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Abstract

For a stochastic process w with absolutely continuous sample path derivative, a
formula for the joint density of (7', Z), the position and height of the global maximum
of w in a closed interval, is given. The formula is derived using the Generalized Rice’s
formula. The presented result can be applied both to stationary and non-stationary
processes under mild assumptions on the process. The formula for the density is explicit
but involves integrals that have to be computed using numerical integration. The

computation of the density is discussed and some numerical examples are given.
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1 Introduction

Finding the distribution of global maximum is a classical problem in probability. Most of
the research on the properties of the global maximum of a stochastic process concentrates
on the distribution for extreme heights; see e.g. Leadbetter et al. (1983). Often the studied
process is Gaussian, and the distribution is given by means of upper and lower bounds;
see Diebolt and Posse (1996) and references therein. Introducing the location of the global
maximum makes the analysis more complicated. As far as we know the joint density of
position and height of the global maximum has not been studied before. We turn now to
some definitions and preliminary results.

Let C = C([0,L],R) be the space of continuous functions w : [0, L] — R. Denote by
F the completed o-algebra of uniform convergence and let P be the probability measure
defined on sets in F. In what follows we assume that the sample paths of the process have
absolutely continuous derivatives with probability one; see Cramér and Leadbetter (1967)
for suitable conditions.

In the following definition and lemma we assume that w(t) is deterministic. The deriva-
tive and the second derivative of a function w(t) will be denoted w(t) and &(¢), respectively.

Denote by Z(w) and T'(w) the height and position of the global maximum of w(t)
Z(w) = sup{w(t) : t € [0, L]}, T(w)=inf{t € [0,L] : w(t) = Z(w)}. (1)

The position of the maximum 7' can be located at the end points of the interval, i.e. T €
{0, L}, or in the interior of the interval, then w(T) = 0. Analysis of the (T, Z)-distribution
for the case when the global maximum is also a local maximum is a non-trivial problem.
Here, we shall derive the distribution of 7', Z as the limit distribution of a family of random

variables, T, Z., € > 0, defined below:

Definition 1 For a fized level € > 0, define Ac = {0,L} U {t € [0, L] : w(t) = €}, then the

position and height of the global e-mazimum Te(w), Z.(w) say, are given by

Ze(w) =sup{w(t) : t € A}, Te(w)=inf{t € A;: w(t) = Zc(w)}-



Obviously, for continuously differentiable w, (To, Zo) = (T, Z). The following lemma, gives
conditions when T, Z. converges to T, Zg as € goes to zero. The simple proof is given in

the appendix.

Lemma 2 If w(t), t € [0, L], is continuously differentiable then 0 < Z(w) — Z.(w) < L - e.
Furthermore, if there is only one t € [0, L] such that w(t) = Z(w) then Te — T as € goes to

ZETo.

A simple example, in which 7, does not converges to T, is as follows. Consider w
having only one local maximum at ¢ € (0,L). Suppose that ¢ is also a global maximum,
i.e. Z(w) = w(t). Further, let w(0) < w(t) = w(L) then T.(w) = L for all ¢ > 0 while
To(w) = T(w) =t.

In Section 2 we present the generalized Rice’s formula for expected number of marked
crossings. The formula will be used to derive F¢(t, h) - the distribution of T, Z.. (This will
be done in Section 3.) However the formula is valid only for almost all € > 0 values while we
are interested in the distribution of T¢, Z, for ¢ = 0. Consequently conditions for continuity
of F.(t,h) as a function of ¢ are needed. These issues and the computation of Fy (¢, h) will
be discussed in Section 4, while in Section 5 some numerical examples will be given. For

clarity of presentation, several proofs are moved to an appendix.

2 Generalized Rice’s formula

Assume that X (t), t € [0, 1], is strictly stationary process. For a fixed u, let u*(u) be the
expected number of times the process X crosses the level v in the upward direction. The

following classical result is called Rice’s formula, see Leadbetter et al. (1983).

Theorem 3 If the process X (t) is Gaussian and the derivative X (t) exists in quadratic

mean (h~1(X (t + h) — X (t)) — X (t) in quadratic mean as h goes to zero) then

N+(U)=/O zfX(O))X(O)(z,u)dz, (2)

where fx o), x(0) (25 u) is the joint density of X(0), X(0).



Rice (1944, 1945) and Kac (1943), obtained (2) for a certain class of Gaussian processes and
polynomials with random coefficients, respectively. The formula (2) has been generalized
in many directions. In this section we shall present the generalization which is particularly
suited for the problem discussed in this paper.

Under the assumptions of the theorem, if f(u) = fx(o)(u) > 0 then p*(u)/f(u) is a

version of the following conditional expectation

- *(w)
BIX O)115(0)50) [ X (0) =] = T

where 1¢.; is equal to one if the statement "-" is true and zero otherwise. In general, the left
hand of the last equation is defined only for almost all u. Next the number of upcrossings

can be computed using the following integral

1
A 1{X(3)>0,X(s):u} dHO (S)’

where H° is the zero dimensional Hausdorff measure counting the number of points. Con-

sequently, we may write that for stationary Gaussian processes

1
pru) = E[/o 1{X(s)>o,x(s):u} d#H"(s)]

= EIXO)Lix 050y | X (0) = ulfxo) (W), @

where “£" means that equality is valid for almost all u. Actually this result is true for any
stationary a.s. absolutely differentiable process X as long as E[|X(0)|] < co. The formula
(3) follows from Theorem 4, which in a more general version is given in Zihle (1984). In
that paper the Hausdorf area and the coarea theorem, see Federer (1969), has been used to
study properties of crossings for random fields. The one-dimensional version of the result,

given here, follows also from Banach (1925), (see Rychlik (2000) for details).

Theorem 4 Assume X (t) is a.s. absolutely continuous and Y (t) is vector valued a.s. mea-

surable, e.g. cadlag. Letq:[0,L]x C — [0,00) be a measurable function. If E[|X (t)|] < 400



for all t € [0, L] then for any Borel sets A, B

/RE[/B Liv(s)ea,x (s)=2}4(8, X) dHO(s)] dz
= / / E[|X(S)|Q(8,X)1{Y(s)e,4} X(s) = a]fx(s)(x)dsdx.  (4)
rJ/B

There is some difficulty in interpreting (4). The conditional expectation

E[|X (s)la(s, X)Ly ey | X (5) = @l fx(5) (@) = H(z,5)

is only well defined with probability one with respect to (z, s) (H(z, s) can be seen as a class
of functions). In order to use the formula we need first to specify the version of conditional
expectation we wish to consider. The problem of choosing a "proper" conditional density is
a delicate issue and will be discussed later on.

In the following remark we demonstrate that Eq.(3) follows from Theorem 4.

Remark 5 Consider formula (4) and choose B = [0,1], Y(s) = X(s), A = (0,+00) and

q(s,X) = 1{X(3)SU} then

u 1
o 0
/_OOE[/O Lt % (s)>0,x (s)=2} 9H (s)] dz
u 1

Now by differentiating both sides of the equation on u and by assumed stationarity of X we
obtain (3). Note that the differentiation on u implies that Eq. (3) is proved only for almost

all u.

3 The distribution of T, Z..

We shall use Theorem 4 to derive formulae for the distribution of T,, Z.. Assume now that

w is a random process. Similarly as in Remark 5 we shall define different components in the

left hand side of Eq. (4) so that

2 [ tocaxio-nats ) i0@)] e = [ PO <Tw) <1 200) < By



Let X (s) = w(s), Y(s) =w(s), A= (—o0,h], B=(0,t],0<t< L, and
) 1 if T, =s where u = max(0,w(s)),
q(s,w) =
0 otherwise.

(Note that in Definition 1, T, is a function of w. However, T, can also be defined as a
function of the derivative w, since T.(w) = T¢(c + w) for any constant c.) Now it is easy to

see that

€ t €
/ / (8, 0) 1o (s)=zw(s)<n} (s) dH (s) dz = / L{0< T, (w)<t,Ze (w)<h} T
o Jo 0
and hence the next theorem follows from Theorem 4.

Theorem 6 Consider w with a.s. absolute continuous derivative w such that E[|&(t)]] < oo

for all t € [0,L]. If for all t € [0, L] the distribution of the derivative process has a density
Joe)(u) then

P(T.=0,Z: <h) = E[ly,0)<n{T.(w)=0}] > (5)

P(T.=L,Z:<h) = E[lgw<n{()=L1}] (6)
and for any t € (0, L),

t
P(0<T. <t,Z. <h) "E° / B[ 16(5)] a(s, &) Lu(sy<ny | @(5) = €] fai () ds,  (7)

a.a.€

where means that equality holds for almost all € > 0.

Proof: The theorem follows from Theorem 4 if we demonstrate measurability of ¢(s,w).

This is done in Lemma 8. O

Assume that a version of conditional expectation is chosen and then the distribution

function of T¢, Z. is for almost all € equals the following function

E[1{w(0)<n 1T ()=0}] if t =0,
Fe(t,h) = E[l©<nliz.@)=0}] + F(h,t,€) if t € (0, L),

E[1{u0)<n} {1, (w)=0}] + B[ Liw@)<n}lir.(w)=2}] + F(h,L,e) ift =1L,
(8)



where

F(the) = / B 156 a6 )1 guren | 606) = €] fago (0. (9)

Corollary 7 Under the assumptions of Theorem 6, if F.(L,h) is a continuous function of

€ and h, then P(Z < h) = Fo(L, h).

Proof: By Lemma 2, P(Z. < h) < P(Z < h) < P(Z. < h — Le) and the corollary follows.

O

Since T, may not converge to Ty, the analysis of the joint distribution of T, Z, is more
difficult. The key is to demonstrate that with probability one there is only one ¢ such that
w(t) = Z(w). The sufficient conditions for the convergence of T, to T are given in the

following lemma, (the proof is given in the appendix).

Lemma 8 Assumew is a.s. continuously differentiable and the distribution of the derivative

w(t) has a density f, ) (x) for all t € [0, L]; then each of the following hold:
(0) The functions q(t,w), 141, (w)—0}(w) and 11, (w)=r}(w) are measurable.

(1) If the density fu () (x) exists and is bounded in x and in t € [0, L] then, for any € > 0,
P(Z.=h)=0 and P(Tc =t) =0 for all h and t € (0, L).

(I) If, in addition to the assumptions in (I), for any 6 > 0 the joint density f.,(s)—w(L).w(s) (Z,Y)

ezxists and is bounded in z,y and in s € [0, L — §], then

lim P(T. = 0, Z, < h) P(T =0,Z < h),
e—0

lim P(T. = L, Z < h) P(T=L,Z<h).
€—

(II1) If, in addition to the assumptions in (I) and (II), for any § > 0 the joint density
Jot)—w(s)w(s)o) (&, Y, 2) erists and is bounded in z,y,x and in (s,t) € As = {(s,t) €
[0,L] x [0,L]: |t —s| > 6} then (Te, Ze) — (T, Z) a.s. as € goes to zero, and

lim P(T. <t,Z. <h) = P(T <t,Z <h). (10)
e—



We finish this section with a formula for fe(¢, ), the joint density of T, Z..

Corollary 9 Assume that the joint density fu(+)u()(z,u) exits for all t € [0,L] then, for

almost all €, the density of Te, Z. is given by
fe(t, ) = fF(t,2) + fE (¢, @), (11)

where
fE(t,2) = E[1{z.—0} |w(0) = 2] fu(0)(2) b0(t) + E[1{r.=1} |w(L) = 7] fu(r)(2) 6L(t),

and
fE(t ) = Bl|o()] q(t, @) | @(t) = €, w(t) = 2] fu)ow (@ €),

where 05(t) = 6(t — s) is the Dirac function. The conditional expectations are understood to

be those used in (9).

4 Evaluation of the density of T, Z.

In this section we shall discuss the choice of the version of the conditional expectation in
the definition of F'(h,t,€) in (9) and computation of the density fo(s,z) given by (11).
If for vector valued variables X,Y the joint density fx, y(z,y) exists then the most

natural definition of the conditional expectation is

E[g(Y)[X = a]fx(z) = / o) Frr (@) dy. (12)

(Here g is a measurable function such that E[|g(Y)|] < 00.) Obviously, if the joint density of
(w(t),w(t),w(t), q(t,w)) is known then (12) can be used to compute the function F'(¢, h, €) or
the density fc(s,z). However ¢(t,w) is a function of an infinite sequence {w(s;),w(s;)}o;,
see below, and hence the density is in general unknown. Consequently we shall define the

expectation as a limit of a sequence of suitable approximations.



Let {s;}32,, s1 = 0,s2 = L, be a dense subset of [0, L] and let

N .

g (tw) = Lt (w(#)—w(s:) 30 OF w(si)<a(t)+) for all i<N}s
N

g (0,w) Lt (w(0)=w(5:)>0 OF @(si)<e) for all i<N}?

N

g (Iyw) = Lt (w(L)=w(s:)>0 OF w(si)<e) for all i<N}s

where z7 = max(0, ). Assume that for any N the non-degenerated density of
w(s1),w(s1),--.,w(sn),w(sn),w(t),w(t),o(t) (13)
exists. We use (12) to compute the following functions
fe(t, & N) = fE(t, 25 N) + fE(t, 25 N), (14)

where

fE(t,2;N) =E[¢ (0,w) |w(0) = 2] fu(o)(z) &o(t)
+E[g) (L,w) |w(L) = &] fu(z)(2) 6L(t),

FE(t, 2 N) =E[1o(t)| ¢ (¢, @) |@(t) = €, w(t) = 2] fu),oe) (@, €)-

Since ¢V (t,w) > q(t, &) while ¢%¥ (0,w) > 1410}, ¢ (L,w) > 1{1.—r} then for any version
of conditional expectation used to define fc(t,z) in (11), the functions f(¢,z; N) are, for

almost all €, upper bounds for fc(¢,z), i.e.

a.a.€

fC(t’m) S fC(t7w;N)

for all (¢, z).

Next we shall derive two sufficient conditions for the convergence of fc(t,z; N) to a
version of f¢(t,z) for almost all e. Under either, the limit of f(¢,z; N), which always exists
since the functions are positive and non-increasing, can be used to define the conditional
expectation in (11). Thus we can say that f(¢,z) is the limit of f.(¢,z; N) for all € > 0.
The first condition, (A), will be used in construction of numerical algorithm to compute the
density of T, Z, while the second, (B), is easy to check for w with known joint densities of

values and the derivatives.



Theorem 10 Assume that, for any N and t € [0, L], (13) has a non-degenerated density.

Further, suppose

L
/0 E[[5(s)] | () = €] foe)(€) ds < co. (15)
(A) If . L
J\}Erlm - /0 fe(s,z; N)dsdz =1 (16)

then, for all t € (0,L) and almost all € > 0, fe(t,z) = imn_, o fe(t, z; N).

(B) If @ is a.s. continuous and, for a fired t € [0,L] and any 6 > 0, the densities
fos)—ot)(¥)s fu(s)—w(t)w(s)—a) (T,Y) are bounded in z,y and in s such that |t—s| > ¢
then, for almost all € > 0, fc(t,z) = limy_ o0 fe(t,z; N).

Proof: Proof is given in the appendix.
Lemma 8 and Theorem 10 gives conditions for the validity of the following approximation

scheme. First, define f,(s,z) to be limy_, o fe(t, z; N) then, with

hoopt
Fe(t,h;N)z/ / fe(s,z;N)dsdz
—oo0 J0

we have
Jim Fe(t, b N) = Fe(t, h) "2 P(T. < t,Z. <h) = P(T <t,Z <h),
—00

as € = 0. Consequently, if f.(t,z; N) are continuous and the sequence {f.(¢,z; N)} converge
uniformly then

fr.z(t,z) = Aim fo(t,z; N).
Often continuity of f(t,z; N) can be proved. Checking uniform convergence of f(t,z; N) is
a much more difficult problem. However in practice, the hardest problem is the computation
of fc(t,z; N), what shall be discussed next.

When (numerical) computation is possible, then often one can also justify the assumption
of the continuity of f.(¢,z; N) as a function of e. The uniform convergence assumption can
then be replaced by the following condition: Assume that for sufficiently small § and all
€ € [0, €]

//fe(s,ac;N)dsda: <1434,

10



then fr z(t,z) = fo(t,z; N) in the sense that the distribution of T, Z can be approximately

computed using fo(t,z; N) with an error of

for all values of (¢, h). Finally, in order to reduce the amount of numerical integration, the

definition of the density fo(¢,z; N) needs to be modified as follows

In(t,z) = feE(ta$;N) + E“w(t)' qN(taw) |w(t) =ew(t) = x] fw(t),nb(t)(xve)a

where
G (t,w) = Ly (51)<w(t) for all i<ny(@)-

Obviously ¢V (¢t,w) > ¢" (t,w) and hence, if
/ fn(s,z)dsdz <1+,

then fn(t,z) can be used as an approximation to the density of 7, Z. This is how the
density of T', Z has been computed in the examples presented in the next section. Since the
density fn(t,h) is an N + 1 dimensional integral, which has to be computed numerically, it
is important to choose the grid s; in an optimal way so that the derived approximation is
accurate even for small values of N, see Rychlik and Lindgren (1991) for some strategies to

choose s; for Gaussian w.

4.1 Approximation of T, Z-density for Gaussian w.

In this subsection, we shall give sufficient conditions involving only the covariance structure
of the Gaussian process w under which the assumptions of Lemma 8 and Theorem 10 are
satisfied.

Let w be a stationary Gaussian process such that the fourth spectral moment A4 exists

and the fourth order derivative of the covariance function satisfies

r® (1) = A = o(|log |7]|),

11



as 7 — 0, for some @ > 1. Then @&(s) is a.s. continuous, see Cramér and Leadbetter (1967),
and hence the assumptions of Theorem 6 and Corollary 9 are satisfied. If in addition, we
assume that spectral measure of w contains a continuous component, then, for any s # t,
(w(s),w(t),w(s),w(t)) has a nonsingular joint density, with covariance matrix that depends
in a continuous way on t — s. Hence the assumptions (I-III) of Lemma 8 are satisfied and

we can conclude that
liII(l)P(Te <t,Z.<h)=P(T <t,Z<h).
€—

Since the assumptions of Theorem 10 (B) are also satisfied for any value of ¢, we can then

define

fe(t,z) = lim fe(¢,z; N).
N—oco
Finally, since the spectral measure contains continuous components, it is clear that, for any

N, the joint density
w(51)7dj(51)a v ,w(sN),w(sN),w(t),w(t),&.'z(t).

exists and that the functions f,(¢,z; N) are continuous.

The non-stationary Gaussian process used in the next section is derived from the station-
ary one by means of conditioning on values at a finite number of points ¢;, 0 < t; < ... <
t, < L. Studies of this type of processes are motivated by practical applications for which
the random function is observed at some fixed time points, see Sjé (2001) for more detailed
discussion. If the measurements consists of the random function plus some random noise
(such as zero mean iid. Gaussian variables), then one can modify the arguments presented
for stationary Gaussian w to this non-stationary case. However if there is no measurement
error the densities of w(¢;) are degenerated and hence the assumptions of Lemma 8 and
Theorem 10 are not satisfied.

In order to resolve this problem one has to choose points ¢, s1, ..., sy which are disjoint
with the conditioning times ¢; and then f.(¢,z; N) exists and is still continuous. Next it is
easy to reformulate the assumptions in the lemma (and the theorem) so that this special

case is covered. For clarity of presentation we have chosen not to do it. In order to give

12



some indication of what type of modification is required we give an example: in Lemma 8,
(ITI) the definition of As has to be changed to the following one

As{(5,0) € [0,1] % [0,2] : [t = 5| > 611 (V(5:) : |5 — 1 > &t — ] > .

5 Examples

We will demonstrate the result with some examples. We start with a stationary Gaus-
sian process with a rather periodical behavior, it has a typical oceanographic spectrum,
and evaluate the density for the global maximum for two different L. As a final exam-
ple we study a non-stationary Gaussian process that is created from a stationary ditto
by conditioning on the value at some points. We use the notation fC¢(t,z), fZ(t,z),
instead of f§'(t,z; N), f&(t,z;N), respectively. The computer programs uses toolbox
WAFO—Wave Analysis in Fatigue and Oceanography, which is available without charge

at http://www.maths.lth.se/matstat/wafo/.

5.1 Stationary process

The intuition about the stationary process may say that the position of the global maximum
should be uniformly distributed, except at the endpoints. Our examples will show that it
is not always true. The density is always perfectly symmetric around the midpoint of the
interval, but its shape depends on the width of the interval relative to the “periodicity” and
the irregularity of the process. A very narrow-banded process, gives a rather different result
than a broad-banded process. For the sake of clarity we present f¥ and f€ in separate plots,
since f¥ actually is two one-dimensional functions, f#(0,z) and f¥(L,z), while f€(s,z) is
truly two-dimensional.

The process in our stationary example has zero mean, approximately 0.12 zero-upcrossings
per unit interval, and 0.17 local maxima per unit interval. First we have evaluated the den-
sity of the position and height of the global maximum in the interval [0, 3] where the expected

number of local maxima is roughly 0.5 (Figure 1), and then in the interval [0,9], which is

13
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Figure 1: Density of position and height of the global maximum in the short interval [0, 3]

Left: Interior density f€(s,z). Right: Left endpoint density f¥(0,z), the right endpoint
density fF(3,z) is identical.
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Figure 2: Density of position and height of the global maximum in the longer interval [0, 9]

Left: Interior density f€(s,z). Right: Left endpoint density fZ(0,z), the right endpoint
density fF(9,z) is identical.
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three times wider and where we expect 1.5 local maxima (Figure 2).

The short interval gives an almost uniform density for the position, but also larger
probability to have the global maximum at one of the endpoints. The proportion is 41% in
the interior of the interval to 59% at the endpoints. In the wider interval it is more likely
that the global maximum is in the central part of the interval, especially the smaller maxima
are likely to be there, while the high local maxima are almost uniformly distributed. The
proportion between interior and endpoints in this case is 82% to 18%. With the shorter
interval it is also more probable to have a low global maximum with height below 0: P(Z <
0) = 0.18 for the short interval, while P(Z < 0) = 0.004 for the longer.

We also compared the evaluated densities to empirical results based on simulation; here
we present the results for the short interval. We simulated 500 replications of a stationary
process with the given spectral density. In the interval [0,3] the global maximum were
observed. Figure 3 shows the simulated results compared to the evaluated density. The
cumulative functions integrated from the sub-densities are normalised to have maximum

value 1.

5.2 Process conditioned on observations — a non-stationary process

This section exemplifies the situation where we would like to find the maximum of a process,
given that we have a number of observations of it. We started by simulating a stationary
Gaussian process, the simulation was ‘observed’ at four randomly located points, and a zero
mean Gaussian measurement error was added with variance 1/10 of the variance of the
stationary process. Conditional on the observations (with errors), we obtain a new process
that is a non-stationary Gaussian process with mean function equal to the conditional mean,
and covariance function equal to the conditional covariance.

In a real situation the covariance function of the stationary process normally has to
be estimated, but in this example it is taken as known, i.e., the covariance function we
simulated from. The stationary covariance function used is of the type aexp(—b72), with

parameters such that the covariance function is almost zero after 7 = 1.2, so at the distance

15
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Figure 3: Simulation of position T' and height Z of the global maximum in [0, 3], 500
replications. The outcome was such that 202 maxima were located in the interior, 143 at
the left endpoint, and 155 at the right, which is close to the analytical proportion. Top
Left : Contours of the density in Figure 1 (Left) with interior pairs of (T, Z) marked by
dots. Top Right: Empirical distribution of T', given that the maximum is in the interior of
the interval (irregular line), together with the cumulative distribution function, integrated
from f¢ and normalised. Bottom Left: Empirical distribution of Z at the left endpoint,
and at the right endpoint (two irregular lines), together with the cumulative distribution
function integrated from fZ(0,z) and normalised. Bottom Right: Empirical distribution of
Z, given that the maximum is in the interior (irregular line), together with the cumulative

distribution function integrated from f¢ and normalised.
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Figure 4: Left: Contours of f¢ for a process conditioned on observations. The respective
contours encloses 10%, 30%, etc. of the total integral of the density. The observations are
marked by ‘«’. The conditional mean, i.e., the reconstructed mean, is given by a solid curve,

flanked by approximative confidence bands (dashed curves). Right: Left endpoint density

fE(0,z) (solid), and right endpoint density fZ(3,z) (dashed).

1.2 the influence of an observation is negligible. The measurement error variance is a/10.

The reason for choosing only four observations is clarity, with many observations the density

gets very concentrated.
To the left in Figure 4 there is a contour plot of the interior density f¢. The location

and value of the observations are marked by ‘x’. The plot also shows the conditional mean
function, point-wise flanked by approximative confidence bands evaluated pointwise as the
mean function + two times the standard deviation. To the right in Figure 4 are the endpoint
densities. The proportions are 91% in the interior, 0.8% to the left, and 8.2% to the right.
To illustrate the influence of the observation error we have repeated the same evalua-
tion, but this time with the observation error variance equal to 0. In this situation the
non-stationary process has variance 0 at the observations, i.e., the situation commented in
Subsection 4.1. The result is shown in Figure 5. The dashed curves coincide with the solid

at the observations since the conditional variance is 0 there. The contours of this density
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are more erratic depending on numerical problems due to the fact that the distribution is
nearly singular close to the observations. Exactly at the observation points, the density is

0 for all heights. The proportions this time are 95.7% in the interior, 0.1% to the left, and

4.2% to the right.
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Figure 5: Left: Contours of f€ for a process conditioned on observations without observation
error. The observations are marked by ‘x’. The conditional mean, i.e., the reconstructed
mean, is given by a solid curve, flanked by approximative confidence bands (dashed curves)

Right: Left endpoint density f¥(0,z) (solid), and right endpoint density f¥(3,z) (dashed)
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Appendix

Proof of Lemma 2:

We demonstrate first that w(t) > Z. implies w(t) < e. Suppose w(t) > Z.(w), and w(t) >
€ >0 (w(t) = € and w(t) > Z, is impossible). Since w(t) > w(L) then there is t, = inf{s €
(t,L) : w(s) < 0}. Obviously w(s) > 0 for all s € (¢,t9). Now, for continuous w there is
s € (t,to) such that w(s) = € and w(s) > Z.(w), which is a contradiction. Consequently, if
w(t) > Z, then w(t) < ¢, hence the distance from Z,(w) to Z(w) has to be less then eL. The

second statement of the lemma is obvious. O
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Proof of Lemma 8:

In the proof we shall employ Bulinskaya lemma, given next for completness, see Cramér,
Leadbetter (1967), p. 76 for the proof. Adler (1981) Theorem 3.2.1 presents similar type of

result for fields which in slightly modified form will be used in following proofs.

Lemma 11 (Bulinskaya (1961)) Let u be fized. If one dimensional density fi(z) of the pro-
cess ((t) is bounded in z and in 0 <t < 1, and if ((t) has, with probability one, a continuous
sample derivative C(t), then the probability is zero that ((t) = 0, ((t) = u simultaneously,
foranytin0<t<1.

We beginn with the proof of (0). First we give an alternative characterizations of func-
tions ¢(t,w) and the indicators 1{r, (w)—0}(w), 1{7.(w)=r}(w) and then demonstrate their
measurability. Only measurability of ¢(¢,w) will be given. (Measurability of the indicators
can be shown in a similar way.)

Let us introduce Aw(s,t) = w(t) —w(s) (obviously Aw(s,t) = fts w(z) dz is a function of
w). The partial derivative Awi2(s,t) = w(t) — w(s) then, for a fixed ¢

¢t,w)=1 & Aw(0,t) >0 and Aw(t,L) <0 and /\ Aw(s,t) > 0 or Awqa(s,t) >0
0<s<t

and /\ Aw(t,s) <0 or Aw;a(t,s) < 0. (17)
t<s<L

(Simply, A o, Aw(s,t) > 0 or Aw;a(s,t) > 0 means that w is higher or growing faster at

t than at any other s € (0,¢).) Next for any € > 0

T.(w) =04 Aw(0,L) <0and A Aw(0,5) <0ora(s) <e, (18)
0<s<L

T.(w) = L < Aw(0,L) > 0 and /\ Aw(s,L) > 0 or w(s) <e. (19)
0<s<L

Let {s;}32, be a countable, dense subset of [0, L], such that s; = 0, sy = L. Define
A (tw) = /\\//\{(sz <t—-nt)= (Aw(s;,t) > k1 or Awia(si,t) >k 1)}
n k i

At (t,w) = /\V/\{(s, >t+nt) = (Aw(t,s;) <0 or Awialt,s;) < -k~ 1)}
n k

i
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where n, k, i are integers. Now, it is easy to see that for continuously differentiable w
q(t,w) =1 Aw(0,t) > 0 and Aw(t,L) <0 and A~ (t,w) and A (¢,w) are true.  (20)
Now, since Aw(s,t), Awi2(s,t) are measurable functions (s, t,w) and hence, for fixed s;, z, v,

L{Awia(si,8) <z }U{Aw(si,t) <y} (B @) 1{Aw(0,) >0)n{Aw(t, L) <0} (W)

is a measurable function of (¢,w). Consequently ¢(s,w) is measurable too and (0) is prooved.

We turn now to the proof of (I). First, note that the assumed existence of the density
of w(t) implies that P(T. = t) = 0 for any fixed ¢t € (0,L). Next we turn to the condition
that P(Z, = h) = 0 for any fixed h and € > 0. Obviously, since the density of w(0) and
w(L) exists then P(T. =0,Z. = h) =0 and P(T. = L, Z. = h) = 0. Now, since the density
of w(t) is bounded then employing Bulinskaya lemma, for {(t) = w(t) + et implies that for a
fixed value h and €

P(w(t) = h,w(t) =€, for any t € [0, L]) =0, (21)
which implies P(T. € (0, L), Z. = h) = 0, and hence (I) is proved.
We shall now proof (II). Denote by a(e) = 1{r. (w)—0}(w) and b(e) = 1{1,(w)=1}(w)-
Obviously the functions a,b are positive, bounded and non-decreasing, see Eqs. (18-19).
What we need to show is that

lim a(e) = lyr=o}, lim b(e) = 1{r=r}-

In order to prove the convergence we split C' into three subsets. First, consider w such that
T(w) = 0, then for all ¢ > 0 we have T.(w) = 0 and hence a(e) = 1 (similarly b(e) = 0).
The second case is when 0 < T'(w) < L. Then there exist ¢t € (0, L) such that w(¢) = 0 and
w(t) > w(0). Since w(0) < w(t) then a(e) tends to zero as € goes to zero. We turn now to
check the limit of b(¢). Clearly if w(L) < w(t) then also b(e) tends to zero. Consequently the
only interesting case is when w(t) = w(L). We shall show next that this can happen with

probability zero. Again using Bulinskaya lemma we have that for any § > 0
P(w(s) —w(L) =0,w(s) =0 for any s € [0, L — 4]) = 0.
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By taking a sequence of é converging to zero we obtain that
P(w(s) —w(L) = 0,w(s) =0 for any s € [0, L)) = 0. (22)

and hence with probability one we have w(L) < w(t).
Finally let us consider the case T'(w) = L, then w(L) > w(s) for all s € [0, L) and hence

a(e) = 0 and b(e) = 1. Consequently we proved that a.s.

lim L)<y lir=0y (W) = Liw)<nylir=0}(w),

lim1ry0)<mlir=0yw) = Lpuw<mlir=r3(w),

and (II) follows.

We turn to (III). For w such that w(0) = Z(w), then we have T.(w) = T'(w) and Z.(w) =
Z(w). Next consider w such that Z(w) = w(L) > w(0). Then from (22) it follows that
w(L) > w(s) for all s € [0,L) and hence T, (w) = T(w) while Z.(w) = Z(w). Finally, we
consider w such that w(t) = Z(w) > w(0) for some ¢ € (0, L). (From the previous case we
have that a.s. w(t) > w(L).) Now for a fixed § > 0, by a minor modification of the proof of
Theorem 3.2.1 in Adler (1981) (with field X (s,t) = w(t) — w(s)), one can show that

P(w(t) —w(s) =0,w(s) = 0,w(t) =0 for any (s,t) € 45) = 0.

P(w(t) —w(s) = 0,w(s) = 0,w(t) =0 for any (s,t) € [0, L] x [0, L],t# s) =0,

and hence, with probability one, there is at most one ¢ € (0,L) such that w(t) = Z(w).
Consequently ¢ is an unique global maximum on [0, L] and by Lemma 2 (T, Z.) — (T, Z).
This completes proof of (III). m|

Proof of Theorem 10:

We begin with statement (A); Functions f(¢,z; N) are bounded by f.(¢,;0). By means of
Fubini’s theorem, the integrability of f.(t,z;0) is implied by (15). Since g™ (t,w) > g(t,w),
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¥ (0,w) > 1{1.—0} and a¥(L,w) > 1{1.—r}, are decreasing sequences of random variables,

then by (16)
fe(taa";N) - fe(ta -'17) > 0

converges to zero as N tends to infinity.

Proof of (B); Since the densities f;(s)—w(t)s fu(s)—w(t),w(s)—w(t) are bounded then for a

fixed ¢ the probability of the statements (I) and (II) is one.
(I) The number of s € [0, L] such that w(t) = w(s) and &(s) = 0 is at most one.
(IT) The number of s € [0, L] such that w(t) = w(s) and w(t) = w(s) is one.

Now if a sample w satisfies conditions (I) and (II), then

q(t,w) =1 & w(t) > w(0) and w(t) > w(L) and /\ w(s) < w(t) or w(s) < w(t).

Further, if, for t = 0, a sample w satisfying conditions (I) and (II) then statement

¢(Ow)=1& A w(s) <w(l)orafs) <e
s€[0,L]

and for t = L

ge(Lw)=1& N w(s) <w(l)ora(s) <e
s€[0,L]

(23)

(24)

(25)

(The proof of statements (23-25) involves elementary manipulations of (17-19) and hence is

omitted.) Consequently with probability one
lim (qN(t,d)),qu(O,w)qu(L,w)) = (q(t,u')), l{Tﬁ(w)zo}a 1{Tg(w):L})'

N—o0

Thus by dominated convergence theorem
lim f.(t,z;N) = fe(t, z),
N—oo

for almost all ¢ and hence (B) is proved.
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