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ABSTRACT

For a stationary two-dimensional random field evolving in time, we derive
the intensity distributions of appropriately defined velocities of crossing
contours. The results are based on a generalization of the Rice formula.
The theory can be applied to practical problems where evolving random
fields are considered to be adequate models. We study dynamical as-
pects of deep sea waves by applying the derived results to Gaussian fields
modeling irregular sea surfaces. In doing so, we obtain distributions of
velocities for the sea surface as well as for the envelope field based on
this surface. Examples of wave and wave group velocities are computed
numerically and illustrated graphically.

KEY WORDS: directional spectrum, Gaussian sea, Rice formula, velocities, level
crossing contours, wave groups.

INTRODUCTION

In this paper, we are interested in analyzing the dynamics of the sea by studying
the distributions of different notions of velocity. In order to accomplish this goal, we
proceed in two steps. Firstly, we identify different motions of the surface through
appropriately defined velocities. Secondly, we derive the distributions of the defined
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velocities and we compute their densities given the spectrum of the underlying field.
Distributions of the velocities can be studied at various regions of the surface such
as points of local extremes, level crossing contours or regions with large curvature
and so on. These distributions are different even if the same notion of velocity is
considered. This leads to studies of the distribution of a random field given that
another field (describing for example, level crossing contours) takes a fixed value.
For computation of such a distribution we utilize a generalized Rice formula.

Notation and Assumptions

The sea surface elevation at a position p = (z,y) and time ¢ is represented by a ho-
mogeneous real Gaussian field W (p, t). Statistical properties of the field W (p,t) are
uniquely identified by its spectrum S(A). For example in the case of discrete spec-
trum, the Gaussian field becomes a sum of cosine functions with random amplitudes
and phases

W(p,t) = > V2S(A)AAN)R;cos(Arz + Aoy + Ast + €5), (1)

AEA

where A is any subset of R® such that —~ANA = ) and —A UA = R — {0}
for example, A = {(A1,A2,A3) € R® : A3 > 0}, A(A) are infinitesimally small
increments, {Rj} is a sequence of independent Rayleigh random variables having

',2
density fr(r) = re”2,r > 0 and {¢;} is a sequence of independent uniformly
distributed random variables in [0, 27] also independent of {R;}.
In this case the covariance function can be written as the Fourier integral

Rp,t) = / expli - Mz + Aoy + Agt))S(A) dA. @)
R3
The Hilbert transform of the process W is defined as

W(p,t) =Y V2SA\AMN)R;sin(\z + Aoy + Ast +¢5) (3)

AEA

and the real envelope process is given by

B(p,t) = \/W(p,1)2 + W(p,1)2. (4)

We shall write the first and second order derivatives of W with respect to z,y and ¢
as

ow W
ou’ Waw = Oudv’

The spectral moments \;j, if they are finite, are defined as A, = 2 [, )\’i/\g)\’gS(/\) dA.
Some of the most often used covariances of the field, its Hilbert transform and their

W, = u,v = x,9,t.



derivatives are given by the spectral moments of W in the following fashion

Var(W) = Xogo,  Var(W) = Ao,

)
Cov(Wyg, Wy) = Ao, COV(Wm,Wt)Z)\mh
COV( TT> yy) 220, COV( ) A301,
Cov(Wy, W) = Moo,  Cov(W ) —A100-

Next we introduce a convenient coordinate system by rotating the plane in such
a way that the spatial partial derivatives of the field are independent. We can choose
the rotation so that the z-direction has larger variance than the y-direction. That is
Var(Wz) = X200 > Ao20 = Var(Wy). This is equivalent to the fact that the intensity
of zero-crossings along any line passing through the origin attains its maximum on
the z-axis and its minimum on the y-axis.

In addition to the above notation, we use n, to denote the vector (cosa,sin a)
and n}, for the perpendicular vector (— sina,cosa). We also use nl for the trans-
pose of n,. For a rigorous treatment of Gaussian random fields see e.g.(Cramér &
Leadbetter, 1967).

Contours

For the sea surface elevation W (p,t) let us define the level crossing contour
C(w) ={p € R*: W(p,t) = w}, (5)

where w € R is a fixed level. Obviously the set C(w) depends on the value of
t although this is not explicit in the notation. Assuming that the second order
derivatives of W exist and are continuous, the contour C(w) is a curve. This curve
represents for example, the boundary of the excursion of a wave above the level w.
Obviously, it is evolving in time, and we are interested in the statistical properties
of this evolution. Often, instead of contour lines one is interested in isolated points
such as local extremes. This leads to the case of contours in which the field W (p, t)
is replaced by the two-dimensional random field W (p, t) = (W(p, t), Wy (p,t)) and
the intersection of the crossing contours of the spatial derivatives of the field W
constitutes a set of isolated points that are positions of the local extremes of W at
time ¢. For random seas the motion of these contours illustrates the motion of the
troughs and crests of the waves.

To summarize, in this work we deal with two types of contours: C(w) if we
consider w-crossings of the one-dimensional random field W, and C(w) if we consider
w-crossings of the two-dimensional random field W. Under appropriate regularity
conditions imposed on the random field (see for details in Adler (1981)), C(w) is a
curve while C(w) consists of isolated points. In the following we do not distinguish
in notation between w and w.



Rice formula

To each point of the crossing contour as defined above, we can attach a vector
velocity V creating in this way a velocity field. We are interested in the distribution
of this field. Such distributions can be obtained by measuring the part of the contour
C(w) on which V has some property, say A. More specifically, let B C R? be the
region in the sea surface, where we study the distribution of the velocity V, then
Cp(w) = C(w) N B represents the part of the level crossing contour which is in the
region B. Typically, the set B has the form of a rectangle, that is B = [0, z] x [0, y]-
Following, by C;(w) we denote the special case of Cg(w) for B being the unit rectangle
[0,1] x [0,1]. Let #(Cp(w)) be the Hausdorff measure of the set Cg(w), which is the
number of the points in the set Cp(w) if the crossing contour C(w) consists of isolated
points, or the length of the set Cg(w) if C(w) is a curve. Further let H(Cp(w), A)
be the Hausdorff measure of the part of Cg(w) on which the field V satisfies the
property A. Then the empirical measure of the field V on the contour Cg(w) equals
to the following ratio
H(Cp(w))

When B expands without bound and the involved random fields follow the ergodic
theorem, the empirical measure defined in Eq. 6 converges almost surely to the limit

E[H(Ci(w), A)]
E[H(C1(w))]

The above distribution of V can be computed by utilizing a generalized Rice formula.
More exactly, let V(p) € R™ and W(p) € R* with p € R? and n < 2, be a pair
of jointly homogeneous random fields. Denote the matrix of the partial derivatives
of W(p) by W(p) and the Jacobian of this matrix by |W(p)|. The field V(p) =
V(p,t), shall represent a velocity measured at point p and fixed time ¢. The velocity
can be either vector valued or scalar. Now, an appropriate version of the generalized
Rice formula (given for example in Zdhle (1984)) in a form that suits our applications,
allows us to rewrite Eq. 7 in the form

Pemp(4) =

P(A) = (7)

4 B[V € 4} WO [W(©) - ]

B[[WO)|W0O)=w] ®

where w is the level of the crossing contour and {V(0) € A} is the indicator function
equal to one if V(0) € A and zero otherwise. We are interested in velocity fields
that can be measured on level crossing contours and extremal points. Statistically
this means sampling from different types of sets. In this paper we encounter the
following three cases of sampling

e Sampling on a level crossing contour of the scalar W(p) := W(p,0)

where w is for example the still water mean level. In this case [W(0)|

\/ W2+ W2 and H measures the length of a contour on R2.

w,
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e Sampling at level crossing points of W(p) := W (z,0,t) (along the line y = 0).
In this case [W(0)| = W, and H counts points along the z-axis.

e Sampling at specular points, i.e. points at which the vector W(p) := (W;(p,t), Wy(p, t))
takes a specified value. Then [W(0)| = [WypoWy, — W2, | and H counts points
on the plane.

VELOCITIES DEFINED ON CONTOURS

In this section we present various notions of velocities that can be defined for the
random sea surface. All these velocities reflect different aspects of the kinematic
features of the sea and therefore can be used accordingly to the problem at hand.
Let W (p, t) represent an evolving surface observed at time t and point p.

Velocity in fixed direction V,

Let a denote the angle between the z-axis and some specified horizontal direction.
This angle can be fixed, like in the case of the azimuth of a ship traveling on the
sea when we are interested in the sea waves along its route. However, in general, we
allow for variable a as in the case of the gradient direction. We use W, to denote
the directional derivative of the field W in the direction a, i.e W, = W -nZ. For a
fixed reference time ¢y and point pg, let C(s) be the contour defined by

C(s) ={p: W(p,to +5) = W(po, o), (P(s) —Ppo) - ng =0} (9)

The points on this contour move with time. Let p(s) represent the motion of the
point which at time s = 0 is at pg. By differentiating p(s) with respect to s we
obtain that the velocity V, = dp(s)/ds = V, - nZk, is given by V, = —W;/W,.
Indeed the points p(s) satisfy the system

W(p(S), 3) = W(p07 0)7 (10)
(p(s) = po) - ()" = 0.
Eq. 10 guarantees that all points p(s) stay on the same level contour, while Eq. 11

makes sure that these points always move to the direction a. Use of the implicit
function theorem yields for the velocity V,, the matrix equivalent of Eq. 10 and 11

B )

—sina  cos« 0

Velocity in the direction of gradient Vg,

Probably the most interesting example of velocity Vy, is for a being the angle between
the z-axis and the gradient W. This angle will be denoted by 3. By the previous



section, Vg, = Vg, - ng = —% -ng. If we substitute in Eq.12, cos 8 = Ww/W and
sin 8 = W, /W we obtain
W, W, ] [ Wy ]
Vo =-— . 13
[ _Wy Ww ar 0 ( )

This velocity describes the motion of points that stay on the same level contour
while they move in the steepest direction (the gradient direction). It is interesting
to note that Vg, < V, for any choice of a. This follows from the representation of
speeds

Vo = Vgr/ cos(a — f).

Velocity of specular points V,

We could also define contours using any other field than W. Consider for example
the fields W, and W, and the corresponding level crossing contours C1(s) and C2(s):

C1(s) = {p(s) : Wa(p(s),t +5) = Walpo, 1)},

C2(s) = {p(s) : Wy(p(s),t +5) = Wy (o, 1) }.

Let p(s) be a point in the intersection C*(s) N C2(s), moving with time s. Then the
motion of this point can be obtained by differentiating the following system

Wm(p(t + 5), t+ S) = Ww(p(t)at)a

Wy(p(t +s),t+s5) = Wy(p(?)1).
The resulting system is used to define the velocity V,
sz Wa:y :| [ Wazt :|
V. = — ; 14
[ Wye Wy * Wy 1)

The velocity V, describes the motion of points with a fixed value of gradient. In
particular it describes the motion of local extremes on the surface. This type of
velocity was considered by Longuet-Higgins (1957).

Although it is very easy to recognize the specular points as the points where light
is reflected, this velocity has the disadvantage of involving second order derivatives.
These derivatives are difficult to model for irregular surfaces. The large spreading of
the specular velocity is partly due to the variability of the sea surface. In practice,
the high frequencies can be excluded by putting the spectrum equal to zero above
a certain frequency and study the velocity V,, on the smoothed surface instead. In
opposite to V., Vg, recognizes properly a drift of the surface, however it cannot
reflect the motion due to the rising and lowering of the surface. In the extreme case
of such a motion, the specular points may not move, while the contour lines do move.

These difficulties inspired us to the following notion of velocity, which describes
the drift motion better than Vg, and at the same time it is easier to analyze statis-
tically than the V.



Velocity of constant gradient direction V

Consider again the contour C(t) and identify all points in this contour with fixed
gradient direction 8. Then these points should satisfy

W(p(s),to +s) = W(po,to),
WCB(vatO) — Wy(POatO) (15>
Wa(p(s),to + s) Wy(p(s), to +5)

If we differentiate in Eq. 15 with respect to s, we obtain the following system of
differential equations which is used to define V

V = . 16
WeaWy — Wy Wy WeyWy — Wy Wy ] [ WyiWe — Wt Wy (16)

From the first relation in Eq. 16 is obvious that the projection of the velocity V
on the vector ng is equal to the velocity in the direction of gradient V.. The second
relation in Eq. 16 defines the vector difference between V and V.. Let us denote
by V, the projection of V onto nE.

Consequently (Vy,, V) is the vector V in the coordinate system rotated counter-
clockwise by an angle 5, thatis V = Vgrnﬂ—ng’;nE. Note that this coordinate system
is variable, i.e. ng and thus nzg are varying from point to point and from instant to
instant.

Although V and Vg, formally are two different velocities, both describe motions
which stay on the same vertical level, so both describe some aspects of the motion of
crossing contours. But, V, represents the motion of a point on the contour towards
the direction of the gradient, while V represents the motion of a point on the contour
towards a point on the next instant contour having the same gradient direction as
the original point.

Group velocity. Wave groups are rather hard to define in a formal way but
roughly speaking, they are collections of waves with large ones in the center together
with small vanishing waves at the ends. Interest in wave grouping arises in the safety
of marine structures where wave groups rather than individual waves are responsible
for the damage.

There are more than one ways to define velocities for wave groups. The method
we follow in this work, is the one proposed in Longuet-Higgins (1957). This method
suggests the use of envelope-crossing wave groups.

The envelope is a positive process that always stays higher than the sea elevation
process. In the case of narrow-band process, the envelope is passing close to the
local maxima of the process and hence can be used to describe the evolution of
wave groups. This allows us to use the definitions of velocities given in the previous
section, but this time defined on the envelope field. In this work we just consider
the case of the velocity in direction a. The speed of this velocity for the wave group,
applied on the envelope field given by Eq. 4, is given by

7



V= - Ve WHEWe- W (17)
W, W+ W, W

Distributions of velocities

Let W(p,t) be a homogeneous real valued Gaussian field having continuous second
order derivatives. For a convenience, we also assume that the field W is ergodic.
In what follows we utilize the generalized Rice formula to derive distributions of
velocities on crossing contours.

We use three models in order to illustrate the results. The first model is a
sea with a directional spectrum given in Fig. 1(Top). The spectrum (created us-
ing WAFO toolbox see (Brodtkorb, 2000)) is a Torsethaugen! frequency spectrum
(see (Torsethaugen, 1996)) representing a pure wind sea, i.e., a sea with no swell,
multiplied by a frequency dependent spreading function. The spreading function is
given by D(0) = Gg coszs(g) with 8 € [ — m, 7] and s = 10. The spectrum has peak
frequency wy, = 0.57rad/s. Frequencies exceeding 3w, were cut off.

For the second and third models we consider a superposition of swell and wind
spectra. The wind component is the same as in the first model. The swell component,
representing swell coming from a direction perpendicular to the main direction, can
be seen in Fig. 1(Bottom). Frequencies exceeding 2.15w,, were cut off. This spectrum
is also a Torsethaugen frequency spectrum, multiplied by the frequency dependent
spreading function given above, with parameter s = 25. In the second model, the
energy of the swell is approximately 11% of the wind energy, while in the third this
percentage is increased to 33%.

Comparison of velocities for individual waves and wave groups along a
line

We start with the velocity V,. We can focus on the case @ = 0 and study this
velocity along the z-axis. The distribution of the speed Vy = —W;/W, when we
sample from points that satisfy W (z,0,0) = u, is well known and given by

d 1 T
= _FOO(AIOI - \/)\200)\002 -2y 725),

where T» is distributed as a ¢ random variable with 2 degrees of freedom, (see
Podgorski et al. (2000b))

Similarly the distribution of Vg along the line y = 0 when we sample from points
satisfying F(z,0,0) = u is given by

Vo

1A Torsethaugen spectrum is given by S, (w) + Ss(w), where S, and S, are modified
JONSWAP spectra for wind and swell peak respectively. The parameters in these examples,
have been chosen so that we obtain a spectrum that represents a pure wind sea and another
one that represents only swell.
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F1G. 1 Top: Directional wind spectrum Sy, defining the sea W (z,y,t) in the first
model. Bottom: Directional swell spectrum S, used together with S, for defining
the sea in the second and third model.
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with T, defined as above. It is interesting to notice that both these distributions do
not depend on the level u. The derivation of the distributions is a result of a rather
standard decomposition of the Gaussian random field into a sum of two independent



components and an application of the Rice formula. (For more details see Baxevani
et al. (2002)).
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Fi1g. 2 Top: Density of the speed Vy. Bottom: Density of the speed Vg. Densities
for the wind spectrum are with solid line, for the second model with dash-dotted line
and for the third model with dashed line. Dotted lines have been used for the swell
spectrum moving along the y-axis.

Numerically computed densities of the speed Vj for the different sea models are
given in Fig. 2( Top). The speed has mean values equal to —10.6251m /s, —10.6020m/s
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and —10.5561m/s and scale factors 4.1538m/s, 4.9985m/s and 6.3518m/s for the
three sea models. It should be noted that smaller scale factor implies that the speed
is more concentrated around its mean value. Hence, we can conclude that the intro-
duction of the swell waves moving along a line perpendicular to the main direction
of propagation, does not influence the speed significantly, it just increases the vari-
ability. The dotted line is the density of the speed V; for pure swell waves moving
along the y-axis. This speed is in average equal to zero, something to be expected
since Vj describes the motion of the waves along the line y = 0, and is very noisy.

Next, we consider the velocity of the envelope field given in Eq. 17. As we have
already mentioned, the speed of this velocity is used to describe the motion of wave
groups. As it can be seen in Fig. 2( Bottom), the wave groups move almost half as fast
as the individual waves. Their average speed equals —5.5201m/s, —5.2303m/s and
—4.9110m/s for the three different sea models. The scale factors equal 1.6168m/s,
1.9874m /s and 2.3848m/s, which means that the densities for the wave groups are
more concentrated around the mean than the densities for the individual waves. The
influence of the swell waves is again restricted to the increase of variability although
in a more profound way. The speed of the pure swell waves is again in average equal
to zero with very large variability.

Velocities in the direction of gradient and in constant gradient direction

We turn now to the study of the distribution of V.. Instead of studying the joint
distribution of its coordinates it is easier to study the joint distribution of (Vj,, 8),
where Vg, is the seed of the velocity Vg, and 3 is the angle between the gradient and
the z-axis. We suppose that we sample from points on the fixed level contour C(w).
First we give the distribution of 8 and the conditional distribution of W given the
value of the direction . Direct application of the generalized Rice formula as given
in Eq. 8 leads to

B[IW|- {8 < 6, W < u}|W=u]

Fﬁ,W(¢7 ’LL) =

E[|W||W = w] 1s)

Here, the indicator function { B < o, W < u} equals one if the condition inside

the braces is satisfied and zero otherwise. The generalized Jacobian |W\ as well as
the angle 8 and the gradient W are independent of W, which simplifies Eq. 18 to

P (6,0) = wiluds {bfj[;;’]w =] (19)

Omitting the mathematical details of the derivation that can be found in Longuet-
Higgins (1957) and Baxevani et al. (2002), we obtain the marginal density of 5 and

11



the conditional density of w given the value of . First,

2

0 1
f(B) = ; (20)
4€(\/1 = 12) (42 cos? B + sin® B) 2
where § € [—m, 7] and E(k % v/1 — k2sin? 8 dB is the Legendre elliptic integral.
The parameter v = :\\‘2)20 Wthh is referred as short-crestedness, equals v = 0 for

the long-crested sea and v = 1 for the most irregular or short-crested sea. Next,
W £ R 5(8) - (cos B, sin ), (21)
r'2
where R has density fgr(r) = \/grze_T and is independent of 3, and

Ao20
/72 cos? B + sin? B

The letter d above the equality sign means equality of distributions.

The density of the speed in the direction of gradient Vg, follows immediately from
the relation V, = —W;/||W|| and the form of the above densities. The conditional
distribution of Vg, given the direction f3, is given by

s(B) =

d sg T3
Vor < Viaeng + S V3 (22)

where T3 is a t-distribution with 3 degrees of freedom. The constant s%, is the
conditional variance of W; given the gradient W, i.e

2 2
)‘101 )‘011

2
SE =Xz — 7 —
E A200  Ao20’
and
Vias = (— Aol Aoui
mas X200 Ao20

is referred to as the principal velocity.

12
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Fi1G. 3 Top: Joint density of Vg, and 8. Bottom: Asymptotic biased density of V.
The isolines in all figures are drawn at the levels: 0.025, 0.01, 0.005, 0.001, 0.0005.

Numerical illustrations of the joint density of V, and 3 are given in Fig. 3 (Top).
The gradient may point in any direction but due to the symmetry of the densities,
we have restricted the domain interval to [ -5 g] Note that the negative values
of Vy, indicate that the waves move in the opposite direction to the one pointed by
the gradient, which could be interpreted as the velocity of the back of the wave. The

wave fronts move with speed approximately equal to Vi, = —10.6m/s. In models
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two and three, we have introduced swell of different energies that is moving in a
direction perpendicular to the wind. The energy of the swell waves apparently is
too small to create any obvious changes except the slight change in direction, which
becomes more obvious as the swell energy increases. We can also see that the waves
with gradient in the direction of the z-axis are moving only with negative speeds.

We turn now to the velocity V sampled at points of the fixed level contour C(w)
defined in Eq. 5, as w tends to infinity. The distribution is given by

1 sg X | 7y?cos?p
E5) sin2 /B ) (23)

d
V p—
Vmaz + 72 cos? B+ sin? B s(B) R

2
where X is a standard normal variable, R has density fg(r) = \/%’)"26_% and X and
R are independent. For a derivation of the distribution of V for the non-asymptotic
case as well as for a proof of Eq. 23, see Baxevani et al. (2002). The asymptotic
density of V, which is useful for applications, can be seen in Fig. 3 (Bottom). A
comparison of the two densities given in Fig. 3 reveals that the velocity in constant
gradient direction V is more sensitive than the velocity in the direction of gradient
Vgr. Indeed the introduction of swell causes the isolines to move a lot faster than
before. Moreover the increase of the energy, the swell waves are caring, is also very

influential.

Velocities of specular points

Finally we study the density of V, sampled from specular points as well as from
points of a fixed level contour. Let Y = (Y¥7,Y2,Y3,Ys) be a zero mean Gaussian
vector with covariance matrix:

2(@1, U2) = (AT(Ul, ’Uz).l.i_lA(Ul, U2)) - ,

where
A200 A220 A310 Azl A2t
. A220 Aogo A130 Ar21 Aozt
A= X310 A30 A220 A2 A2t (24)
A301 A121 A211 A202 Az
A211 o3t A121 A2 Ao22
and
1 0 0 v»1 O
A(vi,v2) =10 1 0 0 v |. (25)

0011)21)1

First let us sample V;, from points satisfying the condition W = (We, Wy) =
(u1,u2), that is from specular points. Longuet-Higgins (1957) has derived the density
of Vg, for this case. This density is given by

E(V1Y> — Y?P)

= (26)
E|det W|

fvsp(vl’v2) =cC-

14



being the Hessian of the field W. The normalization constant ¢ equals

co L, [det B0 (27)
2 det A

The density of V,, can be seen in Fig. 4 (Top). It is interesting that this density,
defined by Eq. 26, does not depend on the fixed gradient level (u1,us). The velocity
V,p when sampled as in the previous case unfortunately describes the motion of all
local maxima. Most of these points are of small amplitude and hence are of limited
interest for applications. What is of interest is the behavior of high waves, that is of
local maxima above a certain level.

15
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F1G. 4 Top: Density of the vector velocity V, given by Eq. 26. Bottom: Conditional
density of V, given that W > 24/Aggo-

This is the reason of turning now to the joint density of V,, and W. The
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generalized Rice formula gives us the joint distribution of V,, and W

FVSP,W(V,’w)
E (|det W|{V,y, < vHW < w}|[We =, W, = u)

E (|detW\|Wz = uy, W, = uz)

E (|det W|{V,p, < vHW <w})
E|det W| '

Both W and V,p depend only on the second order derivatives of W and therefore
are independent of W, which allows the simplification in conditioning. Again omit-
ting the mathematical details of the derivation we obtain the following joint density
(Vgr, W), for sampling from specular points

fvsp,W(UhUz,w)
B[(MYs - VP2 |Va=w] 1 !

= cC- . ei 2044 .

E| det W| \/27'{'0'44

In Fig. 4 (Bottom) we can see the density of V,, at a subset of specular points.
To be more specific, it is the marginal density [ Ivopw(v1,v2, w) dw, for values of
W above the critical level 24/Aggp. In the special case of gradient equal to zero
(extremal points), this velocity corresponds to the velocity of crests of high waves.
Both these densities, shown in Fig. 4, appear to be quite similar. The velocity of
all local maxima has more spreading caused obviously from the presence of all this
noise, small waves and is not really affected by the swell waves. An explanation for
this is that the wind is more irregular than the swell, hence points like local maxima
are still defined mainly by the wind. On the other hand, the introduction of the
swell is quite influential for the velocity of high waves. The most probable values of
the tops of the high waves are moving faster after the swell was introduced.

Conclusions

The statistical properties of a sea surface changing in time and modeled by a Gaussian
field are essentially different when observed both in time and space than their analogs
observed only in time and in one of the two spatial dimensions. The dynamics of
the motion for one dimensional records of some of the studied velocities can also
be found elsewhere. (See, for example, Longuet-Higgins (1957) or Podgorski at al.
(2000b)). In this work we study spatio-temporal waves, that is we deal with random
variability of the sea elevation in both space and time.

The main purpose of this paper was to analyze the dynamical aspects of deep sea
by studying the statistical properties of the wave motion. Several notions of velocity
were introduced and their densities were derived. For this two dimensional Gaussian
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sea evolving in time, waves were identified with the help of contours of spatial mean
level-crossings, contours of spatial local maxima and points of the extremal spatial
crests.

One of the most important notions of velocity, that of a group, was defined for
the spatio-temporal sea using the envelope field. Also a new velocity that describes
the motion of a point towards the point residing on the next instant contour and
having the gradient pointing in the same direction as the original point was defined
and studied.

The densities of the above mentioned velocities, among others, were computed
and compared for three different sea models. One of the main assumptions of this
work is that the sea is well described by a real homogeneous Gaussian random field.
In the first model the sea had a directional wind spectrum (no swell), while in the
other two models we have added swell of different energies coming from a direction
perpendicular to the main direction of propagation.

As was expected, the wave groups appear to move almost twice as slowly as the
individual waves while their densities are more concentrated around the mean value.
Furthermore, the group velocity is not really affected by the swell waves coming
from different direction. Finally, we have derived the asymptotic distribution of
the new proposed velocity of constant gradient direction. This velocity appeared to
be the most sensitive to the drift motion, a very important property that was also
entertained by the velocity of the high local maxima of the sea surface. Here it should
also be noted that the velocity of constant gradient direction showed more variability
than the velocity of the high local maxima since the first velocity describes the drift
motion as well as the motion of the contour due to the changes of the overall level
of the sea surface, while the latter velocity describes solely the drift motion.
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