set of synthesis with respect to a pair of finite measures
then so is its intersection with any measurable rectangular.

Proof. Let p € M(X), v € M(Y), let K x S be a measurable rectangular in X x Y, let
T € B(L2(X, p), La(Y,v)) and F € T'(X,Y) be such that supp T C EN (K x S) C null F.
Then T = PsTQk and supp T C E. Moreover, the function F'(z,y) = xx (z)xs(y)F(z,v)
belongs to I'(X,Y") and vanishes on E. Since E is a set of synthesis, we obtain

<T7F) = <PSTQK7F> = (TaFI) =0,
finishing the proof. O

Proposition 6.1. There exists a closed set E C X XY and a pair (u,v) of finite measures
on X andY such that E is set of synthesis in V(X,Y), but not of operator synthesis with
respect to the pair (u,v).

Proof. It will be sufficient to find a closed set £ C X x Y and a closed rectangular K x S
in X x Y such that E is synthetic with respect to V(X,Y) but not EnN (K x S). In fact,
if E were a set of synthesis with respect to any pair of finite measures we would obtain,
by Lemma 6.1, that so would be its intersection with any measurable rectangular and, by
Theorem 6.1, the intersection E N (K x S) would be synthetic for V(X,Y).

Let X, Y be compact metric spaces and let G C X x Y be a non-synthetic set with
respect to V(X,Y). Let I denote the unit interval [0,1] and d((z,y),G) be the distance
between (z,y) and G. In (X X I) x Y consider the set

E={((z,1),y) € (X xI) xY | d((z,y),G) < t}.

Then E is a set of synthesis with respect to V(X x I,Y). To see this take a function
F((z,),y) = Ype fr(@,t)gr(y) in V(X x I,Y) such that

Y sup|fu(z,t)* Y sup|gr(y))|® < oo (10)
k=1 k=1

and null F C E, and consider F,((z,t),y)) = F((z,t+1/n),y), n € N. Clearly, F,, vanishes
on
En ={((z,t),y) € (X xI) xY [ d((z,y),G) <t+1/n},

an open set containing the set . Now
Fo((z,1),9) = F((z,),9) = Y _(filz,t + 1/n) = fu(z,1))gr(y)
k=1
and

1 ((2,),9) = F((,0),9)llv <Y sup |(fi(@,t +1/n) = file,O)* Y sup|ge(y)|*.
k=1

k=1 =



Fix e > 0. By (10) one can find K > 0 such that Y 2 .\ sup [(fx(x,t+1/n) = fe(x,t)|* <e.
Since all fx, ¥ = 1,...,K, are continuous on the compact X x I, they are uniformly
continuous. Therefore there exists N > 0 such that, for any n > N, we have sup | fi(z,t +

1/n) — fr(z,t))| < /e/K k =1,... K. This yields Zle sup |(fr(z,t+1/n) — fr(z,t)]? <e
and

> sup|(fule, t +1/n) — fr(z, t)* < 2,
k=1
showing F,, - F asn — oo in V(X x I,Y).
Consider now

E*=En (X x{0}) xY) ={(2,0),y) € (X xI) xY | (z,y) € G}

Our goal is to show that E* is not synthetic in V(X x I,Y). Given a function ®(z,y) =
Yre fe(@)gr(y) € V(X,Y), null ® C G, consider F((z,t),y) = ®(z,y) in V(X x I,Y).
Assume that E* is synthetic. Then F' can be approximated in V(X x I,Y) by functions
F,((z,t),y) which vanish in neighbourhood of E*. This implies that ® can be approximated
by Fr.((x,0),y) in V(X,Y). Clearly, each F,,((xz,0),y) vanishes on nbhd of G. By arbitriness
of ®, we obtain that G is a set of synthesis, contradicting our assumption. O

Remark 6.1. The construction of the set E uses an idea of N.Varopoulos [V2].

Thus the sets of universal (independent on the choice of measures) operator synthesis
form a more narrow class than the sets of spectral synthesis. It is of interest to clarify which
known classes it includes.

A closed set E C X x Y such that any bimeasure concentrated on E is a measure (a set
without true bimeasure) is a set of spectral synthesis in V(X,Y).

Proposition 6.2. A closed set without true bimeasures is a set of operator synthesis with
respect to any pair (u,v) of finite measures.

Proof. Let u € M(X),v € M(Y) and let E be a closed set without true bimeasure. Consider
T € B(L2(X,u), La(Y,v)) such that T is supported in E. It defines a bimeasure Br by
(Tu, ) = Br(u,v), where u € C(X) and v € C(Y'). Moreover, supp (Br) C E. By the
condition of the theorem, there exists a measure m € M (X x Y') such that supp (m) C E
and

(Tu,5) = / w(z)o(y)dm(z,y), (11)

for every u € C(X), v € C(Y).

Let F(z,y) = Y oo un(2)vn(y) € C(X)&erC(Y) and let Fi(z,y) = Zﬁzl Un (T)vn (y),
Ei(z,y) = Y0 i1 [un(®)*+]va(y)|?. Then Ei(z,y) — 0, k — oo, for every (z,y) € X xY,
(

and therefore Fy(z,y) — F(z,y), k = o0, everywhere on X x Y. Moreover, |Fj(z,y)| <
Ey(z,y) and Ey(z,y) is integrable over m, as m is finite. Thus, by the theorem on majorized
convergence,

/ Fi(z, y)dm(z,y) / F(z,y)dm(z, y).
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On the other hand, ||F — Fi|lr < [ Ex(z,y)du(z)dv(y) and [ Ey(z,y)du(z)dv(y) — 0,
which imply ||F — Fy|[r — 0 and (T, F},) — (T, F) as k — oc.
We now obtain the equality

(T, F) = / F(z,y)dm(z,y), F € C(X)@aC(Y).

Since m is supported in E, this gives (T, F') = 0 with F' vanishing on E.

Consider now F € T'(X,Y), null F D E. Then there exist f; € La(X, ), g; € L2(Y, V)
such that F(z,y) = Y07, fi(@)gi(y) (maae) and Y2, [1£ill2, ¥, g2, < oo. Given
€ > 0, we can find compact sets X, C X, Y. C Y such that u(X \ X.) <e, v(Y \Y:) <e
and

o0 o0
M Ifi@P <C, zeXs, D lgi@<C., yeY,
=1 =1

Moreover, we can assume that f;, g; are continuous by the Lusin theorem so that the
restriction F, of F to X, x Y. belongs to C(X.)®.,C(Y:). Clearly, if E is a set without
true bimeasure, so is EN (X. x Y). If now T € B(L2(X, ), L2(Y,v)) is supported in E
then supp Py, TQx, C EN (X, x Y.) and

(PYETQX57 FE) = 0
Letting £ — 0, we obtain (T, F) = 0. O

Remark 6.2. In [V1], Varopoulos established a deep connection between the algebra
V(G) = C(G)®C(G) and the Fourier algebra A(G) of compact Abelian groups G. Us-
ing the relationships he showed that a closed set £ C G is a set of spectral synthesis for
A(G) if and only if the diagonal set E* = {(x,y) € G x G |z +y € E} is a set of spectral
synthesis for V(G). Recently the same result was proved for non-Abelian compact groups in
[ST] using the established there connection between A(G) and the Haagerup tensor product
C(G)®,C(G) which is the Varopoulos algebra, renormed. An analogous result for sets of
operator synthesis in G X G was obtained in [F] for locally compact Abelian groups G and
in [ST] for compact non-Abelian groups G. Namely, a closed set E C G is a set of spectral
synthesis for A(G) if and only if E* is a set of operator synthesis with respect to the Haar
measure (for the reverse, synthesizeability with respect to all pairs of finite measures is not
required, as in Theorem 6.1).
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